Algebraic Moving Frame and Beyond Sections and the computation of rational invariants

Evelyne Hubert

Inria & Université Côte d'Azur

Moving Frames and their Modern Applications, Banff 2021

Based on joint works with either I. Kogan, or G. Labahn, or P. Görlach and invaluable discussions with E. Mansfield & P. Olver

Sections and the computation rational invariants for applications

Construction of rational invariants : a general algorithm

Scalings and parameter reduction in mathematical models for biology without fractional powers

Orthogonal invariants of ternary quartics and neuro-imaging

Rational action \star of an affine algebraic group ${\mathcal G}$

 $\mathbb{K}=\mathbb{R}$ or \mathbb{C}

Group action:

 $\mathcal{G} \subset \mathbb{K}^{l}$ an algebraic variety $G \subset \mathbb{K}[\lambda_{1}, \dots, \lambda_{l}]$ its ideal

Rational action of $\mathcal G$ on $\mathbb K^n$

$$\lambda \star z = \left(\frac{p_1(\lambda, z)}{q(\lambda, z)}, \dots, \frac{p_n(\lambda, z)}{q(\lambda, z)}\right)$$

 $q, p_1, \ldots, p_n \in \mathbb{K}[\lambda_1, \ldots, \lambda_l, z_1, \ldots, z_n]$

Orbit \mathcal{O}_z of $z \in \mathbb{K}^n$: the image of \mathcal{G} under $\lambda \mapsto \lambda \star z$

$$\mathcal{G} = \mathrm{SO}_2, \quad \mathcal{G} = \left(\lambda^2 + \mu^2 - 1\right)$$

$$\lambda \star \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} \lambda & -\mu \\ \mu & \lambda \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

$$\mathcal{G} = \mathbb{K}^*, \quad \mathcal{G} = (\lambda \, \mu - 1)$$

$$\lambda \star \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} \lambda^2 z_1 \\ \lambda^3 z_2 \end{pmatrix}$$

 $\star: \mathcal{G} \times \mathcal{Z} \to \mathcal{Z} \qquad \qquad \mathcal{O}_{z} = \{\lambda \star z \mid \lambda \in \mathcal{G}\}$

Rational invariant: $f \in \mathbb{K}(z_1, \ldots, z_n)$ s.t. $f(\lambda \star z) = f(z), \ \forall \lambda \in \mathcal{G}$

Field of rational invariants: $\mathbb{K}(z)^{\mathcal{G}}$ finitely generated

THM: $\mathbb{K}(z)^{\mathcal{G}} = \mathbb{K}(r_1, \ldots, r_k) \Leftrightarrow \{r_1, \ldots, r_k\}$ separating [Rosenlicht 56]

Separating: $r_1(z) = r_1(z'), \ldots, r_k(z) = r_k(z') \iff z' \in \mathcal{O}_z$ for $z, z' \in \mathcal{Z} \setminus \mathcal{W}$

Section of degree *e* :

An irreducible variety \mathcal{P} that intersects generic orbits in e points.

f.i. a generic affine space of complementary dimension to the orbit

$$\mathcal{G} = \mathrm{SO}_2, \quad \mathcal{G} = \left(\lambda^2 + \mu^2 - 1\right)$$
$$\lambda \star \left(\begin{array}{c} z_1 \\ z_2 \end{array}\right) = \left(\begin{array}{c} \lambda & -\mu \\ \mu & \lambda \end{array}\right) \left(\begin{array}{c} z_1 \\ z_2 \end{array}\right)$$

$$Q = \left\{Y, X^2 - \left(x^2 + y^2\right)\right\}$$

$$\mathcal{G} = \mathbb{K}^*, \quad \mathcal{G} = (\lambda \mu - 1)$$
$$\lambda \star \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} \lambda^2 z_1 \\ \lambda^3 z_2 \end{pmatrix}$$
$$Q = \left\{ Y - 1, X^3 - \frac{x^3}{y^2} \right\}$$

$$\mathcal{G} = \mathrm{SO}_2, \quad \mathcal{G} = \left(\lambda^2 + \mu^2 - 1\right)$$
$$\lambda \star \left(\begin{array}{c} z_1 \\ z_2 \end{array}\right) = \left(\begin{array}{c} \lambda & -\mu \\ \mu & \lambda \end{array}\right) \left(\begin{array}{c} z_1 \\ z_2 \end{array}\right)$$

$$Q = \{Y, X^2 - (x^2 + y^2)\}$$

$$\mathcal{G} = \mathbb{K}^*, \quad G = (\lambda \mu - 1)$$

$$\lambda \star \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} \lambda^2 z_1 \\ \lambda^3 z_2 \end{pmatrix}$$

$$Q = \left\{ X - 1, Y^2 - \frac{y^2}{x^3} \right\}$$

$$\mathcal{G} = \mathrm{SO}_2, \quad \mathcal{G} = \left(\lambda^2 + \mu^2 - 1\right)$$
$$\lambda \star \left(\begin{array}{c} z_1 \\ z_2 \end{array}\right) = \left(\begin{array}{c} \lambda & -\mu \\ \mu & \lambda \end{array}\right) \left(\begin{array}{c} z_1 \\ z_2 \end{array}\right)$$

$$Q = \left\{Y, X^2 - \left(x^2 + y^2\right)\right\}$$

Section of degree e:

An irreducible variety \mathcal{P} that intersects generic orbits in e points.

