Pseudo-difference operators and discrete W_{n} algebras

Gloria Marí Beffa

UW-Madison

Banff, November 2021

Discrete Geometric Realizations of Integrable Systems

Discrete Geometric Realizations of Integrable Systems

Moving frames and invariants are critical at identifying geometric realizations.

Moving frames and invariants are critical at identifying geometric realizations.

Example

Let $V_{n} \in \mathbb{R}^{2}, n=1,2, \ldots$ be the vertices of a polygon in equicentro-affine plane ($\mathrm{SL}(2, \mathbb{R}$) acting linearly)

Moving frames and invariants are critical at identifying geometric realizations.

Example

Let $V_{n} \in \mathbb{R}^{2}, n=1,2, \ldots$ be the vertices of a polygon in equicentro-affine plane ($\mathrm{SL}(2, \mathbb{R}$) acting linearly), with invariants

$$
a_{n}=\operatorname{det}\left(V_{n}, V_{n+1}\right), \quad \kappa_{n}=\frac{\operatorname{det}\left(V_{n}, V_{n+2}\right)}{\operatorname{det}\left(V_{n+1}, V_{n+2}\right)}
$$

Moving frames and invariants are critical at identifying geometric realizations.

Example

Let $V_{n} \in \mathbb{R}^{2}, n=1,2, \ldots$ be the vertices of a polygon in equicentro-affine plane ($\mathrm{SL}(2, \mathbb{R}$) acting linearly), with invariants

$$
a_{n}=\operatorname{det}\left(V_{n}, V_{n+1}\right), \quad \kappa_{n}=\frac{\operatorname{det}\left(V_{n}, V_{n+2}\right)}{\operatorname{det}\left(V_{n+1}, V_{n+2}\right)}
$$

and let $p_{n}=\frac{a_{n}}{a_{n+1}}, q_{n}=\kappa_{n}$

Moving frames and invariants are critical at identifying geometric realizations.

Example

Let $V_{n} \in \mathbb{R}^{2}, n=1,2, \ldots$ be the vertices of a polygon in equicentro-affine plane ($\mathrm{SL}(2, \mathbb{R}$) acting linearly), with invariants

$$
a_{n}=\operatorname{det}\left(V_{n}, V_{n+1}\right), \quad \kappa_{n}=\frac{\operatorname{det}\left(V_{n}, V_{n+2}\right)}{\operatorname{det}\left(V_{n+1}, V_{n+2}\right)}
$$

and let $p_{n}=\frac{a_{n}}{a_{n+1}}, q_{n}=\kappa_{n}$. Then, if

$$
\left(V_{n}\right)_{t}=\frac{a_{n-1}}{a_{n}} V_{n+1}
$$

Moving frames and invariants are critical at identifying geometric realizations.

Example

Let $V_{n} \in \mathbb{R}^{2}, n=1,2, \ldots$ be the vertices of a polygon in equicentro-affine plane ($\mathrm{SL}(2, \mathbb{R}$) acting linearly), with invariants

$$
a_{n}=\operatorname{det}\left(V_{n}, V_{n+1}\right), \quad \kappa_{n}=\frac{\operatorname{det}\left(V_{n}, V_{n+2}\right)}{\operatorname{det}\left(V_{n+1}, V_{n+2}\right)}
$$

and let $p_{n}=\frac{a_{n}}{a_{n+1}}, q_{n}=\kappa_{n}$. Then, if

$$
\left(V_{n}\right)_{t}=\frac{a_{n-1}}{a_{n}} V_{n+1}
$$

we have

$$
\begin{aligned}
\left(p_{n}\right)_{t} & =p_{n}\left(q_{n}-q_{n+1}\right) \\
\left(q_{n}\right)_{t} & =p_{n-1}-p_{n}
\end{aligned}
$$

which is the Toda Lattice.

Discrete Geometric Realizations of Integrable Systems

Moving frames and invariants are critical at identifying geometric realizations.

Example

Let $V_{n} \in \mathbb{R}^{2}, n=1,2, \ldots$ be the vertices of a polygon in equicentro-affine plane ($\mathrm{SL}(2, \mathbb{R}$) acting linearly), with invariants

$$
a_{n}=\operatorname{det}\left(V_{n}, V_{n+1}\right), \quad \kappa_{n}=\frac{\operatorname{det}\left(V_{n}, V_{n+2}\right)}{\operatorname{det}\left(V_{n+1}, V_{n+2}\right)}
$$

and let $p_{n}=\frac{a_{n}}{a_{n+1}}, q_{n}=\kappa_{n}$. Then, if

$$
\left(V_{n}\right)_{t}=\frac{a_{n-1}}{a_{n}} V_{n+1}
$$

we have

$$
\begin{aligned}
\left(p_{n}\right)_{t} & =p_{n}\left(q_{n}-q_{n+1}\right) \\
\left(q_{n}\right)_{t} & =p_{n-1}-p_{n}
\end{aligned}
$$

which is the Toda Lattice.
Authors: Bobenko, Calini, Doliwa\& Santini, Fukujioka\& Kurose, Hoffman, Mansfield, Marí Beffa, Inoguchi-Kajiwara \& Matsuura, Wang, Surisé and many more.

The moduli space of twisted polygons

The moduli space of twisted polygons

Given $M=G / H$, we say a polygon $\left\{u_{n}\right\} \in M^{\infty}, u_{n} \in M$, is twisted with period N if there exists $g \in G$ such that $u_{N+n}=g \cdot u_{n}$, for all n

The moduli space of twisted polygons
Given $M=G / H$, we say a polygon $\left\{u_{n}\right\} \in M^{\infty}, u_{n} \in M$, is twisted with period N if there exists $g \in G$ such that $u_{N+n}=g \cdot u_{n}$, for all n. The element g is called the monodromy of the polygon

The moduli space of twisted polygons
Given $M=G / H$, we say a polygon $\left\{u_{n}\right\} \in M^{\infty}, u_{n} \in M$, is twisted with period N if there exists $g \in G$ such that $u_{N+n}=g \cdot u_{n}$, for all n. The element g is called the monodromy of the polygon.
The moduli space is the space of polygons up to the (diagonal) action of the group.
Moving frames allow us to find natural coordinates for the moduli space.

The moduli space of twisted polygons
Given $M=G / H$, we say a polygon $\left\{u_{n}\right\} \in M^{\infty}, u_{n} \in M$, is twisted with period N if there exists $g \in G$ such that $u_{N+n}=g \cdot u_{n}$, for all n. The element g is called the monodromy of the polygon.
The moduli space is the space of polygons up to the (diagonal) action of the group.
Moving frames allow us to find natural coordinates for the moduli space.
A right (resp. left) discrete moving frame is an equivariant map

$$
\rho: U \subset M^{N} \rightarrow G^{N}
$$

wrt the diagonal action on M^{N} and the right inverse (resp. left) diagonal action on G^{N}

The moduli space of twisted polygons
Given $M=G / H$, we say a polygon $\left\{u_{n}\right\} \in M^{\infty}, u_{n} \in M$, is twisted with period N if there exists $g \in G$ such that $u_{N+n}=g \cdot u_{n}$, for all n. The element g is called the monodromy of the polygon.
The moduli space is the space of polygons up to the (diagonal) action of the group.
Moving frames allow us to find natural coordinates for the moduli space.
A right (resp. left) discrete moving frame is an equivariant map

$$
\rho: U \subset M^{N} \rightarrow G^{N}
$$

wrt the diagonal action on M^{N} and the right inverse (resp. left) diagonal action on G^{N}.
The right (resp. left) discrete Serret-Frenet equations is

$$
\rho_{n+1}=K_{n} \rho_{n} \quad\left(\text { resp. } \rho_{n+1}=\rho_{n} K_{n}\right)
$$

The moduli space of twisted polygons
Given $M=G / H$, we say a polygon $\left\{u_{n}\right\} \in M^{\infty}, u_{n} \in M$, is twisted with period N if there exists $g \in G$ such that $u_{N+n}=g \cdot u_{n}$, for all n. The element g is called the monodromy of the polygon.
The moduli space is the space of polygons up to the (diagonal) action of the group.
Moving frames allow us to find natural coordinates for the moduli space.
A right (resp. left) discrete moving frame is an equivariant map

$$
\rho: U \subset M^{N} \rightarrow G^{N}
$$

wrt the diagonal action on M^{N} and the right inverse (resp. left) diagonal action on G^{N}.
The right (resp. left) discrete Serret-Frenet equations is

$$
\rho_{n+1}=K_{n} \rho_{n} \quad\left(\text { resp. } \rho_{n+1}=\rho_{n} K_{n}\right)
$$

Under natural conditions $\left\{K_{n}\right\}_{n=1}^{N}$ will define coordinates in the moduli space of polygons. (Mansfield, MB, Wang 2013).

