Arvind Ayyer Indian Institute of Science, Bangalore,

(joint with D. Hathcock and P. Tetali, arXiv:2010.11236, and with B. Bényi, arXiv:2104.13654)

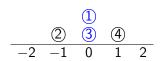
Banff meeting on *Permutations and Probability*September 20, 2021

A sorting algorithm

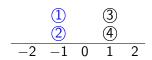
- Defined by Hopkins, McConville and Propp (EJC, 2017).
- Start with chips labelled $1, \ldots, n$ initially at the origin in \mathbb{Z} .
- At each time step, do the following:
 - If no position has two or more chips, stop. Else, go to step 2.
 - Choose a position i uniformly at random among positions occupied by more than one chip.
 - 3 Pick two chips uniformly from those at site i.
 - If the two chips are α, β with $\alpha < \beta$, then move α to position i-1 and β to i+1.
 - 6 Go to step 1.

Labelled toppling

① ② ③ 4 -2 -12 Labelled toppling

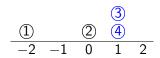


Labelled toppling ○●○○○○○○

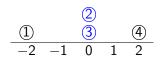


Proof ideas

Labelled toppling



Labelled toppling



Proof ideas

Labelled toppling

0000000

0000000

Theorem (Hopkins, McConville and Propp, Elec. J. Comb., 2017)

When n is even, the chips end up at positions

$$-\frac{n}{2},\ldots,-1,1,\ldots,\frac{n}{2}$$

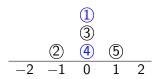
and are always sorted.

Labelled toppling

00000000

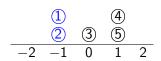
-2 -10

Labelled toppling 000●0000



Labelled toppling

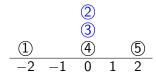
00000000



Labelled toppling

00000000

Labelled toppling 000●0000



Labelled toppling

00000000

Open problem

When n is odd, one can show that the chips end up at positions

$$-\frac{n-1}{2},\ldots,\frac{n-1}{2}.$$

Conjecture (Hopkins, McConville and Propp, Elec. J. Comb., 2017)

When n is odd, the chips get sorted with probability tending to 1/3 as $n \to \infty$.

Further work

- Root system chip firing:
 - Galashin, Hopkins, McConville and Postnikov (SLC 2018),
 - Galashin, Hopkins, McConville and Postnikov (Math. Z. 2019),
 - O Hopkins and Postnikov (Alg. Comb. 2019).
- Progress towards proving the conjecture:
 - Mlivans and Liscio (SLC 2020),
 - Pelzenszwalb and Klivans (JCTA 2021).
 - Mlivans and Liscio (arXiv:2006.12324).

Labelled toppling

00000000

- Suppose n is even and fix $r \in [n]$.
- Assume that the chip labelled r is infinitely heavy, and cannot be moved.
- Then one ends up in a configuration which has 2 chips at the origin (one of which is r) and 1 chip each at positions

$$-\frac{n}{2}+1,\ldots,-1,1,\ldots,\frac{n}{2}-1.$$

Labelled toppling

00000000

- Suppose n is even and fix $r \in [n]$.
- Assume that the chip labelled r is infinitely heavy, and cannot be moved.
- Then one ends up in a configuration which has 2 chips at the origin (one of which is r) and 1 chip each at positions

$$-\frac{n}{2}+1,\ldots,-1,1,\ldots,\frac{n}{2}-1.$$

Labelled toppling

00000000

- Suppose n is even and fix $r \in [n]$.
- Assume that the chip labelled r is infinitely heavy, and cannot be moved.
- Then one ends up in a configuration which has 2 chips at the origin (one of which is r) and 1 chip each at positions

$$-\frac{n}{2}+1,\ldots,-1,1,\ldots,\frac{n}{2}-1.$$

• Now, if we lighten r and let the process continue, we get a sorted permutation (by the HMP theorem).

- Suppose n is even and fix $r \in [n]$.
- Assume that the chip labelled r is infinitely heavy, and cannot be moved.
- Then one ends up in a configuration which has 2 chips at the origin (one of which is r) and 1 chip each at positions

$$-\frac{n}{2}+1,\ldots,-1,1,\ldots,\frac{n}{2}-1.$$

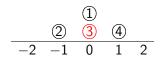
• Now, if we lighten *r* and let the process continue, we get a sorted permutation (by the HMP theorem).

