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Moving frames for partial difference equations

Difference prolongation space

The total space

For real (topologically trivial) partial difference equations (P∆Es)
on Zm, the total space is T = Zm × Rq, with coordinates

n = (n1, . . . , nm) (ordered independent variables)

u = (u1, . . . , uq) (dependent variables)

Dependent variables coordinatize the continuous fibres Tn = Rq.

Note: everything generalizes to equations on lattice varieties.
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Difference prolongation space

The total space T is invariant under every translation

TJ : Tn −→ Tn+J, TJ : (n,u) 7−→ (n + J,u), J ∈ Zm.

To represent T as a connected space over a given n, prolong Tn to
P(Tn), the infinite product space with coordinates

uαJ = T∗J(uα).

A graph u = f (n) on T is represented on P(Tn) by uαJ = f α(n + J).

Each n has a prolongation space P(Tn). Composing pullbacks gives

uαJ+K = T∗K(uαJ ),

which relates the coordinates on P(Tn) and P(Tn+K).
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Difference prolongation space

The shift operator

Let fU denote the space of those real-valued functions on U whose
prolongations are all finite.

The action of the pullback T∗K : fP(Tn+K)→ fP(Tn) is represented
on P(Tn) by the shift operator :

SK : fP(Tn) −→ fP(Tn),

SK : f (n, . . . , uαJ , . . . ) 7−→ f (n + K, . . . , uαJ+K, . . . ).

From here on, we work with the connected prolongation space
P(Tn) (for any fixed n), rather than the disconnected total space.
All functions are assumed to be in fP(Tn).
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Difference prolongation space

Difference divergences

Let Si = S1i
and id = S0. Then the forward difference in the

ni -direction is represented by

Dni := Si − id.

A (difference) divergence is a function C of the form C = DniF
i .

Lemma Every expression (SJ − id)F is a divergence.

Theorem A function C is a divergence if and only if

Euα(C) := S−J

(
∂ C
∂uαJ

)
= 0, α = 1, . . . ,m.

Here Euα is the Euler–Lagrange operator for uα.
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Difference prolongation space

A difference operator on P(Tn) is an operator of the form

H = f JSJ ,

where each f J is a function.

The formal adjoint of a given difference operator H is the unique
difference operator H† such that

F1(HF2)−
(
H†F1

)
F2

is a divergence for all functions F1 and F2.

A conservation law of a given system of P∆Es is a divergence that
is zero on all solutions.
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Difference prolongation space

Noether’s Theorem

The Euler–Lagrange equations for the Lagrangian L(n, [u]) are

Euα(L) = 0, α = 1, . . . ,m.

The generalized symmetry with characteristic Q(n, [u]),

v = (SJQ
α)

∂

∂uαJ
,

is a variational symmetry if v(L) = DniF
i , for some Fi . Then

DniF
i − (SJ− id)

{
QαS−J

(
∂L

∂uαJ

)}
= DniF

i − v(L) + QαEuα(L),

so every variational symmetry yields a conservation law for the E–L
equations. The converse is also true.
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Difference moving frames

Now consider a Lie group G of point transformations whose (left)
action on P(Tn) is free and regular.

Each characteristic Q(n,u) gives a one-parameter Lie subgroup,

gε : P(Tn) −→ P(Tn), gε · uαJ = exp(εv)uαJ .

Similarly, the action of each g ∈ G on uα prolongs to g · uαJ .

If G is R-dimensional, choose a (local) cross-section K transverse
to the group orbits, defined by

ψr (z) = 0, r = 1, . . . ,R.

Where possible, we choose z to be a set of R coordinates from [u]
(typically, values of u at n and nearby points).
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Difference moving frames

distinct

group

orbits

K

O (z)

O (z) ∩ K
zg = ρ (z)

Moving frame defined by a cross-section
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Difference moving frames

A difference moving frame is an equivariant map ρ : P(Tn)→ G ,
which is obtained by solving the normalization equations,

ψr (g · z) = 0, r = 1, . . . ,R,

for the group parameters, giving g = ρ(z).

A difference moving frame represents a discrete moving frame (on
a finite prolongation of T ) that is invariant under all TK.
(For discrete moving frames, see Beffa, Mansfield & Wang 2013.)

A function f is G -invariant if f (n, [g · u]) = f (n, [u]), for all g ∈ G .

The invariantization, ι, is defined by ι(f (n, [u])) = f (n, [ρ(z) · u]).

The set of all G -invariants is generated by the invariants ι(uα0 ) and
the Maurer–Cartan invariants (Siρ(z))(ρ(z))−1.
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Difference moving frames

Example The Lagrangian

L =
1

2
ln

∣∣∣∣(u2,0 − u1,1) (u1,−1 − u0,0)

(u2,0 − u1,−1) (u1,1 − u0,0)

∣∣∣∣
yields a Toda-type Euler–Lagrange equation,

EuL =
1

u1,1 − u0,0
− 1

u−1,1 − u0,0
− 1

u1,−1 − u0,0
+

1

u−1,−1 − u0,0
= 0.

