Random Walks in Affine Weyl Groups and TASEPs on signed permutations

Svante Linusson

KTH
Sweden

Joint work with Erik Aas, Arvind Ayyer, Samu Potka
BIRS, Sept 21, 2021

Introduction

I will start to explain the setting for permutations and then turn to signed permutations.

Introduction

$2 \quad 1 \quad 7$

 4
 3

Given a cyclic permutation σ.

Introduction

```
2 1 7
```

$6 \quad 5$

438
Given a cyclic permutation σ. Small numbers can jump left (clockwise).
$\ldots j i \ldots \mapsto \ldots i j \ldots$ if $j>i$.

Introduction

Given a cyclic permutation σ. Small numbers can jump left (clockwise). $\ldots j i \ldots \mapsto \ldots i j \ldots$ if $j>i$.

Introduction

Given a cyclic permutation σ. Small numbers can jump left (clockwise). $\ldots j i \ldots \mapsto \ldots i j \ldots$ if $j>i$.

Introduction

Given a cyclic permutation σ. Small numbers can jump left (clockwise).
$\ldots j i \ldots \mapsto \ldots i j \ldots$ if $j>i$.
I will first discuss the following process: At each time step chose one of the numbers uniformly at random. If it can jump it will jump.

Introduction

Given a cyclic permutation σ.
Small numbers can jump left (clockwise).
$\ldots j i \ldots \mapsto \ldots i j \ldots$ if $j>i$.
I will first discuss the following process: At each time step chose one of the numbers uniformly at random. If it can jump it will jump.

This is an example of a TASEP (Totally Asymetric Simple Exclussion Process).

Example $n=3$

Figure: The cyclic-TASEP Markov chain for $n=3$.

Example $n=3$

Let p_{σ} be the probability of σ at stationarity.

Figure: The cyclic-TASEP Markov chain for $n=3$.

Example $n=3$

Let p_{σ} be the probability of σ at stationarity.
In this example we see that
$p_{123}=p_{231}=p_{312}$ and
$p_{321}=p_{213}=p_{132}$.

Figure: The cyclic-TASEP Markov chain for $n=3$.

Example $n=3$

Figure: The cyclic-TASEP Markov chain for $n=3$.

Let p_{σ} be the probability of σ at stationarity.
In this example we see that
$p_{123}=p_{231}=p_{312}$ and
$p_{321}=p_{213}=p_{132}$.
From the balance equation around 321 we get $p_{321}\left(\frac{1}{3}+\frac{1}{3}\right)=p_{123} \cdot \frac{1}{3}$.

Example $n=3$

Figure: The cyclic-TASEP Markov chain for $n=3$.

Let p_{σ} be the probability of σ at stationarity.
In this example we see that
$p_{123}=p_{231}=p_{312}$ and
$p_{321}=p_{213}=p_{132}$.
From the balance equation around 321 we get $p_{321}\left(\frac{1}{3}+\frac{1}{3}\right)=p_{123} \cdot \frac{1}{3}$.

Solving this gives $p_{321}=\frac{1}{9}, p_{123}=\frac{2}{9}$.

Example $n=3$

Figure: The cyclic-TASEP Markov chain for $n=3$.

Let p_{σ} be the probability of σ at stationarity.
In this example we see that
$p_{123}=p_{231}=p_{312}$ and
$p_{321}=p_{213}=p_{132}$.
From the balance equation around 321 we get $p_{321}\left(\frac{1}{3}+\frac{1}{3}\right)=p_{123} \cdot \frac{1}{3}$.