Motivation

Labelled toppling

00000000

• Consider the last stage where r is still infinitely heavy. E.g.



- That configuration can be considered as a permutation $\pi \in S_{n-1}$ plus an extra label, r.
- In the above example, $\pi = 213, r = 3$.
- According to HMP, all pairs (π, r) that arise this way end up sorted.
- It is natural to ask what are all the pairs which end up being sorted.

Notation

Labelled toppling

- Suppose $\pi = (\pi_1, \dots, \pi_n) \in S_n$ and $r \in [n+1]$.
- Let $L_n = \{-\lfloor (n+1)/2 \rfloor, \ldots, -1, 0, 1, \ldots, \lfloor n/2 \rfloor + 1\}.$
- 1 Place the elements π_1, \ldots, π_n in positions

$$-\left\lfloor \frac{n-1}{2}\right\rfloor,\ldots,-1,0,1,\ldots,\left\lfloor \frac{n}{2}\right\rfloor.$$

- 2 Increase the labels in π greater than or equal to r by 1.
- 3 Add r to the origin.
- We will call this initial condition $\pi^{(r)}$.
- Eg with r = 2: $\rho = 3142 \in S_4$, $\sigma = 25134 \in S_5$.

Definitions

Labelled toppling

- For $\pi \in S_n$ and $r \in [n+1]$, we consider the toppling dynamics.
- The toppling dynamical system on L_n can be considered as a map $T: S_n \times [n+1] \to S_{n+1}$.
- Let id be the identity (namely sorted) permutation.

Definition

We say that a permutation π is r-toppleable if $T(\pi, r) = \mathrm{id}$, and we say that π is toppleable if π is r-toppleable for all $r \in [n+1]$. Labelled toppling

Proposition

Fix $\pi \in S_n$ and $r \in [n+1]$. The toppling dynamical system on L_n with initial condition $\pi^{(r)}$ satisfies the following properties.

- **1** The final configuration is deterministic.
- 2 At every time step, the configuration lives in L_n .
- ② In the final configuration, there is precisely one chip at every position in L_n , except the origin (resp. position 1) when n is odd (resp. even).

Basic properties

Proposition

Fix $\pi \in S_n$ and $r \in [n+1]$. The toppling dynamical system on L_n with initial condition $\pi^{(r)}$ satisfies the following properties.

- The final configuration is deterministic.
- 2 At every time step, the configuration lives in L_n .
- In the final configuration, there is precisely one chip at every position in L_n , except the origin (resp. position 1) when n is odd (resp. even).

Main idea: No position contains more than 2 chips!

- Let $t_r(n)$ be the number of r-toppleable permutations.
- Let t(n) be the number of toppleable permutations in S_n .
- For n = 3, there are four 1-toppleable permutations, namely 123, 213, 132 and 231, ...
- and four 4-toppleable permutations, namely 123, 213, 132 and 312.
- Therefore, $t_1(3) = t_4(3) = 4$.
- The common permutations among these turn out also to be 2- and 3-toppleable.
- Hence $t(3) = t_2(3) = t_3(3) = 3$.

Data

Labelled toppling

$n \setminus r$	1	2	3	4	5	6	7	8	9
3	4	3	3	4					
4	14	10	7	7	8				
5	46	38	31	31	38	46			
6	230	184	146	115	115	130	146		
7	1066	920	790	675	675	790	920	1066	
8	6902	5836	4916	4126	3451	3451	3842	4264	4718
		· .				. / \	· ·		

The number of r-toppleable permutations, $t_r(n)$, for $3 \le n \le 8$.

The number of toppleable permutations are in red.

Note the symmetry for odd n.

