Rigid Motion Invariants of Curves through Iterated-Integrals

Michael Ruddy, University of San Francisco

with

Joscha Diehl, University of Greifswald, Rosa Preiß, TU Berlin
Nikolas Tapia, Weierstrass-Institut Berlin

Overview

- What/Why iterated-integrals of curves?
- Invariantization via cross-sections
- Orthogonal action on iterated-integrals
- Some examples

Iterated-integrals of curves

- Consider a parameterized path
$C:[0,1] \rightarrow \mathbb{R}^{2}$

$$
\gamma(t)=(x(t), y(t))
$$

Iterated-integrals of curves

- Consider a parameterized path

$$
C:[0,1] \rightarrow \mathbb{R}^{2}
$$

- Want

$$
\gamma(t)=(x(t), y(t))
$$

- Why?
- C represents some continuous sequential data
- Finite-dim useful for machine learning
- Shape Analysis, Human Activity Recognition

i

$$
\dot{x}
$$

Iterated-integrals of curves

- Consider a parameterized path

$$
C:[0,1] \rightarrow \mathbb{R}^{2}
$$

- Want

$$
\gamma(t)=(x(t), y(t))
$$

- Why?
- C represents some continuous sequential data
- Finite-dim useful for machine learning
- Shape Analysis, Human Activity Recognition

A primer on the signature method in machine learning
Ilya Chevyrev, Andrey Kormilitzin (2016)

Iterated-integrals of curves

- Iterated-integrals of the path

$$
C:[0,1] \rightarrow \mathbb{R}^{2}
$$

$$
\gamma(t)=(x(t), y(t))
$$

$$
\begin{gathered}
\int_{0}^{1} d x(t) \\
\int_{0}^{1} d y(t) \\
\int_{0}^{1} \int_{0}^{r} d x(t) d y(r) \\
\int_{0}^{1} \int_{d}^{r} d y(t) d x(r) \\
\int_{0}^{1} \int_{0}^{r} d x(t) d x(r)
\end{gathered}
$$

Iterated-integrals of curves

- Iterated-integrals of the path

$$
C:[0,1] \rightarrow \mathbb{R}^{2}
$$

- Iterated-integral signature

$$
\operatorname{IIS}(C)=(1,2,12,21,11,22,111, \ldots) \quad \gamma(t)=(x(t), y(t))
$$

$$
\begin{array}{r}
\int_{0}^{1} d x(t) \longleftarrow 1 \\
\int_{0}^{1} d y(t) \longleftarrow-2 \\
\int_{0}^{1} \int_{0}^{r} d x(t) d y(r) \longleftarrow 12 \\
\int_{0}^{1} \int_{0}^{r} d y(t) d x(r) \longleftarrow 21 \\
\int_{0}^{1} \int_{0}^{r} d x(t) d x(r) \longleftarrow 11
\end{array}
$$

Why?

Theorem (Chen 54)

Two smooth paths have the same iterated-integral signature if and only if they are equal (up to tree-like extensions and translations).

Why?

Theorem (Chen 54)

Two smooth paths have the same iterated-integral signature if and only if they are equal (up to tree-like extensions and translations).

Why?

Theorem (Chen 54)

Two smooth paths have the same iterated-integral signature if and only if they are equal (up to tree-like extensions and translations).

$$
\begin{aligned}
& x(1)-x(0) \quad y(1)-y(0) \\
& I I S(C)^{(2)}=(1,2,12,21,11,22)
\end{aligned}
$$

Why?

Theorem (Chen 54)

Two smooth paths have the same iterated-integral signature if and only if they are equal (up to tree-like extensions and translations).

$$
\begin{gathered}
(1 / 2)(12-21) \\
\operatorname{IIS}(C)^{(2)}=(1,2,12,21,11,22)
\end{gathered}
$$

Invariants

- Note that the previous functions were Euclidean invariants.
- Invariants are nice for shape analysis, human activity recognition, etc.
- What does the space of iterated-integral invariants look like?