Solving this gives $p_{321}=\frac{1}{9}, p_{123}=\frac{2}{9}$.

$$
\begin{aligned}
& \text { For } n=4 \text { we get } \\
& p_{4321}=\frac{1}{96}, p_{4312}=\frac{3}{96} \\
& p_{4132}=\frac{3}{96}, p_{4231}=\frac{5}{96} \\
& p_{4213}=\frac{3}{96}, p_{4123}=\frac{9}{96}
\end{aligned}
$$

For $n=4$ we get
$p_{4321}=\frac{1}{96}, p_{4312}=\frac{3}{96}$
$p_{4132}=\frac{3}{96}, p_{4231}=\frac{5}{96}$
$p_{4213}=\frac{3}{96}, p_{4123}=\frac{9}{96}$
Let $w_{0}=n n-1 \ldots 21$ be the reverse permutation.
Then $p_{w_{0}}=\frac{1}{2}, \frac{1}{9}, \frac{1}{96}, \frac{1}{2500}, \ldots$

For $n=4$ we get
$p_{4321}=\frac{1}{96}, p_{4312}=\frac{3}{96}$
$p_{4132}=\frac{3}{96}, p_{4231}=\frac{5}{96}$
$p_{4213}=\frac{3}{96}, p_{4123}=\frac{9}{96}$
Let $w_{0}=n n-1 \ldots 21$ be the reverse permutation.
Then $p_{w_{0}}=\frac{1}{2}, \frac{1}{9}, \frac{1}{96}, \frac{1}{2500}, \ldots$
Theorem (Ferrari-Martin '07)

$$
p_{w_{0}}=\frac{1}{2}, \frac{1}{9}, \frac{1}{96}, \frac{1}{2500}, \cdots \frac{1}{\prod_{i}\binom{n}{i}}
$$

For $n=4$ we get
$p_{4321}=\frac{1}{96}, p_{4312}=\frac{3}{96}$
$p_{4132}=\frac{3}{96}, p_{4231}=\frac{5}{96}$
$p_{4213}=\frac{3}{96}, p_{4123}=\frac{9}{96}$
Let $w_{0}=n n-1 \ldots 21$ be the reverse permutation.
Then $p_{w_{0}}=\frac{1}{2}, \frac{1}{9}, \frac{1}{96}, \frac{1}{2500}, \ldots$
Theorem (Ferrari-Martin '07)

$$
p_{w_{0}}=\frac{1}{2}, \frac{1}{9}, \frac{1}{96}, \frac{1}{2500}, \cdots \frac{1}{\prod_{i}\binom{n}{i}}
$$

Theorem (Aas '12, Conjectured by Lam '11)

$$
p_{i d}=\frac{1}{2}, \frac{2}{9}, \frac{9}{96}, \frac{96}{2500}, \ldots \frac{\prod_{i}\binom{n-1}{i}}{\prod_{i}\binom{n}{i}}
$$

Many results starting from this TASEP

This process has been studied from many perspectives by several different authors: Angel, Amir, Valko, Ferrari, Martin, Lam, Williams, Cantini, de Gier, Derrida, Ayyer, Corteel, Aas, Sjöstrand, De Sarkar, Evans, Arita, Prolhac, Mallick, Mandelshtam, Kim, Haglund, Mason, and probably others.

Connection to random walks

$$
\begin{aligned}
& S_{1}=(12) \\
& S_{2}=(23)
\end{aligned}
$$

A reduced random walk in the alcoves of the \tilde{A}_{2} arrangement. The shown walk has reduced word $\cdots s_{1} s_{0} s_{2} s_{0} s_{1} s_{2} s_{0} s_{2} s_{1}$ (s0). The thick lines divide V into Weyl chambers.

$$
S_{0}=(1 n)
$$

Connection to random walks

A reduced random walk in the alcoves of the \tilde{A}_{2} arrangement. The shown walk has reduced word $\cdots s_{1} s_{0} s_{2} s_{0} s_{1} s_{2} s_{0} s_{2} s_{1} s_{0}$. The thick lines divide V into Weyl chambers.

Theorem (Lam '11)

The probability that the reduced walk get stuck in chamber σ is p_{σ}. The walk will a.s. tend to a certain direction φ in that chamber.