f.i. a generic affine space of complementary dimension to the orbit

Intersection ideal: $I \subset \mathbb{K}(z_1, \dots, z_n)[Z_1, \dots, Z_n]$ Under specialization $z_i \mapsto \bar{z}_i \in \mathbb{K}$ $I_{\bar{z}} \subset \mathbb{K}[Z]$ is the ideal of $\mathcal{O}_{\bar{z}} \cap \mathcal{P}$

Prp: $I_{\lambda \star \overline{z}} = I_{\overline{z}}$

 \rightsquigarrow A canonical representation of I has coefficients in $\mathbb{K}(z)^{\mathcal{G}}$ \rightsquigarrow These coefficients generate $\mathbb{K}(z)^{\mathcal{G}}$ by the separation property f.i. [Rosenlich 56] considered the Chow form of I

$$I = (G + (Z - \lambda \star z) + P) \cap \mathbb{K}(z)[Z]$$

Example :

$$G = (\lambda^2 + \mu^2 - 1), \quad (Z - \lambda \star z) = (X - \lambda x + \mu y, Y - \mu x - \lambda y), \quad P = (Y)$$

• P a prime ideal in $\mathbb{K}[Z]$, $\mathcal{P} = \mathcal{V}(P)$ an irreducible variety of complementary dimension to the generic orbits

$$I = (G + (Z - \lambda \star z) + P) : q^{\infty} \cap \mathbb{K}(z)[Z]$$

Example :

$$G = (\lambda^2 + \mu^2 - 1), \quad (Z - \lambda \star z) = (X - \lambda x + \mu y, Y - \mu x - \lambda y), \quad P = (Y)$$

• P a prime ideal in $\mathbb{K}[Z]$, $\mathcal{P} = \mathcal{V}(P)$ an irreducible variety of complementary dimension to the generic orbits

• When
$$\lambda \star z = \left(\frac{p_1(\lambda, z)}{q(\lambda, z)}, \dots, \frac{p_n(\lambda, z)}{q(\lambda, z)}\right)$$

 $(Z - \lambda \star z) = (q(\lambda, z) Z_1 - p_1(\lambda, z), \dots, q(\lambda, z) Z_n - p_n(\lambda, z))$

$$I = (P + (Z - \lambda \star z) + G) : q^{\infty} \cap \mathbb{K}(z)[Z]$$

Q reduced Gröbner basis of *I* $\{r_1, \ldots, r_k\}$ its coefficients

Thm : $\mathbb{K}(z)^{\mathcal{G}} = \mathbb{K}(r_1, \ldots, r_k)$

Pf: Rewriting $\frac{p}{q} \in \mathbb{K}(z)^{\mathcal{G}}$ y_1, \dots, y_k a new indeterminates $Q_y := Q(r_i \leftarrow y_i)$ $p(Z) \longrightarrow_{Q_y}^* \sum_{\alpha} a_{\alpha}(y) Z^{\alpha}$ $q(Z) \longrightarrow_{Q_y}^* \sum_{\alpha} b_{\alpha}(y) Z^{\alpha}$ $\frac{p(z)}{q(z)} = \frac{a_{\alpha}(r)}{b_{\alpha}(r)}$

Note : we do not need the action to be (locally) free.

Retrieving the classical invariants of SL₂ actions

• The action of $SL_2(\mathbb{C})$ on forms $z_0x^2 + z_1xy + z_2y^2$ of degree 2

• Projective action of $SL_2(\mathbb{R})$ on quadrapules of \mathbb{R} :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \star \begin{pmatrix} z_0 & z_1 & z_2 & z_3 \end{pmatrix} = \begin{pmatrix} \frac{a z_0 + b}{c z_0 + d} & \frac{a z_1 + b}{c z_1 + d} & \frac{a z_2 + b}{c z_2 + d} & \frac{a z_3 + b}{c z_3 + d} \end{pmatrix}$$
$$= \left(\underbrace{Z_0^{-1}, Z_1, Z_2 - 1}_{P}, Z_3 - \frac{(z_0 - z_2)(z_1 - z_3)}{(z_0 - z_3)(z_1 - z_2)} \right)$$

Action:

$$\mathbb{K}=\mathbb{Q},\,\mathbb{R},\mathbb{C}$$

$$\begin{array}{rcl} \mathrm{SL}_n(\mathbb{K}) \times \mathrm{M}_n(\mathbb{K}) & \to & \mathrm{M}_n(\mathbb{K}) \\ (P, M) & \mapsto & P^{-1} \, M \, P \end{array}$$

Section: Companion matrices are normal forms for matrices Ms.t. discr $\chi(M) \neq 0$

$$\begin{pmatrix} \cdot & \cdot & \cdot & \chi_{0} \\ 1 & \cdot & \cdot & \chi_{1} \\ \cdot & \cdot & \cdot & \vdots \\ \cdot & \cdot & 1 & \chi_{n-1} \end{pmatrix}$$

Invariants: The coefficients of the characteristic polynomial

$$\chi_0,\ldots,\chi_{n-1}$$
 : $M_n(\mathbb{K}) \to \mathbb{K}$

Sections and the computation rational invariants for applications

Construction of rational invariants : a general algorithm

Scalings and parameter reduction in mathematical models for biology without fractional powers

Orthogonal invariants of ternary quartics and neuro-imaging

Scaling in the plane : rational sections

Algebraic Moving Frame and Beyond

Scalings in the plane : the invariants

Invariant:
$$g = x^{c}y^{d}$$
 such that $(\lambda^{a}x)^{c}(\lambda^{b}y)^{d} = x^{c}y^{d}$
i.e. $\lambda^{ac+bd}x^{c}y^{d} = x^{c}y^{d}$
i.e. $\begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = 0$
for instance $c = -b$ and $d = a$.