Let $\left\{u_{n}\right\}$ be a nondegenerate twisted polygon in $\mathbb{R} \mathbb{P}^{m-1}=\operatorname{PSL}(m) / H$.

Let $\left\{u_{n}\right\}$ be a nondegenerate twisted polygon in $\mathbb{R P}^{m-1}=\operatorname{PSL}(m) / H$.

Let $\left\{u_{n}\right\}$ be a nondegenerate twisted polygon in $\mathbb{R} \mathbb{P}^{m-1}=\operatorname{PSL}(m) / H$.

Let $\left\{u_{n}\right\}$ be a nondegenerate twisted polygon in $\mathbb{R} \mathbb{P}^{m-1}=\operatorname{PSL}(m) / H$.

Let $\left\{u_{n}\right\}$ be a nondegenerate twisted polygon in $\mathbb{R P}^{m-1}=\operatorname{PSL}(m) / H$.
If N and m are coprime

Let $\left\{u_{n}\right\}$ be a nondegenerate twisted polygon in $\mathbb{R} \mathbb{P}^{m-1}=\operatorname{PSL}(m) / H$.

If N and m are coprime, there is a unique lift to a polygon in $\mathbb{R}^{m},\left\{V_{n}\right\}$, such that $\operatorname{det}\left(V_{n}, \ldots, V_{n+m-1}\right)=1$ for all n

Let $\left\{u_{n}\right\}$ be a nondegenerate twisted polygon in $\mathbb{R} \mathbb{P}^{m-1}=\operatorname{PSL}(m) / H$.

If N and m are coprime, there is a unique lift to a polygon in $\mathbb{R}^{m},\left\{V_{n}\right\}$, such that $\operatorname{det}\left(V_{n}, \ldots, V_{n+m-1}\right)=1$ for all n. The map $\rho:\left(\mathbb{R} \mathbb{P}^{m-1}\right)^{N} \rightarrow \operatorname{PSL}(m, \mathbb{R})^{N}$ defined as $\rho\left(\left\{u_{n}\right\}\right)=\left\{\left(V_{n}, V_{n+1}, \ldots, V_{n+m-1}\right)\right\}$ is a projective left moving frame.

Let $\left\{u_{n}\right\}$ be a nondegenerate twisted polygon in $\mathbb{R} \mathbb{P}^{m-1}=\operatorname{PSL}(m) / H$.

If N and m are coprime, there is a unique lift to a polygon in $\mathbb{R}^{m},\left\{V_{n}\right\}$, such that $\operatorname{det}\left(V_{n}, \ldots, V_{n+m-1}\right)=1$ for all n.
The map $\rho:\left(\mathbb{R} \mathbb{P}^{m-1}\right)^{N} \rightarrow \operatorname{PSL}(m, \mathbb{R})^{N}$ defined as $\rho\left(\left\{u_{n}\right\}\right)=\left\{\left(V_{n}, V_{n+1}, \ldots, V_{n+m-1}\right)\right\}$ is a projective left moving frame. If
$V_{n+m}=a_{n}^{m-1} V_{n+m-1}+\ldots a_{n}^{1} V_{n+1}+(-1)^{m-1} V_{n}$

Let $\left\{u_{n}\right\}$ be a nondegenerate twisted polygon in $\mathbb{R} \mathbb{P}^{m-1}=\operatorname{PSL}(m) / H$.
$\operatorname{det}\left(V_{n}, \ldots, V_{n+m-1}\right)=1$ for all n.
The map $\rho:\left(\mathbb{R} \mathbb{P}^{m-1}\right)^{N} \rightarrow \operatorname{PSL}(m, \mathbb{R})^{N}$ defined as
$\rho\left(\left\{u_{n}\right\}\right)=\left\{\left(V_{n}, V_{n+1}, \ldots, V_{n+m-1}\right)\right\}$ is a projective left moving frame. If
$V_{n+m}=a_{n}^{m-1} V_{n+m-1}+\ldots a_{n}^{1} V_{n+1}+(-1)^{m-1} V_{n}$
then the left Serret-Frenet equations are

$$
\rho_{n+1}=\rho_{n}\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & (-1)^{m-1} \\
1 & 0 & \ldots & 0 & a_{n}^{1} \\
0 & 1 & \ldots & 0 & a_{n}^{2} \\
\vdots & \ddots & \ddots & \ldots & \vdots \\
0 & \ldots & 0 & 1 & a_{n}^{m-1}
\end{array}\right)
$$

If N and m are coprime, there is a unique lift to a polygon in $\mathbb{R}^{m},\left\{V_{n}\right\}$, such that

Let $\left\{u_{n}\right\}$ be a nondegenerate twisted polygon in $\mathbb{R} \mathbb{P}^{m-1}=\operatorname{PSL}(m) / H$.

If N and m are coprime, there is a unique lift to a polygon in $\mathbb{R}^{m},\left\{V_{n}\right\}$, such that $\operatorname{det}\left(V_{n}, \ldots, V_{n+m-1}\right)=1$ for all n.
The map $\rho:\left(\mathbb{R} \mathbb{P}^{m-1}\right)^{N} \rightarrow \operatorname{PSL}(m, \mathbb{R})^{N}$ defined as
$\rho\left(\left\{u_{n}\right\}\right)=\left\{\left(V_{n}, V_{n+1}, \ldots, V_{n+m-1}\right)\right\}$ is a projective left moving frame. If
$V_{n+m}=a_{n}^{m-1} V_{n+m-1}+\ldots a_{n}^{1} V_{n+1}+(-1)^{m-1} V_{n}$
then the left Serret-Frenet equations are

$$
\rho_{n+1}=\rho_{n}\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & (-1)^{m-1} \\
1 & 0 & \ldots & 0 & a_{n}^{1} \\
0 & 1 & \ldots & 0 & a_{n}^{2} \\
\vdots & \ddots & \ddots & \ldots & \vdots \\
0 & \ldots & 0 & 1 & a_{n}^{m-1}
\end{array}\right)
$$

$\left\{a_{n}^{i}\right\}$ functionally generate all other invariants (Schwartz, Ovsienko and Tabachnikov, 2010).