Connection to random walks

A reduced random walk in the alcoves of the \tilde{A}_{2} arrangement. The shown walk has reduced word $\cdots s_{1} s_{0} s_{2} s_{0} s_{1} s_{2} s_{0} s_{2} s_{1} s_{0}$. The thick lines divide V into Weyl chambers.

Theorem (Lam '11)

The probability that the reduced walk get stuck in chamber σ is p_{σ}. The walk will a.s. tend to a certain direction φ in that chamber.

Formula for the limiting directions

φ may be computed using an irreducible and aperiodic Markov chain on Weyl group W with stationary distribution $\{p(w) \mid w \in W\}$.

Formula for the limiting directions

φ may be computed using an irreducible and aperiodic Markov chain on Weyl group W with stationary distribution $\{p(w) \mid w \in W\}$.

Theorem (Lam '15)
The limiting direction φ is given by

$$
\varphi=\frac{1}{Z} \sum_{w \in W: r_{\theta} W>w} p(w) w^{-1}\left(\theta^{\vee}\right),
$$

where θ is the highest root of W and Z is a normalization factor.

Formula for the limiting directions

φ may be computed using an irreducible and aperiodic Markov chain on Weyl group W with stationary distribution $\{p(w) \mid w \in W\}$.

Theorem (Lam '15)
The limiting direction φ is given by

$$
\varphi=\frac{1}{Z} \sum_{w \in W: r_{\theta} w>w} p(w) w^{-1}\left(\theta^{\vee}\right),
$$

where θ is the highest root of W and Z is a normalization factor.
Here r_{θ} denotes reflection in the hyperplane perpendicular to θ, and $r_{\theta} w>w$ if $\ell\left(r_{\theta} w\right)>\ell(w)$.

Formula for the limiting directions

φ may be computed using an irreducible and aperiodic Markov chain on Weyl group W with stationary distribution $\{p(w) \mid w \in W\}$.

Theorem (Lam '15)
The limiting direction φ is given by

$$
\varphi=\frac{1}{Z} \sum_{w \in W: r_{\theta} w>w} p(w) w^{-1}\left(\theta^{\vee}\right)
$$

where θ is the highest root of W and Z is a normalization factor.
Here r_{θ} denotes reflection in the hyperplane perpendicular to θ, and $r_{\theta} w>w$ if $\ell\left(r_{\theta} w\right)>\ell(w)$. The coroot θ^{\vee} is

$$
\frac{2 \theta}{(\theta, \theta)}
$$

Correlations

Return to case of permutations.
Let $c_{i, j}:=\operatorname{Prob}(\sigma=i j \ldots)$.

Correlations

Return to case of permutations.

Let $c_{i, j}:=\operatorname{Prob}(\sigma=i j \ldots)$.

$i \backslash j$	1	2	3	4
1	0	6	3	3
2	2	0	7	3
3	4	2	0	6
4	6	4	2	0

Correlations

Return to case of permutations.
Let $c_{i, j}:=\operatorname{Prob}(\sigma=i j \ldots)$.

$i \backslash j$	1	2	3	4		
1	0	6	3	3		
2	2	0	7	3		
3	4	2	0	6		
4	6	4	2	0	\quad	1
:---						
4^{2}						

Theorem (Ayyer \& L. '16)
For any $1 \leq i, j \leq n$,

$$
c_{i, j}= \begin{cases}\frac{i-1}{n\left(\frac{n}{2}\right)} . & \text { if } i>j \\ 0, & \text { if } i=j \\ \frac{1}{n^{2}}+\frac{i(n-i)}{n^{2}(n-1)}, & \text { if } i=j-1 \\ \frac{1}{n^{2}} . & \text { if } i<j-1\end{cases}
$$

$$
i<j-3
$$

$$
\frac{1}{n^{2}}
$$

Correlations

Return to case of permutations.
Let $c_{i, j}:=\operatorname{Prob}(\sigma=i j \ldots)$.