Scalings in the plane : the invariants

Generating Invariant:
$$g = \frac{y^c}{x^d}$$
 with $a = hc$ and $b = hd$
 $h = \gcd(a, b)$

Scalings in the plane : the invariants

Generating Invariant: $g = \frac{y^c}{x^d}$ with a = hc and b = hd $h = \gcd(a, b)$

Bezout identity : $h = \alpha a + \beta b$

 $x^{lpha}y^{eta}=1$ is a rational section Moving frame : $\lambda^h=x^{-lpha}y^{-eta}$

Scalings in the plane : invariants and rational sections

Generating Invariant: $g = \frac{y^c}{x^d}$ with a = h c and b = h d $h = \gcd(a, b)$

Bezout identity : $h = \alpha a + \beta b$ $x^{\alpha}y^{\beta} = 1$ is a rational section

Hermite normal form

$$\underbrace{\begin{bmatrix} a & b \\ \end{bmatrix}}_{\text{scaling}} \underbrace{\begin{bmatrix} \alpha & -d \\ \beta & c \end{bmatrix}}_{\text{multiplier}} = \underbrace{\begin{bmatrix} h & 0 \end{bmatrix}}_{\text{Hermite form}}$$

 $H \in \mathbb{Z}^{r \times n}$, rank r < n in (column) Hermite normal form if

Zero elements in right columns.

Upper triangular in left columns with nonnegative entries. Diagonal entries in left columns largest in each row.

With integer column operation, we can always transform any integer matrix A to a column Hermite form.

Scalings : their invariants and rewrite rules

$$\begin{array}{l} A \in \mathbb{Z}^{r \times n} \text{ of rank } r \leq n \\ \exists V \in \mathbb{Z}^{n \times n}, \quad A V = \begin{bmatrix} H & 0 \end{bmatrix}, \quad \text{det } V = \pm 1 \end{array}$$

Scalings : their invariants and rewrite rules

 $A \in \mathbb{Z}^{r \times n}$ of rank $r \leq n$

 $\exists V \in \mathbb{Z}^{n \times n}$, $A \begin{bmatrix} V_i & V_n \end{bmatrix} = \begin{bmatrix} H & 0 \end{bmatrix}$, det $V = \pm 1$

The columns of V_n form a \mathbb{Z} -basis for ker $A \cap \mathbb{Z}^n$

Scalings : their invariants and rewrite rules

 $A \in \mathbb{Z}^{r \times n}$ of rank $r \leq n$

 $\exists V \in \mathbb{Z}^{n \times n}, \quad A \begin{bmatrix} V_i & V_n \end{bmatrix} = \begin{bmatrix} H & 0 \end{bmatrix}, \quad \det V = \pm 1$

The columns of V_n form a \mathbb{Z} -basis for ker $A \cap \mathbb{Z}^n$

 $A \in \mathbb{Z}^{r \times n}$ defines a scaling

$$\begin{array}{rcccc} \left(\mathbb{K}^*\right)^r \times \mathbb{K}^n & \to & \mathbb{K}^n \\ \left(\lambda \ , \ z\right) & \mapsto & \left[\lambda_1^{a_{11}} \dots \lambda_r^{a_{r1}} z_1 & \dots & \lambda_1^{a_{1n}} \dots \lambda_r^{a_{rn}} z_n\right] \end{array}$$

- the column of V_n are the exponents of monomials $\begin{bmatrix} g_1 & \dots & g_{n-r} \end{bmatrix}$ that form a minimal generating set invariants
- \circ the column of V_i are the exponents of r monomials

that define a rational section

• the bottom rows of
$$V^{-1} = \begin{bmatrix} W_{\mu} \\ W_{0} \end{bmatrix}$$
 are the exponents of n monomials providing the rewrite rules $z \to g^{W_{0}}$

$$\begin{cases} \dot{n} = \left(\left(1 - \frac{n}{k_1} \right) r - k_2 \frac{p}{n+e} \right) n, \\ \dot{p} = s \left(1 - h \frac{p}{n} \right) p. \end{cases} \begin{cases} \dot{n} = \left(1 - \frac{n}{t} - h \frac{p}{n+1} \right) n, \\ \dot{p} = s \left(1 - h \frac{p}{n} \right) p. \end{cases}$$

 r, s, e, h, k_1, k_2 parameters.

 $\mathfrak{s}, \mathfrak{h}, \mathfrak{k}$ parameters

$$\mathfrak{t} = r t, \ \mathfrak{n} = \frac{n}{e}, \ \mathfrak{p} = \frac{h p}{e}, \ \mathfrak{s} = \frac{s}{r}, \ \mathfrak{h} = \frac{k_2}{rh}, \mathfrak{k} = \frac{k_1}{e}.$$

$$\begin{cases} \dot{n} = \left(\left(1 - \frac{n}{k_1} \right) r - k_2 \frac{p}{n+e} \right) n, \\ \dot{p} = s \left(1 - h \frac{p}{n} \right) p. \end{cases}$$

 r, s, e, h, k_1, k_2 parameters.

$$\begin{cases} \dot{n} = \left(\left(1 - \frac{n}{k_1} \right) r - k_2 \frac{p}{n+e} \right) n, \\ \dot{p} = s \left(1 - h \frac{p}{n} \right) p. \end{cases}$$

 r, s, e, h, k_1, k_2 parameters.