Background for the results: excedance sets

Labelled toppling

- An excedance of a permutation π is any position i such that $\pi_i > i$.
- The positions at which there are excedances for π is called the excedance set of π .
- Ehrenborg and Steingrímsson (Adv. Appl. Math., 2000) initiated the study of permutations whose excedance set is $\{1, \ldots, k\}$ for $0 \le k \le n - 1$.
- They gave a formula for the number $a_{n,k}$ of such permutations in S_n .
- One surprising result they found is that $a_{n,k} = a_{n,n-1-k}$.
- A related result of Clark and Ehrenborg (Europ. J of C, 2010) is

$$\sum_{r,s\geq 0} a_{r+s,s} \frac{x^r}{r!} \frac{y^s}{s!} = \frac{e^{-x-y}}{(e^{-x} + e^{-y} - 1)^2}.$$

Main result 1

Labelled toppling

Theorem (A., Hathcock and Tetali, 2020+)

For all n.

$$t(n) = t_{\lfloor n/2 \rfloor + 1}(n) = t_{\lfloor n/2 \rfloor + 2}(n).$$

Furthermore.

$$t(n) = a\left(n, \left\lfloor \frac{n-1}{2} \right\rfloor\right).$$

Using the exponential generating function, de Andrade, Lundberg and Nagle (Europ. J. of C, 2015) obtained the asymptotic formula,

$$t(n) = \frac{1}{2\log 2\sqrt{1 - \log 2} + o(1)} \frac{n!}{(2\log 2)^n}.$$

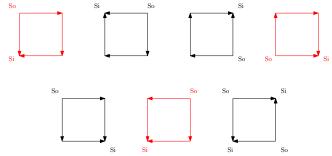
- Let *G* be a simple (no loops or multiple edges) undirected graph.
- An orientation of G is an assignment of arrows to the edges of G.
- An acyclic orientation (AO) is an orientation in which there is no directed cycle.
- A proper colouring of *G* is an assignment of colours to vertices such that no two adjacent vertices get the same colour.
- The chromatic polynomial of G, denoted $\chi_G(q)$, is the number of proper colourings of G with q colours.

Theorem (Stanley, Disc. Math., 1973)

The number of acyclic orientations of G (up to sign) is $\chi_G(-1)$.

Example: C_4 , the 4-cycle

Labelled toppling



There are 14 acyclic orientations for C_4 . Seven are shown here. The other seven are obtained by reversing each of the arrows. The chromatic polynomial is $\chi_{C_4}(q) = q^4 - 4q^3 + 6q^2 - 3q$.

Acyclic orientations with unique sink

Definition

An acyclic orientation with a unique sink (AUSO) is an acyclic orientation with exactly one sink.

Theorem (Greene and Zaslavsky, Trans. of the AMS, 1983)

The number of AUSOs of G (up to sign) is independent of the sink and equal to (up to sign) the linear coefficient of $\chi_G(-1)$.

 C_4 has 3 AUSOs, shown in red on the previous page.

Main result 2

Recall that $K_{m,n}$ is the complete bipartite graph with parts of size m and n.

For example, $C_4 \cong K_{2,2}$.

Theorem (A., Hathcock and Tetali, 2020+)

For all n, t(n) is equal to the number of acyclic orientations with a fixed unique sink of $K_{\lceil n/2 \rceil, \lceil n/2 \rceil + 1}$.

This proof is bijective.

Poly-Bernoulli numbers

Labelled toppling

The well-known polylogarithm function is given by

$$\operatorname{Li}_k(z) = \sum_{i=1}^{\infty} \frac{z^i}{i^k}.$$

- Recall that a position k is an ascent in a permutation if $\pi_k < \pi_{k+1}$.
- The Eulerian number $\binom{m}{i}$ is the number of permutations in S_n with j ascents.
- For a non-negative integer m,

$$\operatorname{Li}_{-m}(z) = \frac{\sum_{j=0}^{m-1} {m \choose j} z^{m-j}}{(1-z)^{m+1}}.$$

Poly-Bernoulli numbers

 Poly-Bernoulli numbers of type B were defined by Kaneko (1997) via the exponential generating function,

$$\sum_{n=0}^{\infty} B_{n,k} \frac{x^n}{n!} = \frac{\text{Li}_{-k} (1 - e^{-x})}{1 - e^{-x}},$$

- A surprising result is that $B_{k,n} = B_{n,k}$.
- There are many combinatorial interpretations for $B_{n,k}$.
- A permutation $\pi \in S_{k+n}$ is said to be a (k, n)-Vesztergombi permutation if $-k \le \pi_i i \le n$ for $1 \le i \le k + n$.
- The number of (k, n)-Vesztergombi permutations is $B_{n,k}$.