In general
Theorem
(MB 2014) Assume $M=G / H$. The moduli space of non degenerate twisted polygons in M^{N} can be identified with an open subset of the quotient G^{N} / H^{N}, where H^{N} acts on G^{N} via the right gauge action

$$
\begin{array}{ccc}
H^{N} \times G^{N} & \rightarrow & G^{N} \\
\left(\left(h_{n}\right),\left(g_{n}\right)\right) & \rightarrow & \left(h_{n+1} g_{n} h_{n}^{-1}\right)\left(\text { or left }\left(h_{n}^{-1} g_{n} h_{n+1}\right)\right)
\end{array}
$$

In general
Theorem
(MB 2014) Assume $M=G / H$. The moduli space of non degenerate twisted polygons in M^{N} can be identified with an open subset of the quotient G^{N} / H^{N}, where H^{N} acts on G^{N} via the right gauge action

$$
\begin{array}{clc}
H^{N} \times G^{N} & \rightarrow & G^{N} \\
\left(\left(h_{n}\right),\left(g_{n}\right)\right) & \rightarrow & \left(h_{n+1} g_{n} h_{n}^{-1}\right)\left(\text { or left }\left(h_{n}^{-1} g_{n} h_{n+1}\right)\right)
\end{array}
$$

The question now is: is there a natural Poisson structure in G^{N} such that right gauge is a Poisson map? If so we might be able to reduce it.

In general
Theorem
(MB 2014) Assume $M=G / H$. The moduli space of non degenerate twisted polygons in M^{N} can be identified with an open subset of the quotient G^{N} / H^{N}, where H^{N} acts on G^{N} via the right gauge action

$$
\begin{array}{ccc}
H^{N} \times G^{N} & \rightarrow & G^{N} \\
\left(\left(h_{n}\right),\left(g_{n}\right)\right) & \rightarrow & \left(h_{n+1} g_{n} h_{n}^{-1}\right)\left(\text { or left }\left(h_{n}^{-1} g_{n} h_{n+1}\right)\right)
\end{array}
$$

The question now is: is there a natural Poisson structure in G^{N} such that right gauge is a Poisson map? If so we might be able to reduce it.

They were classified by Semenov-Tian-Shansky in "Dressing transformations and Poisson Group actions", (1985). We will describe the main such bracket.

A Poisson structure on G^{N}

$$
\begin{aligned}
& \text { A Poisson structure on } G^{N} \\
& \text { Assume } \mathfrak{g} \text { to have an Adjoint invariant inner product }\langle,\rangle \text { that identifies } \\
& \mathfrak{g} \text { with } \mathfrak{g}^{*}
\end{aligned}
$$

A Poisson structure on G^{N}

Assume \mathfrak{g} to have an Adjoint invariant inner product \langle,$\rangle that identifies$ \mathfrak{g} with \mathfrak{g}^{*}. Let $\mathcal{F}: G^{N} \rightarrow \mathbb{R}$ be a function

A Poisson structure on G^{N}

Assume \mathfrak{g} to have an Adjoint invariant inner product \langle,$\rangle that identifies$ \mathfrak{g} with \mathfrak{g}^{*}. Let $\mathcal{F}: G^{N} \rightarrow \mathbb{R}$ be a function, we define the gradient at $q=\left(q_{n}\right) \in G^{N}$ to be the element of $T_{q} G^{N},\left(\nabla_{n} \mathcal{F}(q)\right)$ such that

$$
d F(q)(V)=\sum_{n=1}^{N}\left\langle\nabla_{n} F(q), V_{n}\right\rangle_{q} .
$$

A Poisson structure on G^{N}

Assume \mathfrak{g} to have an Adjoint invariant inner product \langle,$\rangle that identifies$ \mathfrak{g} with \mathfrak{g}^{*}. Let $\mathcal{F}: G^{N} \rightarrow \mathbb{R}$ be a function, we define the gradient at $q=\left(q_{n}\right) \in G^{N}$ to be the element of $T_{q} G^{N},\left(\nabla_{n} \mathcal{F}(q)\right)$ such that

$$
d F(q)(V)=\sum_{n=1}^{N}\left\langle\nabla_{n} F(q), V_{n}\right\rangle_{q}
$$

If $q \in G^{N}$, define $R_{q}: G^{N} \rightarrow G^{N}$ as $R_{q}(g)=g q$ and $L_{q}: G^{N} \rightarrow G^{N}$ as $\left.L_{(} g\right)=q g$

A Poisson structure on G^{N}

Assume \mathfrak{g} to have an Adjoint invariant inner product \langle,$\rangle that identifies$ \mathfrak{g} with \mathfrak{g}^{*}. Let $\mathcal{F}: G^{N} \rightarrow \mathbb{R}$ be a function, we define the gradient at $q=\left(q_{n}\right) \in G^{N}$ to be the element of $T_{q} G^{N},\left(\nabla_{n} \mathcal{F}(q)\right)$ such that

$$
d F(q)(V)=\sum_{n=1}^{N}\left\langle\nabla_{n} F(q), V_{n}\right\rangle_{q}
$$

If $q \in G^{N}$, define $R_{q}: G^{N} \rightarrow G^{N}$ as $R_{q}(g)=g q$ and $L_{q}: G^{N} \rightarrow G^{N}$ as $\left.L_{(} g\right)=q g$. The right and left gradients are $\nabla^{r} F(q), \nabla^{\prime} F(q) \in \mathfrak{g}$

$$
\left(R_{q}\right)_{*}\left(\nabla^{r} F(q)\right)=\nabla F(q), \quad\left(L_{q}\right)_{*}\left(\nabla^{\prime} F(q)\right)=\nabla F(q)
$$

A Poisson structure on G^{N}

Assume \mathfrak{g} to have an Adjoint invariant inner product \langle,$\rangle that identifies$ \mathfrak{g} with \mathfrak{g}^{*}. Let $\mathcal{F}: G^{N} \rightarrow \mathbb{R}$ be a function, we define the gradient at $q=\left(q_{n}\right) \in G^{N}$ to be the element of $T_{q} G^{N},\left(\nabla_{n} \mathcal{F}(q)\right)$ such that

$$
d F(q)(V)=\sum_{n=1}^{N}\left\langle\nabla_{n} F(q), V_{n}\right\rangle_{q}
$$

If $q \in G^{N}$, define $R_{q}: G^{N} \rightarrow G^{N}$ as $R_{q}(g)=g q$ and $L_{q}: G^{N} \rightarrow G^{N}$ as $\left.L_{(} g\right)=q g$. The right and left gradients are $\nabla^{r} F(q), \nabla^{\prime} F(q) \in \mathfrak{g}$

$$
\left(R_{q}\right)_{*}\left(\nabla^{r} F(q)\right)=\nabla F(q), \quad\left(L_{q}\right)_{*}\left(\nabla^{\prime} F(q)\right)=\nabla F(q)
$$

Definition
Let $r \in \mathfrak{g} \otimes \mathfrak{g}$, and define $r_{12}=\phi_{12}(r)$ with $\phi_{1,2}(a \otimes b)=a \otimes b \otimes 1$. We define similarly r_{13} and r_{23}

A Poisson structure on G^{N}

Assume \mathfrak{g} to have an Adjoint invariant inner product \langle,$\rangle that identifies$ \mathfrak{g} with \mathfrak{g}^{*}. Let $\mathcal{F}: G^{N} \rightarrow \mathbb{R}$ be a function, we define the gradient at $q=\left(q_{n}\right) \in G^{N}$ to be the element of $T_{q} G^{N},\left(\nabla_{n} \mathcal{F}(q)\right)$ such that

$$
d F(q)(V)=\sum_{n=1}^{N}\left\langle\nabla_{n} F(q), V_{n}\right\rangle_{q}
$$

If $q \in G^{N}$, define $R_{q}: G^{N} \rightarrow G^{N}$ as $R_{q}(g)=g q$ and $L_{q}: G^{N} \rightarrow G^{N}$ as $\left.L_{(} g\right)=q g$. The right and left gradients are $\nabla^{r} F(q), \nabla^{\prime} F(q) \in \mathfrak{g}$

$$
\left(R_{q}\right)_{*}\left(\nabla^{r} F(q)\right)=\nabla F(q), \quad\left(L_{q}\right)_{*}\left(\nabla^{\prime} F(q)\right)=\nabla F(q)
$$