$i \backslash j$	1	2	3	4
1	0	6	3	3
2	2	0	7	3
3	4	2	0	6
4	6	4	2	0

Theorem (Ayyer \& L. '16)
For any $1 \leq i, j \leq n$,

$$
c_{i, j}= \begin{cases}\frac{i-j}{n\binom{n}{2}}, & \text { if } i>j \\ 0, & \text { if } i=j \\ \frac{1}{n^{2}}+\frac{i(n-i)}{n^{2}(n-1)}, & \text { if } i=j-1 \\ \frac{1}{n^{2}}, & \text { if } i<j-1\end{cases}
$$

Is needed to prove:
Theorem (Ayyer \& L., Conjectured by Lam)
$\varphi=\sum_{1 \leq i<j \leq n}\left(e_{i}-e_{j}\right) \quad$ (the sum of all positive roots).

Signed permutations

We now want to study the same problem for other Weyl groups.

Permutations with signs:

$$
\begin{cases}B_{n} & 5 \overline{4} \overline{123} \\ C_{n} & \end{cases}
$$

Permutations with an even number of signs: D_{n} $4 \overline{5} 1 \overline{32}$

Signed permutations

We now want to study the same problem for other Weyl groups.

Permutations with signs:

$$
\left\{\begin{array}{l}
B_{n} \\
C_{n}
\end{array}\right.
$$

Permutations with an even number of signs: D_{n}

I will focus on B_{n} today.

Alcoves and chambers

- Simple roots of $B_{n}: e_{1}, e_{2}-e_{1}, e_{3}-e_{2}, \ldots, e_{n}-e_{n-1}$ and highest root $e_{n-1}+e_{n}$

Alcoves and chambers

- Simple roots of $B_{n}: e_{1}, e_{2}-e_{1}, e_{3}-e_{2}, \ldots, e_{n}-e_{n-1}$ and highest root $e_{n-1}+e_{n}$
- Alcoves: connected components of $V \backslash\left(\cup_{H \in \mathcal{H}} H\right)$

Alcoves and chambers

- Simple roots of $B_{n}: e_{1}, e_{2}-e_{1}, e_{3}-e_{2}, \ldots, e_{n}-e_{n-1}$ and highest root $e_{n-1}+e_{n}$
- Alcoves: connected components of $V \backslash\left(\cup_{H \in \mathcal{H}} H\right)$
- Fundamental alcove A° : alcove bounded by the hyperplanes corresponding to simple \& highest roots

Alcoves and chambers

- Simple roots of B_{n} : $e_{1}, e_{2}-e_{1}, e_{3}-e_{2}, \ldots, e_{n}-e_{n-1}$ and highest root $e_{n-1}+e_{n}$
- Alcoves: connected components of $V \backslash\left(\cup_{H \in \mathcal{H}} H\right)$
- Fundamental alcove A° : alcove bounded by the hyperplanes corresponding to simple \& highest roots

Lam's reduced random walk

Definition (Lam '15)

Begin at $X_{0}=A^{0}$. Given $\left(X_{0}, X_{1}, \ldots, X_{j}\right)$, pick X_{j+1} at random among the alcoves adjacent to X_{j}, with the constraint that the hyperplane separating X_{j} and X_{j+1} has not been crossed.

Lam's reduced random walk

Definition (Lam '15)

Begin at $X_{0}=A^{0}$. Given $\left(X_{0}, X_{1}, \ldots, X_{j}\right)$, pick X_{j+1} at random among the alcoves adjacent to X_{j}, with the constraint that the hyperplane separating X_{j} and X_{j+1} has not been crossed.