The first few poly-Bernoulli numbers of type B

$n \setminus k$	0	1	2	3	4	5
0	1	1	1	1	1	1
1	1	2	4	8	16	32
2	1	4	14	46	146	454
3	1	8	46	230	1066	4718
4	1	16	146	1066	6906	41506
5	1	32	454	4718	41506	329462

Forward difference operators

- Let Δ be the discrete (forward) difference operator, i.e. for any function f(n), $\Delta(f(n)) = f(n+1) f(n)$.
- The higher difference operators are obtained by composition.
- For example, $\Delta^2(f(n)) = f(n+2) 2f(n+1) + f(n)$.
- The sequence $\Delta^k(f)$ is also known as a binomial transform of the sequence f.
- Note that $\Delta^0(f(n)) = f(n)$.

Main result 3

Back to data

Theorem (A. and Bényi, 2021+)

The number of r-toppleable permutations in S_n is

$$t_r(n) = \Delta^{r-1}(B_{n-p+1-r,p}),$$

where $p = \lfloor (n+1)/2 \rfloor$ and Δ acts on the first index.

- We generalise this result to any position of adding the extra chip.
- We also characterise all possible final permutations and enumerate permutations toppling to these.

Focus on odd n

- For each statement, the results for odd and even *n* differ slightly.
- To make the presentation cleaner, we state the results only for odd n.
- This will avoid the presence of floors and ceilings all over the place.
- The corresponding results for even n are given in arXiv:2010.11236.

Monotonicity

Theorem (A., Hathcock and Tetali, 2020+)

Let $\pi \in S_{2m+1}$.

- Suppose $2 \le r \le m+1$. Then π is (r-1)-toppleable if π is r-toppleable.
- ② Suppose $m+2 \le r \le 2m$. Then π is (r+1)-toppleable if π is r-toppleable.
- **3** π is (m+1)-toppleable if and only if π is (m+2)-toppleable.

Back to data

The notion of a pass

Labelled toppling

• For $\pi \in S_{2m+1}$, let the number of chips at each site of L_n in $\pi^{(r)}$ be

$$p^{(r)} = (-, 1, \dots, 1, \hat{2}, 1, \dots, 1, -).$$

Topple as follows:

$$\rho^{(r)} \to (_, 1, \dots, 1, 1, 2, \hat{_}, 2, 1, 1, \dots, 1, _)
\to (_, 1, \dots, 1, 2, _, \hat{2}, _, 2, 1, \dots, 1, _)
\to (_, 1, \dots, 2, _, 1, \hat{2}, 1, _, 2, \dots, 1, _).$$

- At this point, we leave the origin unchanged and start to topple the vertices with 2 chips both on the left and right, until we reach the end.
- We then arrive at the configuration with chip counts given by

$$(1, _, 1, \ldots, 1, \hat{2}, 1, \ldots, 1, _, 1).$$

The notion of a pass

- Now, the extremal points cannot be modified by any further topplings and are fixed.
- We call this sequence of topplings the first pass.
- This consists of 2m + 1 individual topplings.
- Similarly, the second pass will be initiated by toppling the origin in a similar way, and we will end up with

$$(1, 1, _, 1, \ldots, 1, \hat{2}, 1, \ldots, 1, _, 1, 1).$$

- Continue this way until the configuration stabilizes.
- If n is odd, then we see that after (n+1)/2 passes, the configuration will freeze leaving the origin empty.

Observations about passes

Labelled toppling

- Every chip between vacancies topples at least once in every pass.
- If $\pi \in S_{2m+1}$ is toppleable, then for $1 \le i \le m+1$, i and 2m + 2 - i get fixed in their correct positions at the end of the i'th pass.
- For example:

Theorem (A., Hathcock and Tetali, 2020+)

A permutation $\pi \in S_{2m+1}$ is (m+1)-toppleable if and only if

$$\pi_i \le m+i, \quad 1 \le i \le m,$$

$$\pi_i \ge i-m, \quad m+1 \le i \le 2m+1.$$

Equivalently,

$$\pi_i^{-1} \in \{1, \dots, m+i\}, \quad 1 \le i \le m+1$$

 $\pi_i^{-1} \in \{i-m, \dots, 2m+1\}, \quad m+2 \le i \le 2m+1.$

Main idea: The notion of a pass and induction.