Definition
Let $r \in \mathfrak{g} \otimes \mathfrak{g}$, and define $r_{12}=\phi_{12}(r)$ with $\phi_{1,2}(a \otimes b)=a \otimes b \otimes 1$. We define similarly r_{13} and r_{23}. We say r defines an R-matrix whenever

$$
\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0
$$

A Poisson structure on G^{N}

Assume \mathfrak{g} to have an Adjoint invariant inner product \langle,$\rangle that identifies$ \mathfrak{g} with \mathfrak{g}^{*}. Let $\mathcal{F}: G^{N} \rightarrow \mathbb{R}$ be a function, we define the gradient at $q=\left(q_{n}\right) \in G^{N}$ to be the element of $T_{q} G^{N},\left(\nabla_{n} \mathcal{F}(q)\right)$ such that

$$
d F(q)(V)=\sum_{n=1}^{N}\left\langle\nabla_{n} F(q), V_{n}\right\rangle_{q}
$$

If $q \in G^{N}$, define $R_{q}: G^{N} \rightarrow G^{N}$ as $R_{q}(g)=g q$ and $L_{q}: G^{N} \rightarrow G^{N}$ as $\left.L_{(} g\right)=q g$. The right and left gradients are $\nabla^{r} F(q), \nabla^{\prime} F(q) \in \mathfrak{g}$

$$
\left(R_{q}\right)_{*}\left(\nabla^{r} F(q)\right)=\nabla F(q), \quad\left(L_{q}\right)_{*}\left(\nabla^{\prime} F(q)\right)=\nabla F(q)
$$

Definition
Let $r \in \mathfrak{g} \otimes \mathfrak{g}$, and define $r_{12}=\phi_{12}(r)$ with $\phi_{1,2}(a \otimes b)=a \otimes b \otimes 1$. We define similarly r_{13} and r_{23}. We say r defines an R-matrix whenever

$$
\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0
$$

One usually defines r based on a gradation $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{h}_{0} \oplus \mathfrak{g}_{-}, \mathfrak{h}_{0}$ commutative

A Poisson structure on G^{N}

Assume \mathfrak{g} to have an Adjoint invariant inner product \langle,$\rangle that identifies$ \mathfrak{g} with \mathfrak{g}^{*}. Let $\mathcal{F}: G^{N} \rightarrow \mathbb{R}$ be a function, we define the gradient at $q=\left(q_{n}\right) \in G^{N}$ to be the element of $T_{q} G^{N},\left(\nabla_{n} \mathcal{F}(q)\right)$ such that

$$
d F(q)(V)=\sum_{n=1}^{N}\left\langle\nabla_{n} F(q), V_{n}\right\rangle_{q}
$$

If $q \in G^{N}$, define $R_{q}: G^{N} \rightarrow G^{N}$ as $R_{q}(g)=g q$ and $L_{q}: G^{N} \rightarrow G^{N}$ as $\left.L_{(} g\right)=q g$. The right and left gradients are $\nabla^{r} F(q), \nabla^{\prime} F(q) \in \mathfrak{g}$

$$
\left(R_{q}\right)_{*}\left(\nabla^{r} F(q)\right)=\nabla F(q), \quad\left(L_{q}\right)_{*}\left(\nabla^{\prime} F(q)\right)=\nabla F(q)
$$

Definition
Let $r \in \mathfrak{g} \otimes \mathfrak{g}$, and define $r_{12}=\phi_{12}(r)$ with $\phi_{1,2}(a \otimes b)=a \otimes b \otimes 1$. We define similarly r_{13} and r_{23}. We say r defines an R-matrix whenever

$$
\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=0 .
$$

One usually defines r based on a gradation $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{h}_{0} \oplus \mathfrak{g}_{-}, \mathfrak{h}_{0}$ commutative. For $\mathfrak{g}=\mathfrak{g l}(m), r=\sum_{i<j} E_{i j} \otimes E_{j i}+\frac{1}{2} \sum_{i} E_{i i} \otimes E_{i j}$.

Let r define an R-matrix and let \mathcal{T} be the shift so that $\mathcal{T} a_{n}=a_{n+1}$.

Let r define an R-matrix and let \mathcal{T} be the shift so that $\mathcal{T} a_{n}=a_{n+1}$.
Definition
Define the twisted Poisson bracket in G^{N} to be given by

$$
\begin{gathered}
\{\mathcal{F}, \mathcal{G}\}(L)=\sum_{n=1}^{N} r\left(\nabla_{n}^{\prime} \mathcal{F} \wedge \nabla_{n}^{\prime} \mathcal{G}\right)+\sum_{n=1}^{N} r\left(\nabla_{n}^{r} \mathcal{F} \wedge \nabla_{n}^{r} \mathcal{G}\right) \\
-\sum_{n=1}^{N}(\mathcal{T} \otimes \mathrm{id})(r)\left(\nabla_{n}^{r} \mathcal{F} \otimes \nabla_{n}^{\prime} \mathcal{G}\right)+\sum_{n=1}^{N}(\mathcal{T} \otimes \operatorname{id})(r)\left(\nabla_{n}^{r} \mathcal{G} \otimes \nabla_{n}^{\prime} \mathcal{F}\right) .
\end{gathered}
$$

Let r define an R-matrix and let \mathcal{T} be the shift so that $\mathcal{T} a_{n}=a_{n+1}$.
Definition
Define the twisted Poisson bracket in G^{N} to be given by

$$
\begin{gathered}
\{\mathcal{F}, \mathcal{G}\}(L)=\sum_{n=1}^{N} r\left(\nabla_{n}^{\prime} \mathcal{F} \wedge \nabla_{n}^{\prime} \mathcal{G}\right)+\sum_{n=1}^{N} r\left(\nabla_{n}^{r} \mathcal{F} \wedge \nabla_{n}^{r} \mathcal{G}\right) \\
-\sum_{n=1}^{N}(\mathcal{T} \otimes \mathrm{id})(r)\left(\nabla_{n}^{r} \mathcal{F} \otimes \nabla_{n}^{\prime} \mathcal{G}\right)+\sum_{n=1}^{N}(\mathcal{T} \otimes \mathrm{id})(r)\left(\nabla_{n}^{r} \mathcal{G} \otimes \nabla_{n}^{\prime} \mathcal{F}\right) .
\end{gathered}
$$

The twisted Poisson bracket defines a Hamiltonian structure for which gauge action is a Poisson map.

A discrete geometric Poisson bracket

A discrete geometric Poisson bracket Assume G has a Lie algebra \mathfrak{g} with two gradations

A discrete geometric Poisson bracket
Assume G has a Lie algebra \mathfrak{g} with two gradations:

1) $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{h}_{0} \oplus \mathfrak{g}_{-}$with \mathfrak{h}_{0} commutative and \mathfrak{g}_{+}and \mathfrak{g}_{-}dual of each other. Let r be defined by this gradation

A discrete geometric Poisson bracket
Assume G has a Lie algebra \mathfrak{g} with two gradations:

1) $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{h}_{0} \oplus \mathfrak{g}_{-}$with \mathfrak{h}_{0} commutative and \mathfrak{g}_{+}and \mathfrak{g}_{-}dual of each other. Let r be defined by this gradation; and 2) $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{-1}, \mathfrak{g}_{1}$ and \mathfrak{g}_{-1} dual of each other.

A discrete geometric Poisson bracket
Assume G has a Lie algebra \mathfrak{g} with two gradations:

1) $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{h}_{0} \oplus \mathfrak{g}_{-}$with \mathfrak{h}_{0} commutative and \mathfrak{g}_{+}and \mathfrak{g}_{-}dual of each other. Let r be defined by this gradation; and 2) $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{-1}, \mathfrak{g}_{1}$ and \mathfrak{g}_{-1} dual of each other. Assume $M=G / H$ with $\mathfrak{h}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{0}$.