Scaling symmetry:

$$\begin{array}{rclrcl} s & = & \eta^{-1}\tilde{s}, & r & = & \eta^{-1}\tilde{r}, & t & = & \eta\,\tilde{t}, \\ k_2 & = & \eta^{-1}\mu\,\nu^{-1}\,\tilde{k}_2, & d & = & \mu\,\tilde{d}, & n & = & \mu\,\tilde{n}, \\ k_1 & = & \mu\,\tilde{k}_1, & h & = & \mu\nu^{-1}\,\tilde{h}, & p & = & \nu\,p, \end{array}$$

$$\begin{cases} \dot{n} = \left(\left(1 - \frac{n}{k_1} \right) r - k_2 \frac{p}{n+e} \right) n, \\ \dot{p} = s \left(1 - h \frac{p}{n} \right) p. \end{cases}$$

 r, s, e, h, k_1, k_2 parameters.

Scaling symmetry:

Parameter reduction

Prey-predator model [Murray, Mathematical Biology (2002)]

$$\begin{cases} \dot{n} = \left(\left(1 - \frac{n}{k_1} \right) r - k_2 \frac{p}{n+e} \right) n, \\ \dot{p} = s \left(1 - h \frac{p}{n} \right) p. \end{cases}$$

 r, s, e, h, k_1, k_2 parameters.

Hermite multiplier for the matrix defining the Scaling symmetry:

$$A\begin{bmatrix} V_{i} & V_{n} \end{bmatrix} = \begin{bmatrix} I_{r} & 0 \end{bmatrix}$$

Invariants :

 $\mathfrak{t} = r t, \ \mathfrak{n} = \frac{n}{e}, \ \mathfrak{p} = \frac{h p}{e}, \ \mathfrak{s} = \frac{s}{r}, \ \mathfrak{h} = \frac{k_2}{rh}, \ \mathfrak{k} = \frac{k_1}{e}.$ Rewrite rules : $r \longrightarrow 1, \quad h \longrightarrow 1, \quad k_1 \longrightarrow 1;$ $s \longrightarrow \mathfrak{s}, \quad k_2 \longrightarrow \mathfrak{k}, \quad d \longrightarrow \mathfrak{d}; \quad t \longrightarrow \mathfrak{t}, \quad n \longrightarrow \mathfrak{n}, \quad p \longrightarrow \mathfrak{p}.$

Parameter reduction

Prey-predator model [Murray, Mathematical Biology (2002)]

$$\begin{cases} \dot{n} = \left(\left(1 - \frac{n}{k_1} \right) r - k_2 \frac{p}{n+e} \right) n, \\ \dot{p} = s \left(1 - h \frac{p}{n} \right) p. \end{cases} \begin{cases} \dot{n} = \left(1 - \frac{n}{t} - h \frac{p}{n+1} \right) n, \\ \dot{p} = s \left(1 - h \frac{p}{n} \right) p. \end{cases}$$

 r, s, e, h, k_1, k_2 parameters.

$$\mathfrak{s}, \mathfrak{h}, \mathfrak{k}$$
 parameters

Hermite multiplier for the matrix defining the Scaling symmetry:

$$A\begin{bmatrix} V_{i} & V_{n} \end{bmatrix} = \begin{bmatrix} I_{r} & 0 \end{bmatrix}$$

Invariants :

$$\mathfrak{t} = r t, \ \mathfrak{n} = \frac{n}{e}, \ \mathfrak{p} = \frac{h p}{e}, \ \mathfrak{s} = \frac{s}{r}, \ \mathfrak{h} = \frac{k_2}{rh}, \mathfrak{k} = \frac{k_1}{e}.$$
Rewrite rules : $r \longrightarrow 1, \quad h \longrightarrow 1, \quad k_1 \longrightarrow 1;$
 $s \longrightarrow \mathfrak{s}, \quad k_2 \longrightarrow \mathfrak{k}, \quad d \longrightarrow \mathfrak{d}; \quad t \longrightarrow \mathfrak{t}, \quad n \longrightarrow \mathfrak{n}, \quad p \longrightarrow \mathfrak{p}.$

Avoiding fractional powers

Model for a chemical reaction $\begin{cases} \frac{dx}{dt} = a - kx + hx^2y \\ \frac{dy}{dt} = b - hx^2y \end{cases}$

[Murray 2002]:

$$\mathfrak{a} = \frac{h^{1/2}}{k^{3/2}} \mathfrak{a}, \quad \mathfrak{b} = \frac{h^{1/2}}{k^{3/2}} \mathfrak{b};$$

$$\mathfrak{t} = k \mathfrak{t}, \quad \mathfrak{x} = \frac{h^{1/2}}{k^{1/2}} \mathfrak{x}, \quad \mathfrak{y} = \frac{h^{1/2}}{k^{1/2}} \mathfrak{y}$$

$$\begin{cases} \frac{d\mathfrak{y}}{d\mathfrak{t}} = \mathfrak{b} - \mathfrak{x}^{2}\mathfrak{y} \\ \frac{d\mathfrak{y}}{d\mathfrak{t}} = \mathfrak{b} - \mathfrak{x}^{2}\mathfrak{y} \end{cases}$$

 $d\mathbf{r}$

2

Avoiding fractional powers

Model for a chemical reaction $\begin{cases} \frac{dx}{dt} = a - kx + hx^2y \\ \frac{dy}{dt} = b - hx^2y \end{cases}$