The Lie group of variational point symmetries is generated by

Q1 = 1, Q2 = u0,0, Q3 = u2
0,0, (Q4,Q5,Q6) = (−1)n

1+n2
(Q1,Q2,Q3).

We use the subgroup generated by Q1 and Q2:

g · ui ,j = aui ,j + b, a ∈ R+, b ∈ R.
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Difference moving frames

For u1,1 > u0,0, a useful normalization is g ·u0,0 = 0, g ·u1,1 = 1.
Then the frame ρ is defined by

a =
1

u1,1 − u0,0
, b =

−u0,0

u1,1 − u0,0
.

The Maurer-Cartan invariants yield generating invariants,

κ = ι (u1,−1) , λ = ι (u2,0) .

Then

ι(ui ,j) =
ui ,j − u0,0

u1,1 − u0,0
,

which leads to the invariantized Lagrangian,

L := ι(L) =
1

2
ln

∣∣∣∣(λ− 1)κ

λ− κ

∣∣∣∣.
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Difference moving frames

Partitioned total space for the Toda-type equation

n1

n2

u

n1+n2

even

odd
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Invariant Euler–Lagrange equations

Invariant Euler–Lagrange equations

Suppose that the generating invariants are κβ and that the
Lagrangian is invariant under the group action. Define

L(n, [κ]) := ι(L(n, [u])) = L(n, [u]).

Introduce an invariant dummy variable t ∈ R that parametrizes an
arbitrary smooth path in P(Tn). Then on this path,

L′ =
∂L

∂uαJ
(uαJ )′ = Euα(L)(uα0 )′ + DniF

i (n, [u], [u′]).

Therefore,

L′ = ι {Euα(L)}σα + ι
{
DniF

i (n, [u], [u′])
}
.

where σα = ι{(uα0 )′}. The rightmost term is a divergence!



Moving frames for partial difference equations

Invariant Euler–Lagrange equations

Invariant Euler–Lagrange equations

Suppose that the generating invariants are κβ and that the
Lagrangian is invariant under the group action. Define

L(n, [κ]) := ι(L(n, [u])) = L(n, [u]).

Introduce an invariant dummy variable t ∈ R that parametrizes an
arbitrary smooth path in P(Tn). Then on this path,

L′ =
∂L

∂uαJ
(uαJ )′ = Euα(L)(uα0 )′ + DniF

i (n, [u], [u′]).

Therefore,

L′ = ι {Euα(L)}σα + ι
{
DniF

i (n, [u], [u′])
}
.

where σα = ι{(uα0 )′}. The rightmost term is a divergence!



Moving frames for partial difference equations

Invariant Euler–Lagrange equations

Invariant Euler–Lagrange equations

Suppose that the generating invariants are κβ and that the
Lagrangian is invariant under the group action. Define

L(n, [κ]) := ι(L(n, [u])) = L(n, [u]).

Introduce an invariant dummy variable t ∈ R that parametrizes an
arbitrary smooth path in P(Tn). Then on this path,

L′ =
∂L

∂uαJ
(uαJ )′ = Euα(L)(uα0 )′ + DniF

i (n, [u], [u′]).

Therefore,

L′ = ι {Euα(L)}σα + ι
{
DniF

i (n, [u], [u′])
}
.

where σα = ι{(uα0 )′}. The rightmost term is a divergence!



Moving frames for partial difference equations

Invariant Euler–Lagrange equations

Similarly,

L′ =
∂L

∂κβJ
(κβJ )′ = Eκβ (L)(κβ)′ + Dni

{
F i
β(n, [κ])(κβ)′

}
,

for some difference operators F i
β.

Differential-difference syzygies,

(κβ)′ = Hβασα,

involve invariant difference operators Hβα that are found by writing
κβ in terms of [u]. Therefore,

L′ = (Hβα)† {Eκβ (L)}σα + Dni

{
F i
β(n, [κ])(κβ)′ + H i

α(n, [κ])σα
}
,

for difference operators H i
α. So the invariantized E–L equations are

ι (Euα(L)) = (Hβα)† {Eκβ (L)} .
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Invariant Euler–Lagrange equations

Now let t be the group parameter for the subgroup generated by
Qr (n,u). So κ′ = 0, and hence L′ = 0.

This reduces

L′ = (Hβα)† {Eκβ (L)}σα + Dni

{
F i
β(n, [κ])(κβ)′ + H i

α(n, [κ])σα
}

to
0 = (Hβα)† {Eκβ (L)}σα + Dni

{
H i
α(n, [κ])σα

}
.

On the path parametrized by t,

σα = ι(Qα
s )asr (ρ(z)),

where asr are components of the Adjoint matrix. This gives an
invariant form of Noether’s Theorem!
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α(n, [κ])σα
}

to
0 = (Hβα)† {Eκβ (L)}σα + Dni

{
H i
α(n, [κ])σα

}
.

On the path parametrized by t,

σα = ι(Qα
s )asr (ρ(z)),

where asr are components of the Adjoint matrix. This gives an
invariant form of Noether’s Theorem!
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Invariant Euler–Lagrange equations

Questions?
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