A discrete geometric Poisson bracket
Assume G has a Lie algebra \mathfrak{g} with two gradations:

1) $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{h}_{0} \oplus \mathfrak{g}_{-}$with \mathfrak{h}_{0} commutative and \mathfrak{g}_{+}and \mathfrak{g}_{-}dual of each other. Let r be defined by this gradation; and
2) $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{-1}, \mathfrak{g}_{1}$ and \mathfrak{g}_{-1} dual of each other. Assume $M=G / H$ with $\mathfrak{h}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{0}$.
We say both gradations are compatible if

$$
\mathfrak{g}_{1} \subset \mathfrak{g}_{+}, \quad \mathfrak{g}_{-1} \subset \mathfrak{g}_{-}
$$

A discrete geometric Poisson bracket
Assume G has a Lie algebra \mathfrak{g} with two gradations:

1) $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{h}_{0} \oplus \mathfrak{g}_{-}$with \mathfrak{h}_{0} commutative and \mathfrak{g}_{+}and \mathfrak{g}_{-}dual of each other. Let r be defined by this gradation; and
2) $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{-1}, \mathfrak{g}_{1}$ and \mathfrak{g}_{-1} dual of each other. Assume $M=G / H$ with $\mathfrak{h}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{0}$.
We say both gradations are compatible if

$$
\mathfrak{g}_{1} \subset \mathfrak{g}_{+}, \quad \mathfrak{g}_{-1} \subset \mathfrak{g}_{-}
$$

Theorem
(MB 14) Assume $M=G / H$ and \mathfrak{g} has two compatible gradations as above. The twisted Poisson structure defined on G^{N}, with r associated to the classical R-matrix, is locally reducible to the quotient G^{N} / H^{N}.

A discrete geometric Poisson bracket
Assume G has a Lie algebra \mathfrak{g} with two gradations:

1) $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{h}_{0} \oplus \mathfrak{g}_{-}$with \mathfrak{h}_{0} commutative and \mathfrak{g}_{+}and \mathfrak{g}_{-}dual of each other. Let r be defined by this gradation; and
2) $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{-1}, \mathfrak{g}_{1}$ and \mathfrak{g}_{-1} dual of each other. Assume $M=G / H$ with $\mathfrak{h}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{0}$.
We say both gradations are compatible if

$$
\mathfrak{g}_{1} \subset \mathfrak{g}_{+}, \quad \mathfrak{g}_{-1} \subset \mathfrak{g}_{-} .
$$

Theorem
(MB 14) Assume $M=G / H$ and \mathfrak{g} has two compatible gradations as above. The twisted Poisson structure defined on G^{N}, with r associated to the classical R-matrix, is locally reducible to the quotient G^{N} / H^{N}.
Furthermore, any reduced and Hamiltonian evolution with a local invariant Hamiltonian has a geometric realization given by a local invariant evolution of polygons in M

A discrete geometric Poisson bracket
Assume G has a Lie algebra \mathfrak{g} with two gradations:

1) $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{h}_{0} \oplus \mathfrak{g}_{-}$with \mathfrak{h}_{0} commutative and \mathfrak{g}_{+}and \mathfrak{g}_{-}dual of each other. Let r be defined by this gradation; and
2) $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{-1}, \mathfrak{g}_{1}$ and \mathfrak{g}_{-1} dual of each other. Assume $M=G / H$ with $\mathfrak{h}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{0}$.
We say both gradations are compatible if

$$
\mathfrak{g}_{1} \subset \mathfrak{g}_{+}, \quad \mathfrak{g}_{-1} \subset \mathfrak{g}_{-} .
$$

Theorem
(MB 14) Assume $M=G / H$ and \mathfrak{g} has two compatible gradations as above. The twisted Poisson structure defined on G^{N}, with r associated to the classical R-matrix, is locally reducible to the quotient G^{N} / H^{N}.
Furthermore, any reduced and Hamiltonian evolution with a local invariant Hamiltonian has a geometric realization given by a local invariant evolution of polygons in M. We will denote it by

$$
\left(V_{n}\right)_{t}=X_{n}^{f} .
$$

The projective case

The projective case

Theorem
(MB, Wang 13) The reduced bracket is a Hamiltonian structure for discretizations of W_{m} algebras, (generalizations of the Boussinesq lattice), for any m.

The projective case

Theorem

(MB, Wang 13) The reduced bracket is a Hamiltonian structure for discretizations of W_{m} algebras, (generalizations of the Boussinesq lattice), for any m.
The equations are given by

$$
\left\{\begin{array}{l}
a_{t}^{i}=\frac{a_{1}^{i+1}}{a_{1}^{1}}-\frac{a^{i+1}}{a^{1}}, \quad i=1,2, \cdots, m-1 \\
a_{t}^{m}=\frac{1}{a_{1}^{1}}-\frac{1}{a_{1}^{1}-}
\end{array}\right.
$$

The projective case

Theorem

(MB, Wang 13) The reduced bracket is a Hamiltonian structure for discretizations of W_{m} algebras, (generalizations of the Boussinesq lattice), for any m.
The equations are given by

$$
\left\{\begin{array}{l}
a_{t}^{i}=\frac{a_{1}^{i+1}}{a_{1}^{1}}-\frac{a^{i+1}}{a^{1}}, \quad i=1,2, \cdots, m-1 \\
a_{t}^{m}=\frac{1}{a_{1}^{1}}-\frac{1}{a_{1}^{1}} \\
a_{-N}^{1}
\end{array}\right.
$$

Theorem
(MB, Wang 13) The right bracket for the parabolic r tensor

$$
\{\mathcal{F}, \mathcal{G}\}_{r \text { right }}(L)=\sum_{n} r\left(\nabla_{n}^{\prime} F(L) \wedge \nabla_{n}^{\prime} \mathcal{G}(L)\right)
$$

(which is not a Poisson bracket),

The projective case

Theorem

(MB, Wang 13) The reduced bracket is a Hamiltonian structure for discretizations of W_{m} algebras, (generalizations of the Boussinesq lattice), for any m.
The equations are given by

$$
\left\{\begin{array}{l}
a_{t}^{i}=\frac{a_{1}^{i+1}}{a_{1}^{1}}-\frac{a^{i+1}}{a^{1}}, \quad i=1,2, \cdots, m-1 \\
a_{t}^{m}=\frac{1}{a_{1}^{1}}-\frac{1}{a_{1}^{1}-}
\end{array}\right.
$$

Theorem
(MB, Wang 13) The right bracket for the parabolic r tensor

$$
\{\mathcal{F}, \mathcal{G}\}_{r i g h t}(L)=\sum_{n} r\left(\nabla_{n}^{\prime} F(L) \wedge \nabla_{n}^{\prime} \mathcal{G}(L)\right)
$$

(which is not a Poisson bracket), also reduces to G^{N} / H^{N} to produce a second Hamiltonian structure for the same integrable system.