[Murray 2002]:

$$\mathfrak{a} = \frac{h^{1/2}}{k^{3/2}} \mathfrak{a}, \quad \mathfrak{b} = \frac{h^{1/2}}{k^{3/2}} \mathfrak{b};$$

$$\mathfrak{t} = k \mathfrak{t}, \quad \mathfrak{x} = \frac{h^{1/2}}{k^{1/2}} \mathfrak{x}, \quad \mathfrak{y} = \frac{h^{1/2}}{k^{1/2}} \mathfrak{y}$$

$$\begin{cases} \frac{d\mathfrak{y}}{d\mathfrak{t}} = \mathfrak{b} - \mathfrak{x}^{2}\mathfrak{y} \\ \frac{d\mathfrak{y}}{d\mathfrak{t}} = \mathfrak{b} - \mathfrak{x}^{2}\mathfrak{y} \end{cases}$$

 $d\mathbf{r}$

[HL13]:

$$b = \frac{b}{a}, \ \mathfrak{h} = \frac{a^2 h}{k^3}; \\
 \mathfrak{t} = k t, \ \mathfrak{x} = \frac{k}{a} x, \ \mathfrak{y} = \frac{k}{a} y.$$

$$\begin{cases}
 \frac{d\mathfrak{x}}{d\mathfrak{t}} = 1 - \mathfrak{x} + \mathfrak{h} \mathfrak{x}^2 \mathfrak{y} \\
 \frac{d\mathfrak{y}}{d\mathfrak{t}} = \mathfrak{b} - \mathfrak{h} \mathfrak{x}^2 \mathfrak{y}$$

2

Sections and the computation rational invariants for applications

Construction of rational invariants : a general algorithm

Orthogonal invariants of ternary quartics and neuro-imaging

A subspace $\Lambda \subset \Omega$ is a *B*-slice if

- generic orbits intersect Λ
- $B = \{g \in G \mid g \star \Lambda \subset \Lambda\}$
- $g \star \lambda \in \Lambda_{\mathbb{C}} \Rightarrow g \in B_{\mathbb{C}}$

$$f\in \mathbb{R}(\Omega)^{G} \quad \Rightarrow \quad f_{|\Lambda}\in \mathbb{R}(\Lambda)^{B}$$

The slice lemma

[Sheshadri 62]

The restriction of rational functions on Ω to Λ is an isomorphism of fields:

$$\mathbb{R}(\Omega)^G \xrightarrow{\cong} \mathbb{R}(\Lambda)^B$$

Illustration on ternary quadrics

Action:

$$\begin{array}{rcl} \mathrm{O}_3(\mathbb{R}) \times \mathrm{S}_3(\mathbb{R}) & \to & \mathrm{S}_3(\mathbb{R}) \\ (Q, A) & \mapsto & Q^t A Q \end{array}$$

Slice:

Section - Diagonal matrices

$$\Lambda = \left\{ \begin{pmatrix} \lambda_1 & \cdot & \cdot \\ \cdot & \lambda_2 & \cdot \\ \cdot & \cdot & \lambda_3 \end{pmatrix} \right\}$$

For any symmetric matrix A there exists $Q \in O_3$ s.t $Q \land Q^T \in \Lambda$.

• Subgroup $B_3 = \mathfrak{S}_3 \ltimes (\mathbb{Z}/2\mathbb{Z})^3$ $\mathcal{Q}^t \land \mathcal{Q} \subset \Lambda \text{ if }$

$$- Q = \begin{pmatrix} \pm 1 & \cdots \\ \vdots & \pm 1 & \vdots \\ \vdots & \vdots & \pm 1 \end{pmatrix}$$

- Q is a permutation matrix

Illustration on ternary guadrics

 $\Omega =$ symmetric matrices. O_3 the orthogonal group

 Λ = diagonal matrices. $B_3 = \mathfrak{S}_3 \ltimes (\mathbb{Z}/2\mathbb{Z})^3$

 $(\sigma, \epsilon) \in \mathbf{B}_3$

 $(\lambda_1, \lambda_2, \lambda_3) \in \Lambda$

$$(\sigma, \epsilon) \star (\lambda_1, \lambda_2, \lambda_3) = (\lambda_{\sigma(1)}, \lambda_{\sigma(2)}, \lambda_{\sigma(3)})$$

Invariants of B_3 : the Newton sums (or symmetric functions)

$$\mathbf{p}_1 = \lambda_1 + \lambda_2 + \lambda_3, \quad \mathbf{p}_2 = \lambda_1^2 + \lambda_2^2 + \lambda_3^2, \quad \mathbf{p}_3 = \lambda_1^3 + \lambda_2^3 + \lambda_3^3$$

They are the restrictions of

$$q_1 = \operatorname{Tr}(A), \quad q_2 = \operatorname{Tr}(A^2), \quad q_3 = \operatorname{Tr}(A^3)$$

$$\mathbb{R}(\Lambda)^{\mathrm{B}_3} = \mathbb{R}(p_1, p_2, p_3) \quad \Rightarrow \quad \mathbb{R}(\Omega)^{\mathrm{O}_3} = \mathbb{R}(q_1, q_2, q_3)$$

Diffusion tensor: a positive symmetric matrix at each voxel

$$f(x, y, z) = \begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} \omega_{20} & \frac{1}{2}\omega_{11} & \frac{1}{2}\omega_{10} \\ \frac{1}{2}\omega_{11} & \omega_{02} & \frac{1}{2}\omega_{01} \\ \frac{1}{2}\omega_{10} & \frac{1}{2}\omega_{01} & \omega_{00} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\bar{\lambda} = \frac{1}{3} \text{tr}(\omega), \qquad a = \sqrt{1 - \frac{1}{3} \frac{\text{tr}(\omega)^2}{\text{tr}(\omega^2)}} \qquad \text{where } A = \begin{pmatrix} \omega_{20} & \frac{1}{2}\omega_{11} & \frac{1}{2}\omega_{10} \\ \frac{1}{2}\omega_{11} & \omega_{02} & \frac{1}{2}\omega_{01} \\ \frac{1}{2}\omega_{10} & \frac{1}{2}\omega_{01} & \omega_{00} \end{pmatrix}$$

These biomarkers are invariant under the action $(Q, A) \rightarrow QAQ^T$, for $Q \in SO_3$ a rotation in $\begin{pmatrix} x & y & z \end{pmatrix}$ space.

