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Motivation

General goal: study the topology of the space X of states of
”matter” at T = 0 from a certain class (”phase diagram”).

Assumptions:

By ”matter” we mean a system on an infinite lattice Λ ⊂ Rd

with a finite number of degrees of freedom per site.

States are pure states with some extra locality properties (e.g.
”gapped states”).

Equivalence on states: evolution by a local Hamiltonian and
addition of disentangled degrees of freedom.

In general it’s very difficult to describe (or even define!) X. But we
can at least hope to construct invariants of families M→ X.
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Example: Berry classes for 0d system

If we don’t have any locality, the system is effectively zero-
dimensional. In the limit when the number of degrees of freedom
goes to infinity the space has the homotopy type of CP∞. Only
π2(CP∞) = Z is non-trivial.

For a smooth family M of states on a Hilbert space H with the
corresponding rank-1 projector P, we can define a canonical line
bundle L over M with the canonical curvature

F = Tr(PdPdP). (1)

1
2πi [F ] ∈ H2(M,Z) is known as Berry class. It gives an obstruction
to the triviality of the family M (e.g. spin 1/2 in a magnetic field).

Question: is there a meaningful generalization for states of
(interacting) many-body systems in the thermodynamic limit?
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Uniformly local Hamiltonians

One way to define a local Hamiltonian is by a formal sum:

H =
∑
j∈Λ

hj (2)

where hj is a traceless uniformly bounded ‖hj‖ ≤ C observable
local on a ball of radius R with the center at j . It defines an
unbounded derivations on the algebra

H(A) = [H,A] =
∑
j∈Λ

[hj ,A]. (3)

Such description is ambiguous. E.g.

H = ...+ (h−1 + A) + (h0 −A) + h1 + h2 + ... (4)

defines the same Hamiltonian.
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Uniformly local Hamiltonians: the complex of currents

Let dl be the Lie algebra of traceless local observables, and let
Cn(dl) be a space of antisymmetric functions

f : Λn+1 → dl

such that fj0...jn is a local uniformly bounded observable on a ball of
radius R with the center at ja for any a ∈ {0, ..., n}. We call them
n-currents or n-chains.

j k



Uniformly local Hamiltonians: the complex of currents

Examples:

A 0-chains can be used to represent Hamiltonians H =
∑

j hj

or global charges Q =
∑

j qj .

If Q =
∑

j qj defines U(1) charge and hj is U(1) invariant,
then jkl = i [hk , ql ]− i [hl , qk ] defines a current (1-chain):

(∂j)k :=
∑
l∈Λ

jkl = −i [H, qk ] = −q̇k

Physically it corresponds to a charge that flows from site j to
site k.

Similarly, jEkl = i [hk , hl ] defines the energy current.
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Uniformly local Hamiltonians: the complex of currents

The map ∂ : Cn+1(dl)→ Cn(dl)

(∂f)j0...jn =
∑

jn+1∈Λ

fj0...jn+1

defines a chain-complex

. . .
∂3→ C2(dl)

∂2→ C1(dl)
∂1→ C0(dl)→ 0 (5)

Lemma: The homology of this complex is trivial except for H0(dl).
Moreover, there is an explicit contracting homotopy, i.e. a map
hn : Cn(dl)→ Cn+1(dl) such that ∂n+1 ◦ hn + hn−1 ◦ ∂n = Id.
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Uniformly local Hamiltonians: the complex of currents

We can define the augmented complex

. . .
∂3→ C2(dl)

∂2→ C1(dl)
∂1→ C0(dl)

∂0→ Dl → 0 (6)

with Dl := H0(dl).

The space of uniformly local Hamiltonians is identified with Dl .



Uniformly local Hamiltonians: the complex of currents

Lattice Λ ⊂ Rd Fields on Rd

Cn(dl) Ωd−n(Rd)

0-chain d-form (density)

1-chain (d − 1)-form (current)

n-chain (d − n)-form (higher current)

∂ de Rham d

integration

wedge product



Uniformly local Hamiltonians: the complex of currents

Contraction with regions A0, ...,An:

fA0...An :=
∑
j0∈A0

...
∑
jn∈An

fj0...jn . (7)

In d = 1 the contraction a 1-current j with two complementing
half-lines A,B defines a local observable jAB .

A B
p

In d = 2 the contraction of a 2-current m with regions A,B,C
defines a local observable mABC

C

A B

p
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Uniformly local Hamiltonians: the complex of currents

There is a canonical degree 1 graded-skew-symmetric bracket
{·, ·} : Cn(dl)× Cm(dl)→ Cn+m+1(dl) defined by

{f, g}j0...j|f|+|g|+1
:=

1

|f|!|g|!
[fj0...j|f| , gj|f|+1...j|f|+|g|+1

] + (s. perms). (8)

that satisfies graded Leibniz rule and graded Jacobi identity.