Theorem
(Calini, MB 2020) Both reduced brackets can be lifted to a symplectic and a pre-symplectic form on the space of invariant polygonal vector fields

Theorem
(Calini, MB 2020) Both reduced brackets can be lifted to a symplectic and a pre-symplectic form on the space of invariant polygonal vector fields

$$
\{f, h\}_{1}(\mathbf{a})=\omega_{1}\left(X^{f}, X^{h}\right), \text { and }\{f, h\}_{2}(\mathbf{a})=\omega_{2}\left(X^{f}, X^{h}\right)
$$

Theorem
(Calini, MB 2020) Both reduced brackets can be lifted to a symplectic and a pre-symplectic form on the space of invariant polygonal vector fields

$$
\{f, h\}_{1}(\mathbf{a})=\omega_{1}\left(X^{f}, X^{h}\right), \quad \text { and }\{f, h\}_{2}(\mathbf{a})=\omega_{2}\left(X^{f}, X^{h}\right)
$$

where X^{f} is the f-Hamiltonian for ω_{1}

Theorem
(Calini, MB 2020) Both reduced brackets can be lifted to a symplectic and a pre-symplectic form on the space of invariant polygonal vector fields

$$
\{f, h\}_{1}(\mathbf{a})=\omega_{1}\left(X^{f}, X^{h}\right), \quad \text { and }\{f, h\}_{2}(\mathbf{a})=\omega_{2}\left(X^{f}, X^{h}\right)
$$

where X^{f} is the f-Hamiltonian for ω_{1}. They are compatible and define a Hamiltonian pencil for the discrete W_{m}-algebras, integrating them in the Liouville sense.

Theorem
(Calini, MB 2020) Both reduced brackets can be lifted to a symplectic and a pre-symplectic form on the space of invariant polygonal vector fields

$$
\{f, h\}_{1}(\mathbf{a})=\omega_{1}\left(X^{f}, X^{h}\right), \quad \text { and }\{f, h\}_{2}(\mathbf{a})=\omega_{2}\left(X^{f}, X^{h}\right)
$$

where X^{f} is the f-Hamiltonian for ω_{1}. They are compatible and define a Hamiltonian pencil for the discrete W_{m}-algebras, integrating them in the Liouville sense.
Compatibility is given by $d \omega_{2}=0$.

We now shift gears.

Definition

A m-order, N-periodic pseudo-difference operator is a symbol

$$
L=\sum_{i=-\infty}^{m} a^{i} \mathcal{T}^{i}
$$

with each $a^{i}=\left(a_{j}^{i}\right)_{j=-\infty}^{\infty}$ a bi-infinite, N-periodic sequence.

We now shift gears.

Definition

A m-order, N-periodic pseudo-difference operator is a symbol

$$
L=\sum_{i=-\infty}^{m} a^{i} \mathcal{T}^{i}
$$

with each $a^{i}=\left(a_{j}^{i}\right)_{j=-\infty}^{\infty}$ a bi-infinite, N-periodic sequence. We denote this space by $P D O_{m}^{N}$.

We now shift gears.

Definition

A m-order, N-periodic pseudo-difference operator is a symbol

$$
L=\sum_{i=-\infty}^{m} a^{i} \mathcal{T}^{i}
$$

with each $a^{i}=\left(a_{j}^{i}\right)_{j=-\infty}^{\infty}$ a bi-infinite, N-periodic sequence. We denote this space by $P D O_{m}^{N}$.
The nonnegative part is the space of N-periodic difference operators of order m or $D O_{m}^{N}$.

We now shift gears.

Definition

A m-order, N-periodic pseudo-difference operator is a symbol

$$
L=\sum_{i=-\infty}^{m} a^{i} \mathcal{T}^{i}
$$

with each $a^{i}=\left(a_{j}^{i}\right)_{j=-\infty}^{\infty}$ a bi-infinite, N-periodic sequence. We denote this space by $P D O_{m}^{N}$.
The nonnegative part is the space of N-periodic difference operators of order m or $D O_{m}^{N}$.
If the highest order term a^{m} has all non-zero terms, we say L is invertible.

We now shift gears.

Definition

A m-order, N-periodic pseudo-difference operator is a symbol

$$
L=\sum_{i=-\infty}^{m} a^{i} \mathcal{T}^{i}
$$

with each $a^{i}=\left(a_{j}^{i}\right)_{j=-\infty}^{\infty}$ a bi-infinite, N-periodic sequence. We denote this space by $P D O_{m}^{N}$.
The nonnegative part is the space of N-periodic difference operators of order m or $D O_{m}^{N}$.
If the highest order term a^{m} has all non-zero terms, we say L is invertible. The space of invertible $P D O \mathrm{~s}, I P D O_{m}^{N}$, is a Lie group with the standard operator product

We now shift gears.

Definition

A m-order, N-periodic pseudo-difference operator is a symbol

$$
L=\sum_{i=-\infty}^{m} a^{i} \mathcal{T}^{i}
$$

with each $a^{i}=\left(a_{j}^{i}\right)_{j=-\infty}^{\infty}$ a bi-infinite, N-periodic sequence. We denote this space by $P D O_{m}^{N}$.
The nonnegative part is the space of N-periodic difference operators of order m or $D O_{m}^{N}$.
If the highest order term a^{m} has all non-zero terms, we say L is invertible. The space of invertible $P D O s, I P D O_{m}^{N}$, is a Lie group with the standard operator product and its Lie algebra is $P D O_{m}^{N}$.

Definition

Define the trace as the map

$$
\operatorname{Tr}: P D O_{m}^{N} \rightarrow \mathbb{R}(\text { or } \mathbb{C}), \quad \operatorname{Tr}(L)=\sum_{n=1}^{N} a_{n}^{0}
$$

We now shift gears.

Definition

A m-order, N-periodic pseudo-difference operator is a symbol

$$
L=\sum_{i=-\infty}^{m} a^{i} \mathcal{T}^{i}
$$

with each $a^{i}=\left(a_{j}^{i}\right)_{j=-\infty}^{\infty}$ a bi-infinite, N-periodic sequence. We denote this space by $P D O_{m}^{N}$.
The nonnegative part is the space of N-periodic difference operators of order m or $D O_{m}^{N}$.
If the highest order term a^{m} has all non-zero terms, we say L is invertible. The space of invertible $P D O s, I P D O_{m}^{N}$, is a Lie group with the standard operator product and its Lie algebra is $P D O_{m}^{N}$.

Definition

Define the trace as the map

$$
\operatorname{Tr}: P D O_{m}^{N} \rightarrow \mathbb{R}(\text { or } \mathbb{C}), \quad \operatorname{Tr}(L)=\sum_{n=1}^{N} a_{n}^{0}
$$

with adjoint invariant inner product in $P D O_{m}^{N}$

$$
\langle L, \widehat{L}\rangle=\operatorname{Tr}(L \hat{L}) .
$$

Given a function $f: I P D O_{m}^{N} \rightarrow \mathbb{R}$, its variational derivative at L is defined by $Q^{f}(L) \in T_{L} I P D O_{m}^{N}$

Given a function $f: I P D O_{m}^{N} \rightarrow \mathbb{R}$, its variational derivative at L is defined by $Q^{f}(L) \in T_{L} I P D O_{m}^{N}$, where, if $Z(\epsilon) \in I P D O_{m}^{N}$ and $Z(0)=L$, then

Given a function $f: I P D O_{m}^{N} \rightarrow \mathbb{R}$, its variational derivative at L is defined by $Q^{f}(L) \in T_{L} I P D O_{m}^{N}$, where, if $Z(\epsilon) \in I P D O_{m}^{N}$ and $Z(0)=L$, then

$$
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} f(Z(\epsilon))=\operatorname{Tr}_{L}\left(Q^{f}(L) Z^{\prime}(0)\right)
$$

Given a function $f: I P D O_{m}^{N} \rightarrow \mathbb{R}$, its variational derivative at L is defined by $Q^{f}(L) \in T_{L} I P D O_{m}^{N}$, where, if $Z(\epsilon) \in I P D O_{m}^{N}$ and $Z(0)=L$, then

$$
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} f(Z(\epsilon))=\operatorname{Tr}_{L}\left(Q^{f}(L) Z^{\prime}(0)\right)
$$

