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Introduction

I will start to explain the setting for permutations and then turn to

signed permutations.
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Small numbers can jump left (clockwise).

. . . j i . . . 7! . . . i j . . . if j > i .
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Given a cyclic permutation �.

Small numbers can jump left (clockwise).

. . . j i . . . 7! . . . i j . . . if j > i .

I will first discuss the following process: At each time step chose one of

the numbers uniformly at random. If it can jump it will jump.

This is an example of a TASEP (Totally Asymetric Simple Exclussion

Process).
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Example n = 3

321

231 312

213 132

123

1/3 1/3

1/3

1/3 1/3

1/3

1/3

1/3 1/3

Figure: The cyclic-TASEP Markov

chain for n = 3.

Let p� be the probability of �
at stationarity.

In this example we see that

p123 = p231 = p312 and

p321 = p213 = p132.

From the balance equation

around 321 we get

p321

�
1

3
+ 1

3

�
= p123 · 1

3
.

Solving this gives

p321 = 1

9
, p123 = 2

9
.
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Example n = 3

321

231 312

213 132

123

1/3 1/3

1/3

1/3 1/3

1/3

1/3

1/3 1/3

1/9

2/9 2/9
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2/9

Figure: The cyclic-TASEP Markov

chain for n = 3.

Let p� be the probability of �
at stationarity.

In this example we see that

p123 = p231 = p312 and

p321 = p213 = p132.

From the balance equation

around 321 we get

p321
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1

3
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�
= p123 · 1

3
.

Solving this gives

p321 = 1

9
, p123 = 2

9
.
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For n = 4 we get

p4321 = 1

96
, p4312 = 3

96

p4132 = 3

96
, p4231 = 5

96

p4213 = 3

96
, p4123 = 9

96

Let w0 = n n � 1 . . . 2 1 be the reverse permutation.

Then pw0
= 1

2
, 1

9
, 1

96
, 1

2500
, . . .

Theorem (Ferrari-Martin ’07)

pw0
=

1

2
,
1

9
,

1

96
,

1

2500
, . . .

1Q
i

�
n

i

�

Theorem (Aas ’12, Conjectured by Lam ’11)

pid =
1

2
,
2

9
,

9

96
,

96

2500
, . . .

Q
i

�
n�1

i

�
Q

i

�
n

i

�
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Many results starting from this TASEP

This process has been studied from many perspectives by several

different authors: Angel, Amir, Valko, Ferrari, Martin, Lam, Williams,

Cantini, de Gier, Derrida, Ayyer, Corteel, Aas, Sjöstrand, De Sarkar,

Evans, Arita, Prolhac, Mallick, Mandelshtam, Kim, Haglund, Mason,

and probably others.
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Connection to random walks

01 2

01 2

12 00

21 0 12 0

21 0 12 0

21 0 12 0

21 0 12 0

'

A reduced random walk in the alcoves of the Ã2 arrangement.

The shown walk has reduced word · · · s1s0s2s0s1s2s0s2s1s0.

The thick lines divide V into Weyl chambers.

Theorem (Lam ’11)

The probability that the reduced walk get stuck in chamber � is p�.
The walk will a.s. tend to a certain direction ' in that chamber.
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Connection to random walks

01 2

01 2

12 00

21 0 12 0

21 0 12 0

21 0 12 0

21 0 12 0

'

2/9

1/9

1/9
1/9

2/9

2/9

A reduced random walk in the alcoves of the Ã2 arrangement.

The shown walk has reduced word · · · s1s0s2s0s1s2s0s2s1s0.

The thick lines divide V into Weyl chambers.

Theorem (Lam ’11)

The probability that the reduced walk get stuck in chamber � is p�.
The walk will a.s. tend to a certain direction ' in that chamber.
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Formula for the limiting directions

' may be computed using an irreducible and aperiodic Markov chain

on Weyl group W with stationary distribution {p(w) | w 2 W}.

Theorem (Lam ’15)

The limiting direction ' is given by

' =
1

Z

X

w2W :r✓w>w

p(w)w�1
�
✓_

�
,

where ✓ is the highest root of W and Z is a normalization factor.

Here r✓ denotes reflection in the hyperplane perpendicular to ✓, and

r✓w > w if `(r✓w) > `(w). The coroot ✓_ is

2✓

(✓, ✓)
.
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Correlations

Return to case of permutations.

Let ci,j := Prob(� = i j . . . ).

i\j 1 2 3 4

1 0 6 3 3

2 2 0 7 3

3 4 2 0 6

4 6 4 2 0

· 1

48

Theorem (Ayyer & L. ’16)

For any 1  i , j  n,

ci,j =

8
>>>>><

>>>>>:

i�j

n(n

2
)
, if i > j

0, if i = j

1

n2
+ i(n�i)

n2(n�1)
, if i = j � 1

1

n2
, if i < j � 1

Is needed to prove:

Theorem (Ayyer & L., Conjectured by Lam)

' =
P

1i<jn
(ei � ej) (the sum of all positive roots).
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Signed permutations

We now want to study the same problem for other Weyl groups.

Permutations with signs:

(
Bn

Cn

Permutations with an even number of signs: Dn

I will focus on Bn today.
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Alcoves and chambers

Simple roots of Bn: e1, e2 � e1, e3 � e2, . . . , en � en�1

and highest root en�1 + en

Alcoves: connected components of V \ ([H2HH)

Fundamental alcove Ao: alcove bounded by the hyperplanes

corresponding to simple & highest roots

x

y
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Lam’s reduced random walk

Definition (Lam ’15)

Begin at X0 = Ao. Given (X0,X1, . . . ,Xj), pick Xj+1 at random among

the alcoves adjacent to Xj , with the constraint that the hyperplane

separating Xj and Xj+1 has not been crossed.