∂{f, g} = {∂f, g}+ (−1)|f|+1{f, ∂g}, (9)

(−1)(|f|+1)(|h|+1){f, {g, h}}+ (c. perms) = 0. (10)

It defines a (1-shifted) DG Lie algebra structure on C•(dl) and
induces a Lie algebra structure on Dl .

Examples: j = {h, q}, jE = {h, h}, ...



Uniformly local Hamiltonians: the complex of currents

Lattice Λ ⊂ Rd Fields on Rd

Cn(dl) Ωd−n(Rd)

0-chain d-form (density)

1-chain (d − 1)-form (current)

n-chain (d − n)-form (higher current)

∂ de Rham d

contraction with regions integration

- wedge product

bracket {·, ·} ?



Uniformly almost local Hamiltonians

For practical application the assumption of uniform locality is too
strong. Even for quasi-adiabatic evolution of finite-ranged gapped
Hamiltonians we need subexponential decay. [Hastings 04; Osborne

06; Nachtergale et. al. 11; Ogata, Moon 19]

We say that A ∈ dl is b(r)-localized at j , if

inf
B∈ABj (r)

‖A−B‖ ≤ b(r). (11)

We define uniformly almost local (UAL) chain complex by
requiring that all components fj0...jn of n-chain f are b-localized at
each ja for some b(r) ∈ O(r−∞).
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Uniformly almost local Hamiltonians

Lemma: the structures described above hold for UAL chain
complex

. . .
∂2→ C1(dal)

∂1→ C0(dal)→ Dal → 0 (12)

The corresponding Lie algebras dal and Dal = H0(dal) have the
structure of Fréchet-Lie algebra.

Remark: perhaps there is even the corresponding Fréchet-Lie group
of automorphisms generated by such derivations.
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structure of Fréchet-Lie algebra.

Remark: perhaps there is even the corresponding Fréchet-Lie group
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Pseudo-gapped states

Let dal
ψ, Dψ

al be Lie-subalgebras, which do not excite a pure state
ψ:

〈[H,A]〉ψ = 0. (13)

Lemma: For a ground state ψ of a gapped Hamiltonian with
exponentially decaying interaction the complex

. . .
∂2→ C1(dψal)

∂1→ C0(dψal)
∂0→ Dψ

al → 0 (14)

is exact, and the there is UAL contracting homotopy
hψn : Cn(dψal)→ Cn+1(dψal). In particular, for any closed f ∈ Cn(dψal)
we can construct g = hn(f) such that f = ∂g.

From now on we consider the class of states for which hψn exists
without any reference to the Hamiltonian (even if it exists). We
call them ”pseudo-gapped”. (similar condition in [Bachmann, Bols,

et al. 18])



Pseudo-gapped states

Let dal
ψ, Dψ

al be Lie-subalgebras, which do not excite a pure state
ψ:

〈[H,A]〉ψ = 0. (13)

Lemma: For a ground state ψ of a gapped Hamiltonian with
exponentially decaying interaction the complex

. . .
∂2→ C1(dψal)

∂1→ C0(dψal)
∂0→ Dψ

al → 0 (14)

is exact, and the there is UAL contracting homotopy
hψn : Cn(dψal)→ Cn+1(dψal). In particular, for any closed f ∈ Cn(dψal)
we can construct g = hn(f) such that f = ∂g.

From now on we consider the class of states for which hψn exists
without any reference to the Hamiltonian (even if it exists). We
call them ”pseudo-gapped”. (similar condition in [Bachmann, Bols,

et al. 18])



Pseudo-gapped states

Let dal
ψ, Dψ

al be Lie-subalgebras, which do not excite a pure state
ψ:

〈[H,A]〉ψ = 0. (13)

Lemma: For a ground state ψ of a gapped Hamiltonian with
exponentially decaying interaction the complex

. . .
∂2→ C1(dψal)

∂1→ C0(dψal)
∂0→ Dψ

al → 0 (14)

is exact, and the there is UAL contracting homotopy
hψn : Cn(dψal)→ Cn+1(dψal). In particular, for any closed f ∈ Cn(dψal)
we can construct g = hn(f) such that f = ∂g.

From now on we consider the class of states for which hψn exists
without any reference to the Hamiltonian (even if it exists). We
call them ”pseudo-gapped”. (similar condition in [Bachmann, Bols,

et al. 18])



Pseudo-gapped states

Important subclass: invertible states. [Kitaev]

We call a state ψ on a system Λ invertible, if there is another
system Λ′ with a state ψ′, such that ψ ⊗ ψ′ on Λ ∪ Λ′ is in the
trivial phase, i.e. it can be disentangled by a local Hamiltonian
evolution.