In this case $Q_{L}^{f} L, L Q_{L}^{f} \in P D O_{m}^{N}$. Define two maps ()$_{+},()_{-}$as

$$
\left(\sum_{r=-\infty}^{m} b^{r} \mathcal{T}^{r}\right)_{+}=\sum_{r=1}^{m} b^{r} \mathcal{T}^{r} \quad \text { and } \quad\left(\sum_{r=-\infty}^{m} b^{r} \mathcal{T}^{r}\right)_{-}=\sum_{r=-\infty}^{-1} b^{r} \mathcal{T}^{r}
$$

Given a function $f: I P D O_{m}^{N} \rightarrow \mathbb{R}$, its variational derivative at L is defined by $Q^{f}(L) \in T_{L} I P D O_{m}^{N}$, where, if $Z(\epsilon) \in I P D O_{m}^{N}$ and $Z(0)=L$, then

$$
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} f(Z(\epsilon))=\operatorname{Tr}_{L}\left(Q^{f}(L) Z^{\prime}(0)\right)
$$

In this case $Q_{L}^{f} L, L Q_{L}^{f} \in P D O_{m}^{N}$. Define two maps ()$_{+},()_{-}$as

$$
\left(\sum_{r=-\infty}^{m} b^{r} \mathcal{T}^{r}\right)_{+}=\sum_{r=1}^{m} b^{r} \mathcal{T}^{r} \quad \text { and } \quad\left(\sum_{r=-\infty}^{m} b^{r} \mathcal{T}^{r}\right)_{-}=\sum_{r=-\infty}^{-1} b^{r} \mathcal{T}^{r}
$$

Definition

The standard scalar R-matrix in $P D O_{m}^{N}$ is the skew-symmetric operator

$$
R: P D O_{m}^{N} \rightarrow P D O_{m}^{N} \quad R(M)=\frac{1}{2}\left(M_{+}-M_{-}\right)
$$

Given a function $f: I P D O_{m}^{N} \rightarrow \mathbb{R}$, its variational derivative at L is defined by $Q^{f}(L) \in T_{L} I P D O_{m}^{N}$, where, if $Z(\epsilon) \in I P D O_{m}^{N}$ and $Z(0)=L$, then

$$
\left.\frac{d}{d \epsilon}\right|_{\epsilon=0} f(Z(\epsilon))=\operatorname{Tr}_{L}\left(Q^{f}(L) Z^{\prime}(0)\right)
$$

In this case $Q_{L}^{f} L, L Q_{L}^{f} \in P D O_{m}^{N}$. Define two maps ()$_{+},()_{-}$as

$$
\left(\sum_{r=-\infty}^{m} b^{r} \mathcal{T}^{r}\right)_{+}=\sum_{r=1}^{m} b^{r} \mathcal{T}^{r} \quad \text { and } \quad\left(\sum_{r=-\infty}^{m} b^{r} \mathcal{T}^{r}\right)_{-}=\sum_{r=-\infty}^{-1} b^{r} \mathcal{T}^{r}
$$

Definition

The standard scalar R-matrix in $P D O_{m}^{N}$ is the skew-symmetric operator

$$
R: P D O_{m}^{N} \rightarrow P D O_{m}^{N} \quad R(M)=\frac{1}{2}\left(M_{+}-M_{-}\right)
$$

R satisfies the Yang-Baxter equation

$$
[R x, R y]-R[R x, y]-R[x, R y]=-[x, y], \text { for any } x, y \in P D O_{m}^{N} .
$$

General theory of Poisson Lie-groups implies the existence of a natural Poisson structure on $D O_{m}^{N}$

$$
\{f, h\}(L)=\left\langle R\left(Q^{h} L\right), Q^{f} L\right\rangle-\left\langle R\left(L Q^{h}\right), L Q^{f}\right\rangle .
$$

General theory of Poisson Lie-groups implies the existence of a natural Poisson structure on $D O_{m}^{N}$

$$
\{f, h\}(L)=\left\langle R\left(Q^{h} L\right), Q^{f} L\right\rangle-\left\langle R\left(L Q^{h}\right), L Q^{f}\right\rangle .
$$

with f-Hamiltonian vector field

$$
\xi_{L}^{f}=R\left(L Q^{f}\right) L-L R\left(Q^{f} L\right) .
$$

General theory of Poisson Lie-groups implies the existence of a natural Poisson structure on $D O_{m}^{N}$

$$
\{f, h\}(L)=\left\langle R\left(Q^{h} L\right), Q^{f} L\right\rangle-\left\langle R\left(L Q^{h}\right), L Q^{f}\right\rangle .
$$

with f-Hamiltonian vector field

$$
\xi_{L}^{f}=R\left(L Q^{f}\right) L-L R\left(Q^{f} L\right) .
$$

There are two natural actions of \mathbb{R}^{N} on $I P D O_{m}^{N}$, left and right multiplication

$$
\sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} \rightarrow \sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} b
$$

General theory of Poisson Lie-groups implies the existence of a natural Poisson structure on $D O_{m}^{N}$

$$
\{f, h\}(L)=\left\langle R\left(Q^{h} L\right), Q^{f} L\right\rangle-\left\langle R\left(L Q^{h}\right), L Q^{f}\right\rangle .
$$

with f-Hamiltonian vector field

$$
\xi_{L}^{f}=R\left(L Q^{f}\right) L-L R\left(Q^{f} L\right) .
$$

There are two natural actions of \mathbb{R}^{N} on $I P D O_{m}^{N}$, left and right multiplication

$$
\sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} \rightarrow \sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} b, \quad \sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} \rightarrow b \sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i}=\sum_{i=-\infty}^{k} b a^{i} \mathcal{T}^{i}
$$

General theory of Poisson Lie-groups implies the existence of a natural Poisson structure on $D O_{m}^{N}$

$$
\{f, h\}(L)=\left\langle R\left(Q^{h} L\right), Q^{f} L\right\rangle-\left\langle R\left(L Q^{h}\right), L Q^{f}\right\rangle .
$$

with f-Hamiltonian vector field

$$
\xi_{L}^{f}=R\left(L Q^{f}\right) L-L R\left(Q^{f} L\right) .
$$

There are two natural actions of \mathbb{R}^{N} on $I P D O_{m}^{N}$, left and right multiplication

$$
\sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} \rightarrow \sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} b, \quad \sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} \rightarrow b \sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i}=\sum_{i=-\infty}^{k} b a^{i} \mathcal{T}^{i}
$$

Theorem
(Izosimov 2021) The structure on $P D O_{m}^{N}$ is invariant under left and right multiplication by bi-infinite, N-periodic sequences

General theory of Poisson Lie-groups implies the existence of a natural Poisson structure on $D O_{m}^{N}$

$$
\{f, h\}(L)=\left\langle R\left(Q^{h} L\right), Q^{f} L\right\rangle-\left\langle R\left(L Q^{h}\right), L Q^{f}\right\rangle .
$$

with f-Hamiltonian vector field

$$
\xi_{L}^{f}=R\left(L Q^{f}\right) L-L R\left(Q^{f} L\right) .
$$

There are two natural actions of \mathbb{R}^{N} on $I P D O_{m}^{N}$, left and right multiplication

$$
\sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} \rightarrow \sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} b, \quad \sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} \rightarrow b \sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i}=\sum_{i=-\infty}^{k} b a^{i} \mathcal{T}^{i}
$$

Theorem

(Izosimov 2021) The structure on $P D O_{m}^{N}$ is invariant under left and right multiplication by bi-infinite, N-periodic sequences. Using these actions the Poisson structure can be reduced to the submanifold of difference operators of the form

$$
a^{0}+a^{1} \mathcal{T}+\cdots+a^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}
$$

General theory of Poisson Lie-groups implies the existence of a natural Poisson structure on $D O_{m}^{N}$

$$
\{f, h\}(L)=\left\langle R\left(Q^{h} L\right), Q^{f} L\right\rangle-\left\langle R\left(L Q^{h}\right), L Q^{f}\right\rangle .
$$

with f-Hamiltonian vector field

$$
\xi_{L}^{f}=R\left(L Q^{f}\right) L-L R\left(Q^{f} L\right) .
$$

There are two natural actions of \mathbb{R}^{N} on $I P D O_{m}^{N}$, left and right multiplication

$$
\sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} \rightarrow \sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} b, \quad \sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i} \rightarrow b \sum_{i=-\infty}^{k} a^{i} \mathcal{T}^{i}=\sum_{i=-\infty}^{k} b a^{i} \mathcal{T}^{i}
$$

Theorem
(Izosimov 2021) The structure on $P D O_{m}^{N}$ is invariant under left and right multiplication by bi-infinite, N-periodic sequences. Using these actions the Poisson structure can be reduced to the submanifold of difference operators of the form

$$
a^{0}+a^{1} \mathcal{T}+\cdots+a^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}
$$

and also to the case where $a_{j}^{0}=(-1)^{m-1}$ for all j.