Invariants

- Note that the previous functions were Euclidean invariants.
- Invariants are nice for shape analysis, human activity recognition, etc.
- What does the space of iterated-integral invariants look like?
- Polynomial Invariants (Diehl, Reizenstein 18)

Order 2

$$
\begin{array}{r}
11+22 \\
-12+21
\end{array}
$$

Order 4

$$
\begin{array}{r}
1111-1122+1212+1221+2112+2121-2211+2222 \\
-1112-1121+1211-1222+2111-2122+2212+2221 \\
1111+1122-1212+1221+2112-2121+2211+2222 \\
-1112+1121-1211-1222+2111+2122-2212+2221 \\
1111+1122+1212-1221-2112+2121+2211+2222 \\
1112-1121-1211-1222+2111+2122+2212-2221
\end{array}
$$

Invariants

- Note that the previous functions were Euclidean invariants.
- Invariants are nice for shape analysis, human activity recognition, etc.
- What does the space of iterated-integral invariants look like?
- Polynomial Invariants (Diehl, Reizenstein 18)

Order 2

$$
\begin{array}{r}
11+22 \\
-12+21
\end{array}
$$

Order 4

$$
\begin{array}{r}
1111-1122+1212+1221+2112+2121-2211+2222 \\
-1112-1121+1211-1222+2111-2122+2212+2221 \\
1111+1122-1212+1221+2112-2121+2211+2222 \\
-1112+1121-1211-1222+2111+2122-2212+2221 \\
1111+1122+1212-1221-2112+2121+2211+2222 \\
1112-1121-1211-1222+2111+2122+2212-2221
\end{array}
$$

Shuffle relation
$1 \times 12=112+112+121$

Invariants

- Note that the previous functions were Euclidean invariants.
- Invariants are nice for shape analysis, human activity recognition, etc.
- What does the space of iterated-integral invariants look like?
- Polynomial Invariants (Diehl, Reizenstein 18)
- Goals
- Describe a minimal, functionally-independent set of invariants for each truncation level of the IIS.
- Characterize the equivalence class of a curve's IIS

Invariants

- Note that the previous functions were Euclidean invariants.
- Invariants are nice for shape analysis, human activity recognition, etc.
- What does the space of iterated-integral invariants look like?
- Polynomial Invariants (Diehl, Reizenstein 18)
- Goals (Orthogonal action: Rotations + Reflections)
- Describe a minimal, functionally-independent set of invariants for each truncation level of the IIS.
- Characterize the equivalence class of a curve's IIS

Cross-sections and Moving Frame

- We can accomplish this goal using the Moving Frame Method (Fels, Olver 99)

Cross-sections and Moving Frame

- We can accomplish this goal using the Moving Frame Method (Fels, Olver 99)
- Cross-section
- Intersects each orbit exactly once

Cross-sections and Moving Frame

- We can accomplish this goal using the Moving Frame Method (Fels, Olver 99)
- Cross-section
- Intersects each orbit exactly once
- Moving Frame $\rho: \mathbb{R}^{2} \rightarrow \mathcal{O}_{2}$
- Group element taking a point to the cross section

$$
\begin{aligned}
& x \rightarrow\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right) x+\left(\frac{-x}{\sqrt{x^{2}+y^{2}}}\right) y \\
& y \rightarrow\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right) x+\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right) y
\end{aligned}
$$

Cross-sections and Moving Frame

- We can accomplish this goal using the Moving Frame Method (Fels, Olver 99)
- Cross-section
- Intersects each orbit exactly once
- Moving Frame $\rho: \mathbb{R}^{2} \rightarrow \mathcal{O}_{2}$
- Group element taking a point to the cross section

$$
\begin{aligned}
& x \rightarrow\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right) x+\left(\frac{-x}{\sqrt{x^{2}+y^{2}}}\right) y \\
& y \rightarrow\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right) x+\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right) y
\end{aligned}
$$

Two points are equivalent if and only if they have the same cross-section representative.