 $\omega_{40}x^4 + \omega_{31}x^3y + \omega_{22}x^2y^2 + \omega_{13}xy^3 + \omega_{04}y^4 + \dots + \omega_{03}yz^3 + \omega_{00}z^4$

Algebraic Moving Frame and Beyond

Rotation in 3-space

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a^2 + b^2 - c^2 - d^2 & 2bc - 2ad & 2bd + 2ac \\ 2bc + 2ad & a^2 - b^2 + c^2 - d^2 & 2cd - 2ab \\ 2bd - 2ac & 2cd + 2ab & a^2 - b^2 - c^2 + d^2 \end{bmatrix} \begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{bmatrix}$$
$$a^2 + b^2 + c^2 + d^2 = 1$$

$$p = \omega_{40}x^4 + \omega_{31}x^3y + \omega_{22}x^2y^2 + \omega_{13}xy^3 + \omega_{04}y^4 + \omega_{30}x^3z + \dots + \omega_{00}z^3$$
$$\tilde{p}(x, y, z) = p(\tilde{x}, \tilde{y}, \tilde{z})$$

 $\tilde{p} = \tilde{\omega}_{40}x^4 + \tilde{\omega}_{31}x^3y + \tilde{\omega}_{22}x^2y^2 + \tilde{\omega}_{13}xy^3 + \tilde{\omega}_{04}y^4 + \tilde{\omega}_{30}x^3z + \dots + \tilde{\omega}_{00}z^4$

Induced action

$$\begin{bmatrix} \tilde{\omega}_{40} \\ \vdots \\ \tilde{\omega}_{00} \end{bmatrix} = R(a, b, c, d) \begin{bmatrix} \omega_{40} \\ \vdots \\ \omega_{00} \end{bmatrix}, \qquad \omega \in \mathbb{R}^{15}, \quad R(a, b, c, d) \text{ of degree 8}$$

E. Hubert (Inria & Université Côte d'Azur)

Algebraic Moving Frame and Beyond

The ring of polynomial invariants

 $3\,\omega_{40} + 3\,\omega_{04} + 3\,\omega_{00} + \omega_{22} + \omega_{20} + \omega_{02}$

 $\begin{array}{l} 25\left(3\,\omega_{30}+\omega_{121}+3\,\omega_{10}\right)^2+25\left(\omega_{21}+3\,\omega_{03}+3\,\omega_{0,1}\right)^2+25\left(3\,\omega_{31}+3\,\omega_{13}+\omega_{11}\right)^2\\ -4\left(27\omega_{00}-3\omega_{40}-\omega_{22}-3\omega_{04}+4\omega_{20}+4\omega_{02}\right)\left(27\omega_{04}-\omega_{20}-3\omega_{40}+4\omega_{22}+4\omega_{02}-3\omega_{00}\right)\\ -4\left(27\omega_{00}-3\omega_{40}-\omega_{22}-3\omega_{04}+4\omega_{20}+4\omega_{02}\right)\left(27\omega_{40}+4\omega_{22}-3\omega_{04}+4\omega_{20}-\omega_{02}-3\omega_{00}\right)\\ -4\left(27\omega_{04}-3\omega_{40}+4\omega_{22}-\omega_{20}+4\omega_{02}-3\omega_{00}\right)\left(27\omega_{40}+4\omega_{22}-3\omega_{04}+4\omega_{20}-\omega_{02}-3\omega_{00}\right)\end{array}$

At least 12 invariants...

A. Ghosh, T. Papadopoulo, and R. Deriche. IEEE International Symposium on Biomedical Imaging, 2012.
 A. Ghosh, T. Papadopoulo, and R. Deriche. Computational Diffusion MRI Workshop (CDMRI), MICCAI, 2012.
 E. Caruyer, R. Verma. Medical Image Analysis 20:1, 2015.

Auffray, Kolev, Olive. A minimal integrity basis for the elasticity tensor (2017) Olive. About Gordan's Algorithm for Binary Forms. J. FoCM 2016.

64 polynomial invariants given as transvectants

$$(O_3(\mathbb{R}); \mathbb{R}[x, y, z]_4) \xrightarrow{\cong} (SL_2(\mathbb{C}); \mathbb{C}[x, y]_8 \oplus \mathbb{C}[x, y]_4)$$

Problem Specifications

- A complete set of $k \ge 12$ invariants (answer : k = 12)
- How to evaluate them on numerical data.
- What is the image in \mathbb{R}^{12} ? (what are the possible values)
- Representative in the pre-image of $a \in \mathbb{R}^{12}$? (inverse problem)

Strategy

$$\mathbb{R}\left(\Omega_{4}\right)^{\mathrm{O}_{3}}\cong\mathbb{R}(\Lambda_{4})^{\mathrm{B}_{3}}$$

