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Overview

- What/Why iterated-integrals of curves?
- Invariantization via cross-sections
- Orthogonal action on iterated-integrals
- Some examples
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A primer on the signature method in machine 
learning

Ilya Chevyrev, Andrey Kormilitzin (2016)
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Invariants

- Note that the previous functions were Euclidean invariants.
- Invariants are nice for shape analysis, human activity recognition, etc.
- What does the space of iterated-integral invariants look like?

- Polynomial Invariants (Diehl, Reizenstein 18)

- Goals (Orthogonal action: Rotations + Reflections)
- Describe a minimal, functionally-independent set of invariants for each 

truncation level of the IIS.
- Characterize the equivalence class of a curve’s IIS
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- We can accomplish this goal using the Moving Frame Method (Fels, Olver 99)
- Cross-section

- Intersects each orbit exactly once
- Moving Frame

- Group element taking a point to the cross section

Two points are equivalent if 
and only if they have the same 
cross-section representative.
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Action on the IIS

- Consider the action of                  on 
- Induces a joint action on IIS(C)

Relationships between entries 
(shuffle relations)!
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Theorem (Diehl, Preiß, R., Tapia 20)
Two smooth paths have equivalent truncated (of order k) iterated-integral signatures under 
translations, rotations, and reflections (and tree-like extensions) if and only if their 
log-signatures up to order k have the same value on the cross-section 

- Cross-section characterizes equivalence classes of truncated IIS
- Gives an explicit method for vectorizing then invariantizing a curve.
- Don’t need to compute complicated invariants for high orders.









What Next?

- How well do these invariantized features 
perform in practice?

- Other Group Actions



Thank you!