Action on the IIS

- Consider the action of $A \in \mathcal{O}_{d}$ on \mathbb{R}^{d}

Action on the IIS

- Consider the action of $A \in \mathcal{O}_{d}$ on \mathbb{R}^{d}
- Induces a joint action on $\operatorname{IIS}(C)$

$$
\begin{gathered}
A \cdot I I S(C):=I I S(A \cdot C) \\
A \cdot 1=A(1,2, \ldots, d) \\
A \cdot 2=A(1,2, \ldots, d) \\
\vdots \\
A \cdot d=A(1,2, \ldots, d) \\
A \cdot 11=A(11,12,13, \ldots, 1 d, \ldots, d 1)
\end{gathered}
$$

Action on the IIS

- Consider the action of $A \in \mathcal{O}_{d}$ on \mathbb{R}^{d}

Relationships between entries (shuffle relations)!

- Induces a joint action on $\operatorname{IIS}(C)$

$$
\begin{gathered}
A \cdot I I S(C):=I I S(A \cdot C) \\
A \cdot 1=A(1,2, \ldots, d) \\
A \cdot 2=A(1,2, \ldots, d) \\
\vdots \\
A \cdot d=A(1,2, \ldots, d) \\
A \cdot 11=A(11,12,13, \ldots, 1 d, \ldots, d 1)
\end{gathered}
$$

Log-signature Transform

- Log-signature map: bijection from space of iterated-integral signatures

$$
\begin{gathered}
I I S(C)=(1,2,11,12,21,22, \ldots) \\
\log I I S(C)=\left(c_{1}, c_{2}, c_{12}, \ldots\right)
\end{gathered}
$$

Log-signature Transform

$$
c_{12}=[1,2]=12-21
$$

- Log-signature map: bijection from space of iterated-integral signatures

$$
\begin{gathered}
I I S(C)=(1,2,11,12,21,22, \ldots) \\
\log I I S(C)=\left(c_{1}, c_{2}, c_{12}, \ldots\right)
\end{gathered}
$$

Log-signature Transform

$$
c_{12}=[1,2]=12-21
$$

- Log-signature map: bijection from space of iterated-integral signatures

$$
\begin{gathered}
I I S(C)=(1,2,11,12,21,22, \ldots) \\
\log I I S(C)=\left(c_{1}, c_{2}, c_{12}, \ldots\right)
\end{gathered}
$$

$$
A \cdot C=\tilde{C} \quad A \cdot\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{d}
\end{array}\right]=\left[\begin{array}{c}
\tilde{c}_{1} \\
\tilde{c}_{2} \\
\vdots \\
\tilde{c}_{d}
\end{array}\right]
$$

$$
\begin{aligned}
& A\left[\begin{array}{ccccc}
0 & c_{12} & c_{13} & \ldots & c_{1 d} \\
-c_{12} & 0 & c_{23} & \ldots & c_{2 d} \\
-c_{13} & -c_{23} & 0 & \ldots & c_{3 d} \\
\vdots & & & & \vdots \\
-c_{1 d} & -c_{2 d} & -c_{3 d} & \ldots & 0
\end{array}\right] A^{T} \\
& =\left[\begin{array}{ccccc}
0 & \tilde{c}_{12} & \tilde{c}_{13} & \ldots & \tilde{c}_{1 d} \\
-\tilde{c}_{12} & 0 & \tilde{c}_{23} & \ldots & \tilde{c}_{2 d} \\
-\tilde{c}_{13} & -\tilde{c}_{23} & 0 & \ldots & \tilde{c}_{3 d} \\
\vdots & & & & \vdots \\
-\tilde{c}_{1 d} & -\tilde{c}_{2 d} & -\tilde{c}_{3 d} & \ldots & 0
\end{array}\right]
\end{aligned}
$$

Log-signature Transform

- Cross section on $\log I I S(C)$ equivalent to cross-section on $\mathbb{R}^{d} \bigoplus \mathfrak{s o}_{d}(\mathbb{R})$

$$
A \cdot(v, M) \rightarrow\left(A v, A M A^{T}\right)
$$

Log-signature Transform

- Cross section on $\log I I S(C)$ equivalent to cross-section on $\mathbb{R}^{d} \bigoplus \mathfrak{s o}_{d}(\mathbb{R})$

$$
A \cdot(v, M) \rightarrow\left(A v, A M A^{T}\right)
$$

1. Iteratively construct a relative section over $\mathbb{C}^{d} \bigoplus \mathfrak{s o}_{d}(\mathbb{C})$
2. Show this induces a cross-section over $\mathbb{R}^{d} \bigoplus \mathfrak{s o}_{d}(\mathbb{R})($ for most curves)