Harmonic decomposition of quartics

$$\mathbb{R}[x, y, z]_4 = \mathcal{H}_4 \oplus (x^2 + y^2 + z^2) \mathbb{R}[x, y, z]_2$$
$$\mathcal{H}_k = \{ h \in \mathbb{R}[x, y, z]_k \mid \Delta h = 0 \} \qquad \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

B_3 -Slice

$$\Omega_4 = \mathbb{R}[x, y, z]_4 = \mathcal{H}_4 \oplus \mathbb{R}[x, y, z]_2 \qquad \Lambda_4 = \mathcal{H}_4 \oplus \Lambda_2$$

B_3 -equivariant basis for \mathcal{H}_4

[Görlach Hubert Papado 19]

$$\begin{array}{ll} r_1 = y^4 - 6\,y^2z^2 + z^4, & t_1 = 6\,xyz^2 - x^3y - xy^3, & u_1 = y^3z - yz^3; \\ r_2 = z^4 - 6\,z^2x^2 + x^4, & t_2 = 6\,yzx^2 - y^3z - yz^3, & u_2 = z^3x - zx^3, \\ r_3 = x^4 - 6\,x^2y^2 + y^4, & t_3 = 6\,zxy^2 - z^3x - zx^3, & u_3 = x^3y - xy^3. \end{array}$$

The B_3 -equivariance of the basis for $\Lambda_4 = \mathcal{H}_4 \oplus \Lambda_2$

 $\mathbf{v} = (\rho_1 \mathbf{r}_1 + \rho_2 \mathbf{r}_2 + \rho_3 \mathbf{r}_3) + (\tau_1 \mathbf{t}_1 + \tau_2 \mathbf{t}_2 + \tau_3 \mathbf{t}_3) + (\mu_1 \mathbf{u}_1 + \mu_2 \mathbf{u}_2 + \mu_3 \mathbf{u}_3) + q(\lambda_1 \mathbf{x}^2 + \lambda_2 \mathbf{y}^2 + \lambda_3 \mathbf{z}^2)$

$$(\sigma,\epsilon) \in B_3, \qquad \sigma \in \mathfrak{S}_3, \qquad \epsilon = \begin{bmatrix} \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 1 \end{bmatrix} \qquad \qquad \tilde{\mathbf{v}} = (\sigma,\epsilon) \star \mathbf{v}$$

 $\tilde{\mathbf{v}} = (\tilde{\rho}_1 \mathbf{r}_1 + \tilde{\rho}_2 \mathbf{r}_2 + \tilde{\rho}_3 \mathbf{r}_3) + (\tilde{\tau}_1 t_1 + \tilde{\tau}_2 t_2 + \tilde{\tau}_3 t_3) + (\tilde{\mu}_1 u_1 + \tilde{\mu}_2 u_2 + \tilde{\mu}_3 u_3) + q(\tilde{\lambda}_1 x^2 + \tilde{\lambda}_2 y^2 + \tilde{\lambda}_3 z^2)$

$$\begin{bmatrix} \tilde{\lambda}_1\\ \tilde{\lambda}_2\\ \tilde{\lambda}_3 \end{bmatrix} = \boldsymbol{P}_{\sigma} \begin{bmatrix} \lambda_1\\ \lambda_2\\ \lambda_3 \end{bmatrix}, \begin{bmatrix} \tilde{\rho}_1\\ \tilde{\rho}_2\\ \tilde{\rho}_3 \end{bmatrix} = \boldsymbol{P}_{\sigma} \begin{bmatrix} \rho_1\\ \rho_2\\ \rho_3 \end{bmatrix}, \begin{bmatrix} \tilde{\tau}_1\\ \tilde{\tau}_2\\ \tilde{\tau}_3 \end{bmatrix} = |\boldsymbol{\epsilon}| \boldsymbol{\epsilon} \boldsymbol{P}_{\sigma} \begin{bmatrix} \tau_1\\ \tau_2\\ \tau_3 \end{bmatrix}, \begin{bmatrix} \tilde{\mu}_1\\ \tilde{\mu}_2\\ \tilde{\mu}_3 \end{bmatrix} = |\boldsymbol{\epsilon}||\boldsymbol{P}_{\sigma}| \boldsymbol{\epsilon} \boldsymbol{P}_{\sigma} \begin{bmatrix} \mu_1\\ \mu_2\\ \mu_3 \end{bmatrix}$$

$$\begin{bmatrix} \tilde{\lambda}_1\\ \tilde{\lambda}_2\\ \tilde{\lambda}_3 \end{bmatrix} = P_{\sigma} \begin{bmatrix} \lambda_1\\ \lambda_2\\ \lambda_3 \end{bmatrix}, \begin{bmatrix} \tilde{\rho}_1\\ \tilde{\rho}_2\\ \tilde{\rho}_3 \end{bmatrix} = P_{\sigma} \begin{bmatrix} \rho_1\\ \rho_2\\ \rho_3 \end{bmatrix}, \begin{bmatrix} \tilde{\tau}_1\\ \tilde{\tau}_2\\ \tilde{\tau}_3 \end{bmatrix} = |\epsilon| \epsilon P_{\sigma} \begin{bmatrix} \tau_1\\ \tau_2\\ \tau_3 \end{bmatrix}, \begin{bmatrix} \tilde{\mu}_1\\ \tilde{\mu}_2\\ \tilde{\mu}_3 \end{bmatrix} = |\epsilon||P_{\sigma}|\epsilon P_{\sigma} \begin{bmatrix} \mu_1\\ \mu_2\\ \mu_3 \end{bmatrix}$$

Apply [Hubert & Kogan JSC 07]