Bijection

Lemma

Permutations $\pi \in S_{2m+1}$ such that $\pi_i \leq m+i$ for $1 \leq i \leq m$ and $\pi_i \geq i-m$ for $m+1 \leq i \leq 2m+1$ are in bijection with permutations in S_{2m+1} whose excedance set is $\{1,\ldots,m\}$.

Proof idea.

$$(\pi_1, \ldots, \pi_m | \pi_{m+1}, \ldots, \pi_{2m+1})$$

 $\to \sigma = 2m + 2 - (\pi_m, \ldots, \pi_1 | \pi_{2m+1}, \ldots, \pi_{m+1}).$

Proof of main result 1

Proof.

Labelled toppling

- By the monotonicity result, we see that $\pi \in S_{2m+1}$ is toppleable if it is (m+1)-toppleable.
- According to the structure theorem, $\pi_i < m+i$ for 1 < i < mand $\pi_i > i - m$ for m + 1 < i < 2m + 1.
- Now, the previous lemma proves that the number of such permutations is $a_{2m+1,m}$ bijectively, completing the proof.

Back to HMP toppling

Theorem (Lemma 12, Hopkins, McConville and Propp)

Starting with n chips at the origin, the position of chip k lies between -|(n+1-k)/2| and |k/2| for $1 \le k \le n$ at all times.

- When n is odd, n = 2m + 1, the final configuration will contain single chips in all positions -m through m.
- We now apply this condition to count permutations arising from this condition switching positions from [-m, m] to [n].
- For *n* even, the only permutation that appears as a result of toppling is id.
- We also consider this case, although it is not directly relevant to the toppling problem.

Collapsed permutations

Definition

We say that a permutation $\pi \in S_n$ is collapsed if

$$\pi_k^{-1} \geq egin{cases} \lceil k/2
ceil & n ext{ odd}, \ 1 + \lfloor k/2
vert & n ext{ even} \end{cases}$$
 and $\pi_k^{-1} \leq \lceil n/2
ceil + \lfloor k/2
vert.$

Let G_n be the subset of collapsed permutations in S_n

• For n = 2m + 1.

i 1 2 3 ...
$$2m + 1$$

Position of $i \ge 1$ 1 2 ... $m + 1$
Position of $i \le m+1$ $m+2$ $m+2$... $2m+1$ $2m+1$

Proof ideas

• For example, $G_3 = \{123, 132, 213\}$ and $G_4 = \{1234, 1324\}$.

- To state our results, we recall a well-known combinatorial triangle.
- The Seidel triangle is the triangular sequence $S_{n,k}$ for $n \geq 1$ given by

$$S_{1,1} = 1,$$
 $S_{n,k} = 0, \quad k < 2 \text{ or } (n+3)/2 < k,$
 $S_{2n,k} = \sum_{i \ge k} S_{2n-1,i},$
 $S_{2n+1,k} = \sum_{i \le k} S_{2n,i}.$

First few rows

Labelled toppling 00000000

$n \backslash k$	2	3	4	5	6
1	1				
2	1				
3	1	1			
4	2	1			
5	2	3	3		
6	8	6	3		
7	8	14	17	17	
8	56	48	34	17	
9	56	104	138	155	155
10	608	552	448	310	155

- The numbers on the rightmost diagonal are the Genocchi numbers of the first kind, g_{2n} .
- They counts permutations in S_{2n-3} whose excedence set is $\{1,3,\ldots,2n-5\}$.
- For example, $g_8 = 17$:

21435, 21534, 21543, 31425, 315, 24, 31542, 32415, 32514, 32541, 41523, 41532, 42513, 42531, 51423, 51432, 52413, 52431.

• The exponential generating function of g_{2n} is given by

$$\sum_{n>0} g_{2n} \frac{x^{2n}}{(2n)!} = x \tan\left(\frac{x}{2}\right).$$

Theorem

The number of collapsed permutations in S_{2n+1} is g_{2n+4} .

