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Motivation

Quantum cellular automata model strictly local dynamics. However:

Lieb-Robinson: Local Hamiltonian evolution obeys approximate light cone.

1b(t) —| c Il < Cye— CQlr—vt)

For short-range interactions, there is Lieb- Robinson velocity v such that
support of local operators grows as vt, up to exponential tails.

Can the theory of QCAs be generalized to this setting?
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Motivation and summary

Physics question: Are local dynamics generated by local Hamiltonians?
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» How about lattice translations?

» Boundary dynamics generated by bulk local Hamiltonian?
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Motivation and summary

Physics question: Are local dynamics generated by local Hamiltonians?
» That is, can we find converse to Lieb-Robinson bounds?
» How about lattice translations?

» Boundary dynamics generated by bulk local Hamiltonian?
Mathematics question: Classify approximately local dynamics.

Our results: Approximately local dynamics in 1D have structure & index
theory similar to QCAs. In particular, obtain a converse to LR bounds. J
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Setup: Infinite spin chains
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Ap=Mat(d) ~ Ax= ®~An ~ Ao = U Ax
neX XeN
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n
X

It is convenient to work in the Heisenberg picture:

Ap=Mat(d) ~ Ax= ®~An ~ Ao = U Ax
neX XeN

Quasi-local C*-algebra:

A — -Aloc” l ®A "

We can also define A>, = Ay pi1,...) © A, etc.

Local dynamics are naturally modeled by automorphisms o: A — A.
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Quantum cellular automata (QCAs)

[Margolus, Schumacher-Werner, .. .]
Quasi-local algebra on infinite 1D lattice:

A=) An Ap=Mat(d)
n€eZ

An automorphism «: A — A is a quantum cellular automaton (QCA)
or locality preserving unitary (LPU) with radius R > 0 if:

“(An) € ‘A{nfR,...,n+R}

That is, the support of any local operator grows by at most R:
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Quasi-local algebra on infinite 1D lattice:

A=) An Ap=Mat(d)
n€eZ

An automorphism «: A — A is a quantum cellular automaton (QCA)
or locality preserving unitary (LPU) with radius R > 0 if for all X C Z:

o(Ax) € AR-Neighborhood (X)

That is, the support of any local operator grows by at most R:
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Classification of QCAs in 1D

Examples:

Quantum circuit Shift

e oot
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Classification of QCAs in 1D

Examples:

Quantum circuit Shift
h——he TncET J‘J‘J‘J‘J‘J‘J
Il ° $”$ ° $”$ ° $I (

Theorem (Gross-Nesme-Vogts-Werner, GNVW):
» Any QCA is a composition of circuit and shift.

> Shift cannot be implemented by circuit.

» QCAs modulo circuits are classified by quantized index.

T
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Index of QCAs

GNVW gave axiomatic, algebraic, and analytic definitions. Intuively:

index = amount of quantum information flowing right

— amount of quantum information flowing left
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Index of QCAs

GNVW gave axiomatic, algebraic, and analytic definitions. Intuively:

index = amount of quantum information flowing right

— amount of quantum information flowing left

et s

index = log dy index = — log d»
ol Y

RRRRR Twe v

index = log d; — log d> = log %

This intuition can be made precise. ..
8/ 22



(Re)defining the index

L R’

Cut chain in halves and consider corresponding Choi state p;gr;/r’.
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(Re)defining the index

L R’

Cut chain in halves and consider corresponding Choi state p;gi7g’. Then:

indexae == (I(L: R") —I(L": R))

N| =

where /(A: B) = S(pasl|lpa ® pg) is the quantum mutual information.

Properties:
> quantized: index x € Z[{log p;}l, pi = prime factors of local dimension
> additive: index @« ® 3 = index & + index f3
» robust: if & & 3 then index & = index f3
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Approximately locality-preserving unitaries (ALPUs)

An automorphism «: A — A is an approximately locality preserving
unitary (ALPU) with f(r)-tails if for all X C Z and all r > 0:

O((‘AX) gf(r) Ar—Neighborhood(X)

T

Useful notation: B C. € means

Vb e B: dc e C: ||b—c| < elb|.

Examples: QCAs, local Hamiltonian dynamics (Lieb-Robinson!), ... 7 )
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Classification of ALPUs?

Why do we care?
> A theory of local dynamics should allow local Hamiltonian dynamics. ..
» Converse to Lieb-Robinson bounds?
» |s there a local Hamiltonian that generates lattice translation (shift)?

> Stability of chiral many-body localized 2D Floquet systems? (po et al

Why not obvious?
> Previous work only treats exact QCAs.
» Previous techniques sensitive to perturbations.

» Local Hamiltonian dynamics are not quantum circuit.
But: Can always approximate by circuits. How about ALPUs?

» Previous definitions of index do not apply to ALPUs.
But: Mutual information defn. applies! Does index remain quantized?
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Our results: Classification of ALPUs

ALPUs modulo (time-dependent) quasi-local Hamiltonian dynamics
= QCAs modulo circuits
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Our results: Classification of ALPUs

ALPUs modulo (time-dependent) quasi-local Hamiltonian dynamics
= QCAs modulo circuits

Theorem:
> ALPUs are classified by index that is quantized, additive, robust:

index o« = index 3 iff « = quasi-local Hamiltonian dynamics o [3

iff o, B can be ‘blended’

v

Any ALPU is composition of quasi-local Hamilt. dynamics and shift.

v

Any ALPU can be approximated by a sequence of QCAs.