A reduced random walk in \tilde{B}_{2} that stay in the fundamental chamber:

Kac labels as weights

B-multiTASEP

First site		Bulk		Last two sites	
Transition	Probability	Transition	Probability	Transition	Probability
$\bar{k} \rightarrow k$	$\frac{1}{n}$	$\stackrel{\curvearrowleft}{m} \rightarrow \ell m$	$\frac{1}{n}$		$\frac{1}{2 n}$

Table: Transitions for the B-multiTASEP, where $\bar{n} \leq \ell<m \leq n$ and $1 \leq i<j, k \leq n$.

The Markov chain for B_{2}

Figure: The Markov chain for B_{2} as a multiTASEP on signed permutations.

multiTASEP of Type B

Theorem Aas, Ayyer, Pdhe, L.

The limiting direction of Lam's random walk on the alcoves of the affine Weyl group of type B_{n}, with probability rates weighted by the Kac-labels a_{i} is given by

$$
\sum_{i=1}^{n}(2 i-1) e_{i} . \quad \text { again the sum of all positive roots }
$$

This is again proved using Lam's Theorem and studying correlation.

Correlations in Type B

Table: The probabiity of i, j in the last two positions for B_{4}. The probability with j and \bar{j} in the last position is the same, so only half the table is shown.

About the proofs

B-TASEP

First site		Bulk		Last two sites	
Transition	Probability	Transition	Probability	Transition	Probability
				$11 \rightarrow \overline{11}$	
				$1 \overline{1} \rightarrow \overline{1} 1$	
$\overline{1} \rightarrow 1$	1	$\overline{1} \rightarrow \overline{1} 1$		$01 \rightarrow \overline{10}$	1
	\bar{n}	$10 \rightarrow 01$	$\frac{1}{n}$	01 $\rightarrow \overline{10}$	$\overline{2 n}$
		$0 \overline{1} \rightarrow \overline{10}$		$10 \rightarrow 0 \overline{1}$	
				$10 \rightarrow 01$	

Table: Transitions for the B-TASEP.

D^{*}-TASEP

All our TASEPs have a further lumping to the D^{*}-TASEP with different parameters, where on each site we have exactly one particle from the set $\{*, 1,0, \overline{1}\}$ subject to the following:

D^{*}-TASEP

All our TASEPs have a further lumping to the D^{*}-TASEP with different parameters, where on each site we have exactly one particle from the set $\{*, 1,0, \overline{1}\}$ subject to the following:

- the number of 0 's is fixed;

D^{*}-TASEP

All our TASEPs have a further lumping to the D^{*}-TASEP with different parameters, where on each site we have exactly one particle from the set $\{*, 1,0, \overline{1}\}$ subject to the following:

- the number of 0 's is fixed;
- sites 1 and n can only be occupied by 0 and $*$;

D^{*}-TASEP

All our TASEPs have a further lumping to the D^{*}-TASEP with different parameters, where on each site we have exactly one particle from the set $\{*, 1,0, \overline{1}\}$ subject to the following:

- the number of 0 's is fixed;
- sites 1 and n can only be occupied by 0 and $*$;
- sites 2 through $n-1$ can only be occupied by 1,0 and $\overline{1}$.

D^{*}-TASEP

All our TASEPs have a further lumping to the D^{*}-TASEP with different parameters, where on each site we have exactly one particle from the set $\{*, 1,0,1\}$ subject to the following:

- the number of 0 's is fixed;
- sites 1 and n can only be occupied by 0 and $*$;
- sites 2 through $n-1$ can only be occupied by 1,0 and $\overline{1}$.

First two sites		Bulk		Last two sites	
Transition	Probability	Transition	Probability	Transition	Probability
$* \overline{1} \rightarrow * 1$	$\frac{\alpha}{n-1}$	$1 \overline{1} \rightarrow \overline{1} 1$		$1 * \rightarrow \overline{1} *$	$\frac{\beta}{n-1}$
$* 0 \rightarrow 01$	$\frac{\alpha_{*}}{n-1}$	$10 \rightarrow 01$	$\frac{1}{n-1}$	$0 * \rightarrow \overline{10}$	$\frac{\beta_{*}}{n-1}$
$0 \overline{1} \rightarrow * 0$	$\frac{1}{n-1}$	$0 \overline{1} \rightarrow \overline{10}$		$10 \rightarrow 0 *$	$\frac{1}{n-1}$

Table: Transitions for the D^{*}-TASEP.