• Define a bijection $f:G_{2n+1}\to S_{2n+1}$ which send

$$\pi \mapsto \sigma = (\sigma_1, \ldots, \sigma_{2n+1})$$

such that

1 $\sigma_{2i} = \pi_i, \sigma_{2i-1} = \pi_{n+1+i}$ for $1 \le i \le n$, and

• The bijection for n = 1 is illustrated below:

G ₃	S_3 with excedence set $\{1\}$
132	213
123	312
213	321

Labelled toppling

- The numbers on the leftmost diagonal are the median Genocchi numbers or Genocchi numbers of the second kind. H_{2n+1} .
- They count among other things, ordered pairs $((a_1, \ldots, a_{n-1}),$ $(b_1,\ldots,b_{n-1})\in \mathbb{Z}^{n-1}\times \mathbb{Z}^{n-1}$ such that $0\leq a_k\leq k$ and $1 < b_k < k$ for all k and $\{a_1, \ldots, a_{n-1}, a_n = 1, \ldots, a_n =$ b_1,\ldots,b_{n-1} = [n-1].
- For example, $H_7 = 8$:

$$((0,0),(1,2)), ((0,1),(1,2)), ((0,2),(1,1)), ((0,2),(1,2)), ((1,0),(1,2)), ((1,1),(1,2)), ((1,2),(1,1)), ((1,2),(1,2)).$$

In terms of the Genocchi numbers of the first kind, we have

$$H_{2n+1} = \sum_{i=0}^{n} g_{2n-2i} \binom{n}{2i+1}.$$

Normalized median Genocchi numbers

- Although it is not clear either from the above definition or the formula, H_{2n+1} is always divisible by 2^n .
- The numbers $h_n = H_{2n+1}/2^n$ are called the normalized median Genocchi numbers.

The first few numbers of this sequence are

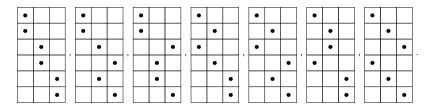
$$\{h_n\}_{n=0}^7 = \{1, 1, 2, 7, 38, 295, 3098, 42271\}.$$

 A classical combinatorial interpretation for these are certain configurations first defined by Hippolyte Dellac in 1900.

Definition

A Dellac configuration of order n is a $2n \times n$ array containing 2n points, such that every row has a point, every column has two points, and the points in column j lie between rows j and n+j, both inclusive, $1 \le j \le n$.

For example, when n = 3, the 7 Dellac configurations are



Even collapsed permutations

Theorem

The number of collapsed permutations in S_{2n} is given by H_{2n-1} .

- Both 2i and 2i + 1 have to lie in positions between i + 1 and i + n, both inclusive, for $1 \le i \le n 1$.
- Thus, $\#G_{2n}$ is divisible by 2^{n-1} .
- Focus on $\pi \in G_{2n}$ such that 2i precedes 2i + 1 in one-line notation for all i.
- Since $\pi_1 = 1$ and $\pi_{2n} = 2n$ are forced, we focus on $(\pi_2, \dots, \pi_{2n-1})$.

Bijection

- Construct a configuration C of points on an $(2n-2)\times (n-1)$ array as follows:
- For $2 \le i \le 2n 1$, place a point in position $(i 1, \lfloor \pi_i / 2 \rfloor)$.
- C is a Dellac configuration and this can be inverted.
- For example, the permutation $1\underbrace{243657}_{}8 \in G_8$ is in bijection with

•		
	•	
•		
		•
	•	
		•

References

- Sam Hopkins, Thomas McConville, and James Propp, Sorting via chip-firing, Electron. J. Combin., 2017.
- Beáta Bényi and Péter Hajnal, Combinatorics of poly-Bernoulli numbers, Studia Sci. Math. Hungar., 2015.
- Arvind Ayyer, Daniel Hathcock, and Prasad Tetali, *Toppleable permutations, excedances and acyclic orientations*, arXiv:2010.11236.
- Arvind Ayyer and Beáta Bényi, *Toppling on permutations with an extra chip*, arXiv:2104.13654.

Labelled toppling

Proof ideas