» Converse to Lieb-Robinson bound: ALPU generated by quasi-local
Hamiltonian iff index = 0. Always the case for finite open chain!

v

Shift cannot be approximated by quasi-local Hamiltonian dynamics.
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A first attempt

Suppose we have an ALPU:
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A first attempt

Suppose we have an ALPU:

For any fixed n, can truncate tails to obtain approximate morphism
An — ‘A{nfr,...,n+r}°

By a version of Ulam stability, can even find exact such morphism nearby.

However, for different sites n, the images of these morphisms
need not commute — unclear how to patch together!

Need a more clever strategy. ..

15 /22



Main tool: Stability of inclusion

Theorem (Christensen, 80s): If B C, C for hyperfinite von Neumann
algebras and ¢ < %, then there is a unitary u € (B U @)” such that

uBu® CC and |u—I| < 12e.
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Main tool: Stability of inclusion

Theorem (Christensen, 80s): If B C, C for hyperfinite von Neumann
algebras and ¢ < %, then there is a unitary u € (B U @)” such that

uBu* CC and |ju—1|| < 12e.

We extend this to show that, moreover:
» If x €5 B and x €5 C, then ||x — uxu™| = O(5||x]|).
> If x €5 B’ and x €5 €/, then ||x — uxu™|| = O(8]|x]|).

Applied to ALPU, can localize image of any region, while preserving tails.
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How to use this?

Key idea: For any fixed cut, can apply unitaries near identity to construct
automorphism that looks like QCA near this cut:

............Io(n
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......................
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How to use this?

Key idea: For any fixed cut, can apply unitaries near identity to construct
automorphism that looks like QCA near this cut:

............Io(n

............

_______

Left and right are decoupled — stronger than what we had before!

This allows us to glue different &, &p42, ...together.

Approximation Theorem: For any 1D ALPU «, there are QCAs f3, of
radius 2r such that 3, — « strongly. In fact, if f(r) are the tails of «,

diam(X)
—.

(= Br)axll < Cr £(r)
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1. How to create QCA near cut?
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O((-A>n) Ce A}nfl
By Christensen’s theorem, we can find ~ | s.th.
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1. How to create QCA near cut?

By Christensen’s theorem, we can find ~ | s.th.

=

(X(-A>n) * c A}nfl-

We can visualize this as above. . .
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1. How to create QCA near cut?

The new ALPU o is still ¢’-nearest neighbor. In particular:
(X/(-A}n) Der Axnyt

and both algebras are in A>, ;.
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1. How to create QCA near cut?

The new ALPU o is still ¢’-nearest neighbor. In particular:
(X/(-A}n) e Aznti

and both algebras are in A~ , 1. Thus, the latter contains unitary v s.th.
v (Azp)v* 2 Asnyt

and hence

V“I(-A<n—1) v C Agn

S

Key fact: Second unitary does not destroy locality achieved in step!
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1. How to create QCA near cut?

We continue in this way, successively rotating images and preimages. ..
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1. How to create QCA near cut?

We continue in this way, successively rotating images and preimages. . .

. until we obtain automorphism that looks like a QCA near fixed cut:

..O.........chn

© © 0,0 0.0 00 0.0 0 o

..............
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2. Why can we glue?

Compare two such local QCAs:
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2. Why can we glue?

Compare two such local QCAs:

We can glue the red and the blue morphism by applying a unitary

ue -An+1,n+2'

Inductively we obtain a QCA.
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Index of an ALPU

Thus we proved that any ALPU « in 1D can be approximated by sequence
of QCAs B, (sufficiently fast).
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Thus we proved that any ALPU « in 1D can be approximated by sequence
of QCAs 3, (sufficiently fast). This allows us to define the index:

index & := lim index f3,
r—00
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> inherits properties of GNVW index: quantized, additive, continuous, ...
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Index of an ALPU

Thus we proved that any ALPU « in 1D can be approximated by sequence
of QCAs B, (sufficiently fast). This allows us to define the index:

index & := lim index f3,
r—00

» well-defined, independent of choice of {f3,}

> inherits properties of GNVW index: quantized, additive, continuous, ...

If O(r1£5 )-tails, can also compute as mutual information difference:

1(/(L:R’)—/(L’:R)) LT i

index o« =
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How to obtain time-dependent quasi-local Hamiltonians?

S "
DDDDDDDDD[T
o

» Start with ALPU of index o« = 0.
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How to obtain time-dependent quasi-local Hamiltonians?

==V
oLt |
o o

» Start with ALPU of index o« = 0.

> Approximate o by QCA 31 of same index. Thus (31 is circuit and can
be implemented by time-dependent local Hamiltonian evolution.
> Repeat with Bl_loc.

For an appropriate “schedule”, obtain time-dependent Hamiltonian

H(t) =) Hx(t)
X

that is piecewise constant and has geometrically local interactions
|Hx(£)]| = O(F(k)log k) with |X| = k < k(t).
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Summary and outlook

Approximately locality preserving unitaries (ALPUs) in 1D have structure
& index theory generalizing the one of QCAs. In particular, implies a
converse to Lieb-Robinson bounds. Main techniques are stability results
for near inclusions of algebras. Many open problems:

Periodic chain in 1D?
Extension to high dimensions? 2D within reach. ..
Beyond automorphisms: Is there a QCA near any “noisy” QCA?

>
>
>
» Other applications of stability results in QI?

Thank you for your attention!
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