Two-row model

The stationary distribution of the D^{*}-TASEP may be described in terms of a Markov chain on certain two-row configurations (modification of a model by Duchi and Schaeffer).

Two-row model

The stationary distribution of the D^{*}-TASEP may be described in terms of a Markov chain on certain two-row configurations (modification of a model by Duchi and Schaeffer). The two-row model lumps to the D^{*}-TASEP.

Two-row model

The stationary distribution of the D^{*}-TASEP may be described in terms of a Markov chain on certain two-row configurations (modification of a model by Duchi and Schaeffer). The two-row model lumps to the D^{*}-TASEP.

Example

Let $\widehat{\Omega}_{n, n_{0}}^{*}$ be the set of two-row configurations with n columns and n_{0} 0 -columns.

Two-row model

The stationary distribution of the D^{*}-TASEP may be described in terms of a Markov chain on certain two-row configurations (modification of a model by Duchi and Schaeffer). The two-row model lumps to the D^{*}-TASEP.

Example

Let $\widehat{\Omega}_{n, n_{0}}^{*}$ be the set of two-row configurations with n columns and n_{0} 0 -columns. For example,
and

Two-row model

The stationary distribution of the D^{*}-TASEP may be described in terms of a Markov chain on certain two-row configurations (modification of a model by Duchi and Schaeffer). The two-row model lumps to the D^{*}-TASEP.

Example

Let $\widehat{\Omega}_{n, n_{0}}^{*}$ be the set of two-row configurations with n columns and n_{0} 0 -columns. For example,
and

$$
\widehat{\Omega}_{4,0}^{*}=\left\{\begin{array}{lll}
* \overline{1} \overline{1} * * \overline{1} 1 * * 1 \overline{1} * * \frac{1}{1} * * \frac{11}{} * \\
* 11 * & * 1 \overline{1} * * * 1 \overline{1} * * \overline{1} 1 * & * \overline{1} \overline{1} *
\end{array}\right\} .
$$

The transitions are tedious to describe.

Using the two-row model

- Let $\langle i, j\rangle$ denote the probability of a configuration ending in i, j.

Using the two-row model

- Let $\langle i, j\rangle$ denote the probability of a configuration ending in i, j.
- Two-row configurations without 0's are in bijection with bicolored Motzkin paths and Dyck paths, so computing $\langle i, j\rangle$ in the D^{*}-TASEP reduces to counting paths with weights.

Using the two-row model

- Let $\langle i, j\rangle$ denote the probability of a configuration ending in i, j.
- Two-row configurations without 0's are in bijection with bicolored Motzkin paths and Dyck paths, so computing $\langle i, j\rangle$ in the D^{*}-TASEP reduces to counting paths with weights.
- Although we don't have enough information left to compute the $\langle i, j\rangle$ in the original multiTASEPs, it aloows us e.g. to compute the sum

$$
\sum_{j=i+1}^{n}\langle j, i\rangle-\langle j, \bar{i}\rangle+\langle i, j\rangle-\langle\bar{i}, j\rangle
$$

Enough to determine the limiting direction for \tilde{B}_{n}.

Č-multiTASEP

I mention one last result

Theorem

The limiting direction of Lam's random walk on the alcoves of the affine Weyl group of type C_{n}, weighted by the dual Kac-labels \check{a}_{i} is given by

$$
\left.\sum_{i=1}^{n}(2 i+1) e_{i} . \quad \text { (the sum of positive roots is however } \sum_{i}(2 i) e_{i}\right)
$$

Thanks for your attention!