Minimal generating set: 12 invariants

$$\tau_1^2 + \tau_2^2 + \tau_3^2, \quad \tau_1^2 \tau_2^2 + \tau_2^2 \tau_3^2 + \tau_3^2 \tau_1^2, \quad \tau_1 \tau_2 \tau_3.$$

and the entries of

$$\begin{bmatrix} 1 & 1 & 1 \\ \tau_1^2 & \tau_2^2 & \tau_3^2 \\ \tau_1^4 & \tau_2^4 & \tau_3^4 \end{bmatrix} \begin{bmatrix} \lambda_1 & \rho_1 & |\lambda|\mu_1\tau_1 \\ \lambda_2 & \rho_2 & |\lambda|\mu_2\tau_2 \\ \lambda_3 & \rho_3 & |\lambda|\mu_3\tau_3 \end{bmatrix}$$

 p_1, \ldots, p_{12} form a generating set of B₃-invariants on the slice Λ_4 q_1, \ldots, q_{12} are the O₃-invariants on Ω_4 uniquely determined by their restrictions p_1, \ldots, p_{12}

To evaluate q_1, \ldots, q_{12} , their expressions are not needed!

- In: $(\rho, \tau, \mu, \omega) \in \Omega_4 = \mathcal{H}_4 \oplus \mathbb{R}[x, y, z]_2$
- 1. Compute $Q \in O_3$ s.t. $Q \begin{bmatrix} \omega_{11} & \frac{1}{2}\omega_{12} & \frac{1}{2}\omega_{13} \\ \frac{1}{2}\omega_{12} & \omega_{22} & \frac{1}{2}\omega_{23} \\ \frac{1}{2}\omega_{13} & \frac{1}{2}\omega_{23} & \omega_{33} \end{bmatrix} Q^T = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$

2. $(\tilde{\rho}, \tilde{\tau}, \tilde{\mu}, \lambda, 0) := \mathbf{Q} \star (\rho, \tau, \mu, \omega)$

Out: $q(\rho, \tau, \mu, \omega) := p(\tilde{\rho}, \tilde{\tau}, \tilde{\mu}, \lambda)$

Given $(c_1, \ldots, c_{12}) \in \mathbb{R}^{12}$, how to find $(\rho, \tau, \mu, \omega) \in \mathcal{H}_4 \oplus \mathbb{R}[x, y, z]_2$ such that $q_i(\rho, \tau, \mu, \omega) = c_i$?

We can look for $(\rho, \tau, \mu, \lambda) \in \mathcal{H}_4 \oplus \Lambda_2$ such that $p_i(\rho, \tau, \mu, \lambda) = c_i$.

1. $\tau_1^2,\tau_2^2,\tau_3^2$ are the roots of $\tau^3-{\bf c_1}\tau^2+{\bf c_2}\tau-{\bf c_3}^2$

$$p_1 = \tau_1^2 + \tau_2^2 + \tau_3^2, \quad p_2 = \tau_1^2 \tau_2^2 + \tau_2^2 \tau_3^2 + \tau_3^2 \tau_2^2, \quad p_3 = \tau_1 \tau_2 \tau_3.$$

We can also make explicit the conditions for τ_1, τ_2, τ_3 to be real

2. Solve the linear system

$$\begin{bmatrix} 1 & 1 & 1 \\ \tau_1^2 & \tau_2^2 & \tau_3^2 \\ \tau_1^4 & \tau_2^4 & \tau_3^4 \end{bmatrix} \begin{bmatrix} \lambda_1 & \rho_1 & |\lambda|\mu_1\tau_1 \\ \lambda_2 & \rho_2 & |\lambda|\mu_2\tau_2 \\ \lambda_3 & \rho_3 & |\lambda|\mu_3\tau_3 \end{bmatrix} = \begin{bmatrix} c_4 & c_5 & c_6 \\ c_7 & c_8 & c_9 \\ c_{10} & c_{11} & c_{12} \end{bmatrix}$$

[Hubert, Görlach & Papadopoulo; FoCM 2019]

- A generating set of (functionally) independent 12 rational invariants
 - uniquely characterized by their restrictions to a *slice*
 - which are trinomials invariant under B_3 .
- A robust numerical algorithm to evaluate them
 - Diagonalize a 3×3 symmetric matrix
- Complete solution to the inverse problem
 - Roots of a degree 3 polynomial
 - Solve 3×3 linear systems $Ax_i = b_i$, i = 1, 2, 3
- 💉 A rewriting algorithm

📕 Also for sextics, octics, . . . All even degree ternary forms.

Next

- Describe the orbit space of positive quartics
- Practical results on synthetic and actual data.
- Does the strategy apply to the action on integrated integrals

Algebraic Moving Frame and beyond

- Rational Invariants. Construction and Rewriting.
 H. & Kogan, J. of Symbolic Coputation (2007)
- Smooth and Algebraic Invariants. Local and Global Constructions
 H. & Kogan, Foundations of Computational Mathematics (2007)
- Linear actions of (K*)^m and parameter reduction.
 H. & Labahn, Foundations of Computational Mathematics (2013)
- O(3) on K[x, y, z]_{2d} and neuroimaging
 Görlach, H. & Papadopoulo, Foundations of Computational Math. (2019)
- Scaling invariants and parameter reduction in PDEs. in preparation

Finite groups:

- Linear actions of finite abelian groups and solving polynomial systems:
 - H. & Labahn, Mathematics of Computation (2016)
- Fundamental invariants and equivariants of finite groups
 - H. & Rodriguez Bazan [https://hal.inria.fr/hal-03209117]

Algebraic Moving Frame and Beyond

THANKS!