Given $L=(-1)^{m-1}+a^{1} \mathcal{T}+\cdots+a^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}$, let $\left\{V_{n}\right\}$ be a twisted bi-infinite sequence defined by its kernel $L V=0$

Given $L=(-1)^{m-1}+a^{1} \mathcal{T}+\cdots+a^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}$, let $\left\{V_{n}\right\}$ be a twisted bi-infinite sequence defined by its kernel $L V=0$

$$
L_{n} V_{n}=\left((-1)^{m-1}+a_{n}^{1} \mathcal{T}+\cdots+a_{n}^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}\right) V_{n}=0 \text { for all } n
$$

unique up to the diagonal action of the group, with a_{n}^{k} projective generating invariants.

Given $L=(-1)^{m-1}+a^{1} \mathcal{T}+\cdots+a^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}$, let $\left\{V_{n}\right\}$ be a twisted bi-infinite sequence defined by its kernel $L V=0$

$$
L_{n} V_{n}=\left((-1)^{m-1}+a_{n}^{1} \mathcal{T}+\cdots+a_{n}^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}\right) V_{n}=0 \text { for all } n
$$

unique up to the diagonal action of the group, with a_{n}^{k} projective generating invariants.
Let Y^{f} be a geometric realization, a polygonal vector field inducing a f-Hamiltonian evolution on invariants

Given $L=(-1)^{m-1}+a^{1} \mathcal{T}+\cdots+a^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}$, let $\left\{V_{n}\right\}$ be a twisted bi-infinite sequence defined by its kernel $L V=0$

$$
L_{n} V_{n}=\left((-1)^{m-1}+a_{n}^{1} \mathcal{T}+\cdots+a_{n}^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}\right) V_{n}=0 \text { for all } n
$$

unique up to the diagonal action of the group, with a_{n}^{k} projective generating invariants.
Let Y^{f} be a geometric realization, a polygonal vector field inducing a f-Hamiltonian evolution on invariants

$$
(L V)_{t}=L_{t} V+L V_{t}=\left(R\left(L Q^{f}\right) L-L R\left(Q^{f} L\right)\right) V+L Y^{f}=-L R\left(Q^{f} L\right) V+L Y^{f}=0
$$

Given $L=(-1)^{m-1}+a^{1} \mathcal{T}+\cdots+a^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}$, let $\left\{V_{n}\right\}$ be a twisted bi-infinite sequence defined by its kernel $L V=0$

$$
L_{n} V_{n}=\left((-1)^{m-1}+a_{n}^{1} \mathcal{T}+\cdots+a_{n}^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}\right) V_{n}=0 \text { for all } n
$$

unique up to the diagonal action of the group, with a_{n}^{k} projective generating invariants.
Let Y^{f} be a geometric realization, a polygonal vector field inducing a f-Hamiltonian evolution on invariants

$$
(L V)_{t}=L_{t} V+L V_{t}=\left(R\left(L Q^{f}\right) L-L R\left(Q^{f} L\right)\right) V+L Y^{f}=-L R\left(Q^{f} L\right) V+L Y^{f}=0
$$

That is, $Y^{f}=R\left(Q^{f} L\right) V$ up to the kernel of L

Given $L=(-1)^{m-1}+a^{1} \mathcal{T}+\cdots+a^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}$, let $\left\{V_{n}\right\}$ be a twisted bi-infinite sequence defined by its kernel $L V=0$

$$
L_{n} V_{n}=\left((-1)^{m-1}+a_{n}^{1} \mathcal{T}+\cdots+a_{n}^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}\right) V_{n}=0 \text { for all } n
$$

unique up to the diagonal action of the group, with a_{n}^{k} projective generating invariants.
Let Y^{f} be a geometric realization, a polygonal vector field inducing a f-Hamiltonian evolution on invariants

$$
(L V)_{t}=L_{t} V+L V_{t}=\left(R\left(L Q^{f}\right) L-L R\left(Q^{f} L\right)\right) V+L Y^{f}=-L R\left(Q^{f} L\right) V+L Y^{f}=0
$$

That is, $Y^{f}=R\left(Q^{f} L\right) V$ up to the kernel of $L . Y^{f}$ is unique if preserving $a^{0}=(-1)^{m-1}$.

Given $L=(-1)^{m-1}+a^{1} \mathcal{T}+\cdots+a^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}$, let $\left\{V_{n}\right\}$ be a twisted bi-infinite sequence defined by its kernel $L V=0$

$$
L_{n} V_{n}=\left((-1)^{m-1}+a_{n}^{1} \mathcal{T}+\cdots+a_{n}^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}\right) V_{n}=0 \text { for all } n
$$

unique up to the diagonal action of the group, with a_{n}^{k} projective generating invariants.
Let Y^{f} be a geometric realization, a polygonal vector field inducing a f-Hamiltonian evolution on invariants

$$
(L V)_{t}=L_{t} V+L V_{t}=\left(R\left(L Q^{f}\right) L-L R\left(Q^{f} L\right)\right) V+L Y^{f}=-L R\left(Q^{f} L\right) V+L Y^{f}=0
$$

That is, $Y^{f}=R\left(Q^{f} L\right) V$ up to the kernel of $L . Y^{f}$ is unique if preserving $a^{0}=(-1)^{m-1}$.
Let $\left(V_{n}\right)_{t}=X_{n}^{f}$, where X_{n}^{f} is the geometric realization for the bracket in the first half.

Given $L=(-1)^{m-1}+a^{1} \mathcal{T}+\cdots+a^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}$, let $\left\{V_{n}\right\}$ be a twisted bi-infinite sequence defined by its kernel $L V=0$

$$
L_{n} V_{n}=\left((-1)^{m-1}+a_{n}^{1} \mathcal{T}+\cdots+a_{n}^{m-1} \mathcal{T}^{m-1}-\mathcal{T}^{m}\right) V_{n}=0 \text { for all } n
$$

unique up to the diagonal action of the group, with a_{n}^{k} projective generating invariants.
Let Y^{f} be a geometric realization, a polygonal vector field inducing a f-Hamiltonian evolution on invariants

$$
(L V)_{t}=L_{t} V+L V_{t}=\left(R\left(L Q^{f}\right) L-L R\left(Q^{f} L\right)\right) V+L Y^{f}=-L R\left(Q^{f} L\right) V+L Y^{f}=0
$$

That is, $Y^{f}=R\left(Q^{f} L\right) V$ up to the kernel of $L . Y^{f}$ is unique if preserving $a^{0}=(-1)^{m-1}$.
Let $\left(V_{n}\right)_{t}=X_{n}^{f}$, where X_{n}^{f} is the geometric realization for the bracket in the first half.
Theorem
(Isozimov, MB 2021) If f is a Hamiltonian function on the moduli space, then

$$
X^{f}=Y^{f}
$$

and so both Poisson brackets are identical.

MERCI! THANKS!