A reduced random walk in B̃2 that stay in the fundamental chamber:
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Kac labels as weights

Type a0 a1 . . . ai . . . an�1 an

A 1 1 1 1 1

B 2 2 2 1 1

C 1 2 2 2 1

D 1 1 2 1 1

Type ǎ0 ǎ1 . . . ǎi . . . ǎn�1 ǎn

B̌ 1 2 2 1 1

Č 1 1 1 1 1

Table: Kac-labels
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B-multiTASEP

First site Bulk Last two sites

Transition Probability Transition Probability Transition Probability

k̄ ! k
1

n
m` ! `m

1

n

j i ! i j

1

2n

j i ! i j

j i ! i j

j i ! i j

i j ! j i

i j ! j i

i j ! j i

i j ! j i

Table: Transitions for the B-multiTASEP, where n  ` < m  n and

1  i < j , k  n.
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The Markov chain for B2

[1, 2]

[�1, 2] [2, 1]

[2,�1] [�2, 1]

[�2,�1] [1,�2]

[�1,�2]

Figure: The Markov chain for B2 as a multiTASEP on signed permutations.
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multiTASEP of Type B

Theorem

The limiting direction of Lam’s random walk on the alcoves of the affine

Weyl group of type Bn, with probability rates weighted by the

Kac-labels ai is given by

nX

i=1

(2i � 1)ei . again the sum of all positive roots

This is again proved using Lam’s Theorem and studying correlation.
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Correlations in Type B

i\j 4 3 2 1

4 0
1

32

1
64

1
64

3
1

224 0
19

448

1
64

2
2

224
1

224 0
11

224

1
3

224
2

224
1

224 0

1
4

224
3

224
1

32
0

2
5

224
3

56
0

1

224

3
13

224
0

1

112

3

224

4 0
3

224

5

224

3

112

Table: The probabiity of i , j in the last two positions for B4. The probability with

j and j in the last position is the same, so only half the table is shown.
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About the proofs

B-MultiTASEP

B-TASEP

Č-MultiTASEP

Č-TASEP

D⇤-TASEP

D-MultiTASEP

D-TASEP

k-colouring k-colouring k-colouring

↵⇤ = �⇤ = 0
↵ = � = 1

↵⇤ = 0,�⇤ = 1/2
↵⇤ = �⇤ = 1/2↵ = 1,� = 1/2
↵ = � = 1/2

C-MultiTASEP

C-TASEP

k-colouring

↵⇤ = �⇤ = 0
↵ = � = 1/2

B̌-MultiTASEP

B̌-TASEP

k-colouring

↵⇤ = 0,�⇤ = 1/2
↵ = 1/2,� = 1/2
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B-TASEP

First site Bulk Last two sites

Transition Probability Transition Probability Transition Probability

1 ! 1
1

n

11 ! 11

1

2n

11 ! 11

11 ! 11
1

n

01 ! 10

10 ! 01 01 ! 10

01 ! 10 10 ! 01

10 ! 01

Table: Transitions for the B-TASEP.
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D⇤-TASEP

All our TASEPs have a further lumping to the D⇤-TASEP with different

parameters, where on each site we have exactly one particle from the

set {⇤, 1, 0, 1} subject to the following:

the number of 0’s is fixed;

sites 1 and n can only be occupied by 0 and ⇤;

sites 2 through n � 1 can only be occupied by 1, 0 and 1.

First two sites Bulk Last two sites

Transition Probability Transition Probability Transition Probability

⇤1 ! ⇤1
↵

n � 1
11 ! 11

1

n � 1

1⇤ ! 1⇤ �

n � 1

⇤0 ! 01
↵⇤

n � 1
10 ! 01 0⇤ ! 10

�⇤
n � 1

01 ! ⇤0
1

n � 1
01 ! 10 10 ! 0⇤ 1

n � 1

Table: Transitions for the D⇤-TASEP.
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Two-row model

The stationary distribution of the D⇤-TASEP may be described in terms

of a Markov chain on certain two-row configurations (modification of a

model by Duchi and Schaeffer).

The two-row model lumps to the

D⇤-TASEP.

Example

Let b⌦⇤
n,n0

be the set of two-row configurations with n columns and n0

0-columns. For example,

b⌦⇤

3,1 =

(
0

0

1

1

⇤
⇤ ,

0

0

1

1

⇤
⇤ ,

⇤
⇤

0

0

⇤
⇤ ,

⇤
⇤

1

1

0

0
,
⇤
⇤

1

1

0

0

)

and

b⌦⇤

4,0 =

(
⇤
⇤

1

1

1

1

⇤
⇤ ,

⇤
⇤

1

1

1

1

⇤
⇤ ,

⇤
⇤

1

1

1

1

⇤
⇤ ,

⇤
⇤

1

1

1

1

⇤
⇤ ,

⇤
⇤

1

1

1

1

⇤
⇤

)
.

The transitions are tedious to describe.
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Using the two-row model

Let hi , ji denote the probability of a configuration ending in i , j .

Two-row configurations without 0’s are in bijection with bicolored

Motzkin paths and Dyck paths, so computing hi , ji in the

D⇤-TASEP reduces to counting paths with weights.

Although we don’t have enough information left to compute the

hi , ji in the original multiTASEPs, it aloows us e.g. to compute the

sum
nX

j=i+1

hj , ii � hj , ii+ hi , ji � hi , ji

Enough to determine the limiting direction for B̃n.
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Č-multiTASEP

I mention one last result

Theorem

The limiting direction of Lam’s random walk on the alcoves of the affine

Weyl group of type Cn, weighted by the dual Kac-labels ǎi is given by

nX

i=1

(2i + 1)ei . (the sum of positive roots is however

X

i

(2i)ei )
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Thanks for your attention!
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