In the presence of symmetry we may consider G -invariant version
of invertibility.

Modest goal: describe all invertible states (Kitaev’s conjecture).



Application 1: Hall invariants

Let ψ be a pseudo-gapped state invariant under an on-site U(1)

symmetry, and let Q ∈ Dψ
al be the corresponding generator of the

symmetry. We may consider U(1)-invariant part of C•(d
ψ
al).

Q = ∂q(0)

∂{q(0), q(0)} = 0 ⇒ 1

2
{q(0), q(0)} = −∂q(2)
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Application 1: Hall invariants

Claim: for d = 2 the contraction σ = 4πi〈q(2)
ABC 〉 is an invariant of

the phase. For gapped states σ/2π coincides with the Hall
conductance.

C

A B

p

Similar to the definition of Hall invariant for free fermionic
systems [Avron, Seiler, Simon 94; Kitaev 05].

For invertible states one can show that σ ∈ Z for fermions and
σ ∈ 2Z for bosons [Kapustin, NS 20] using methods similar to
the proof of the quantization of Hall conductance on a torus
[Hastings, Michalakis 13; Bachmann et al. 18].
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Application 1: Hall invariants

Let q• = q(0) + q(2) + q(4) + ... recursively defined by

1

2
{q•, q•} = Q − ∂q•. (15)

Claim: for even d and a conical intersection A0,A1,...,Ad the
contraction

〈q(d)
A0...Ad

〉 (16)

is an invariant of the phase.

These invariants are supposed to correspond to non-linear response
described by the effective action

∫
AdA...dA.
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Application 1: Hall invariants

In the same way one can define invariants for non-abelian Lie
group G with Lie algebra g taking values in invariant multi-linear
forms on g. For example, for d = 2 with charges Qa =

∑
j qa

j we

can construct 2-current mab satisfying

1

2
{qa, qb} = −∂mab

which defines an invariant quadratic form 〈mab
ABC 〉 on g.



Application 2: Berry classes

Let M be a smooth manifold equipped with G ∈ Ω1(M,Dal), and
let ψ be a family of pseudo-gapped states. We say that it defines a
smooth family of states if for any two points λ1, λ2 ∈M and for
any smooth path p : [0, 1]→M between λ1 and λ2 the state ψλ2

can be obtained from ψλ1 using p∗G.

Let (M,G, ψ) be a smooth family of pseudo-gapped states. Then
the bi-complex

. . .
∂→ Ω•(M,C1(dψal))

∂→ Ω•(M,C0(dψal))
∂→ Ω•(M,Dψ

al)
∂→ 0,

(17)
is exact with respect to ∂.
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Application 2: Berry classes

Let

F := dG +
1

2
{G,G} (18)

satisfying

DF := dF + {G,F} = 0, 〈[F,A]〉ψ = 0 (19)

that is F ∈ Ω2(M,Dψ
al).

The descent equation is given by

Df• +
1

2
{f•, f•} = F− ∂f• (20)

where f • = f (0) + f (1) + f (2) + ... with f (n) ∈ Ωn+2(M,Cn(dψal)).

Claim: [〈f (d)
A0...Ad

〉] ∈ Hd+2(M, iR) is an invariant of a family M.
We call it higher Berry class. [Kitaev (unpublished);

Kapustin, Spodyneiko 19]
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Application 2: Berry classes

Example: M = S3 family of 1d states with non-trivial

[〈f (1)
AB 〉] ∈ H3(M, iR).



Application 2: Berry classes

Remarks:

One can show that for invertible 1d states
1

2πi [〈f
(1)
AB 〉] ∈ H3(M,Z)

The underlying geometric object is a line bundle gerbe
(generalization a line bundle for d = 0 systems). In contrast
to 0d, it doesn’t seem to have a canonical curvature.

It is believed that the homotopy type of 1d invertible systems
is K (Z, 3) with the only non-trivial homotopy group π3 = Z,
that suggest completeness of Berry invariants.

A non-trivial family of 1d states may appear on the boundary
of 2d system if some symmetry preserves the state in the bulk
(WZW invariants).

Not known if there is any quantization for d > 1.
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Final remarks

Remarks:

One can also consider a unifying equation

Db• +
1

2
{b•, b•} =

(
F +

∑
a

Qata

)
− ∂b• (21)

that in addition contains Thouless invariants.

It seems like all invariants for Lie group symmetry G
originating from Berry curvature can be obtained in this way.

For discrete G some invariants can be defined for invertible
states. One has to use multiplicative version of pseudo-gap
condition which is technically more challenging.
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Thank you for your attention!