Log-signature Transform

- Cross section on $\log I I S(C)$ equivalent to cross-section on $\mathbb{R}^{d} \bigoplus \mathfrak{s o}_{d}(\mathbb{R})$

$$
A \cdot(v, M) \rightarrow\left(A v, A M A^{T}\right)
$$

1. Iteratively construct a relative section over $\mathbb{C}^{d} \bigoplus \mathfrak{s o}_{d}(\mathbb{C})$
2. Show this induces a cross-section over $\mathbb{R}^{d} \bigoplus \mathfrak{s o}_{d}(\mathbb{R})$ (for most curves)

$$
\mathcal{K}=\left\{c_{i}=0, c_{j(i+1)}=0, c_{d}>0, c_{i(i+1)}>0 \mid 1 \leq i \leq d-1,1 \leq j<i\right\}
$$

Log-signature Transform

- Cross section on $\log I I S(C)$ equivalent to cross-section on $\mathbb{R}^{d} \bigoplus \mathfrak{s o}_{d}(\mathbb{R})$

$$
A \cdot(v, M) \rightarrow\left(A v, A M A^{T}\right)
$$

1. Iteratively construct a relative section over $\mathbb{C}^{d} \oplus \mathfrak{s o}_{d}(\mathbb{C})$
2. Show this induces a cross-section over $\mathbb{R}^{d} \bigoplus \mathfrak{s o}_{d}(\mathbb{R})($ for most curves)

$$
\begin{gathered}
\mathcal{K}=\left\{c_{i}=0, c_{j(i+1)}=0, c_{d}>0, c_{i(i+1)}>0 \mid 1 \leq i \leq d-1,1 \leq j<i\right\} \\
\mathcal{K}_{1}=\left\{c_{i}=0, c_{d}>0 \mid 1 \leq i \leq d-1\right\} \\
\mathcal{K}_{2}=\left\{c_{i}=0, c_{d}>0, c_{1 d}=c_{2 d}=\cdots=c_{(d-2) d}=0, c_{(d-1) d}>0 \mid 1 \leq i \leq d-1\right\}
\end{gathered}
$$

$$
(\boldsymbol{v}, \boldsymbol{M})=\left(\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
\tilde{c}_{d}
\end{array}\right],\left[\begin{array}{ccccc}
0 & \tilde{c}_{12} & 0 & \ldots & 0 \\
-\tilde{c}_{12} & 0 & \tilde{c}_{23} & \ldots & 0 \\
0 & -\tilde{c}_{23} & 0 & \ddots & 0 \\
\vdots & & & & \tilde{c}_{(d-1) d} \\
0 & 0 & 0 & \ldots & 0
\end{array}\right]\right)
$$

Why?

Theorem (Diehl, Preiß, R., Tapia 20)
Two smooth paths are equivalent up to translations, rotations, and reflections (and tree-like extensions) if and only if their log-signatures have the same value on the cross-section \mathcal{K}

Why?

Theorem (Diehl, Preiß, R., Tapia 20)
Two smooth paths are equivalent up to translations, rotations, and reflections (and tree-like extensions) if and only if their log-signatures have the same value on the cross-section \mathcal{K}

Theorem (Diehl, Preiß, R., Tapia 20)
Two smooth paths have equivalent truncated (of order k) iterated-integral signatures under translations, rotations, and reflections (and tree-like extensions) if and only if their log-signatures up to order k have the same value on the cross-section \mathcal{K}

- Cross-section characterizes equivalence classes of truncated IIS
- Gives an explicit method for vectorizing then invariantizing a curve.
- Don't need to compute complicated invariants for high orders.

$c_{13}=0$

What Next?

- How well do these invariantized features perform in practice?
- Other Group Actions

Thank you!

