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& : Different ways to shuffle a deck of cards

-V RN

Spacial motion (Diaconis, Pal, 2017)

Dovetail shuffle (Bayer, Diaconis, 1992)



#& : The random transposition shuffle

Method :

» Pick two cards uniformly and indepen-
dently;

» If different, interchange them;
» If they are the same card, do nothing.
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» Pick two cards uniformly and indepen-
dently;

» If different, interchange them;
» If they are the same card, do nothing.

Interpretation :
» Random walk on &,, with

n ifr=id

“9)
2/n?  if 7 is a transp.

P(o,01) = uy(r) = {

P : transition matrix
Urn : increment measure.

Cayley graph for n=3
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& : Distance to stationarity

Question : In which sense do we converge to uniformity?

v () : distribution of the walk after ¢ steps.
Définition

Distance to stationarity after ¢ steps :

d,,(#) := dpy (v, (¢), Unif,).

where for probability measures yp and v on G,

1
dTV(“’ V) ==

1
5 > (@) = (@)l = 5 di(,v).

geS,



& : Cutoff for random transpositions

Theorem (DIACONIS AND SHAHSHAHANI, 1981)

It takes %nln(n) steps to mix a deck of n cards by random transpositions.
For every 0<e<1,

1 1

n—+oo

That is what is called the cutoff phenomenon.



& : Cutoff for random transpositions
Theorem (DIACONIS AND SHAHSHAHANI, 1981)

It takes %nln(n) steps to mix a deck of n cards by random transpositions.
For every 0<e<1,

1 1

n—+oo

That is what is called the cutoff phenomenon.
More precisely, it takes %nln(n) + O(n) steps to mix.



& : Cutoff profile for random transpositions

Theorem (T., 2020)

For random transpositions, we have for every c € R,

d, (%nln(n) + cn) £(c):= dpy (Poiss (1 +e~%) , Poiss(1)).

n—+oo




& : Cutoff profile for random transpositions

Theorem (T., 2020)

For random transpositions, we have for every c € R,

f(c):= dpv (Poiss (1 +e %), Poiss(1)).

d, (%nln(n) + cn)

n—+oo

Comments :
» We call f the cutoff profile.
» Question asked by N. Berestycki at an AIM workshop in 2016.

» The other known profiles can be written in a similar form.



# : Some related results

» On random transpositions themselves
Cutoff result : Diaconis, Shahshahani, 1981, PTRF
Precise lower bound : Matthews, 1988, J. of Th. Prob.
Phase transition result : N. Beresticky, Durrett, 2006, PTRF
Probability of long cycles : Alon, Kozma, 2013, Duke
Strong stationary time : White, 2019
Cutoff profile : T., 2020, Ann. Prob.

» Generalisations to other conjugacy classes :
Cutoff for k-cycles : N. Beresticky, Schramm, Zeitouni, 2011, Ann.
Probd.
Cutoff for conjugacy-invariant walks on &, : N. Berestycki, Sengiil,
2014, PTRF
Profile for k-cycles : Nestoridi, Olesker-Taylor, 2021, PTRF

» Other generalisations :
Biaised random transpositions : Matheau-Raven, 2020
Quantum random transpositions : Freslon, T., Wang, 2021
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Q : The non-commutative Fourier transform

Using the Fourier transform : key point to study the walk.
Idea initialy due to Diaconis and Shahshahani.

Not the one on R, where for ¢ € R,

o) = fR F)e ¥ dx,

but instead the one of finite groups G, where for 1 € G,

fy=Y fl@p'e.
g€G

Inverse Fourier transform, isometry between Hilbert spaces, Parseval
identity.

Pierre-Loic Méliot, Representation Theory of Symmetric Groups, chap. 1.



@ : A method to prove a cutoff phenomenon on finite

groups

» Lower bound of the cutoff time (not a problem)

» The Diaconis-Shahshahani upper bound lemma:
Note that v, (¢) = u*, and let / = p! — Unif,,.

n
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Note that v, (¢) = u*, and let / = p! — Unif,,.

2

CcS ~ o~

4d,(t)” = ( > | (a)|) <nl Y f@TE Y AT (7))

0eS, 0eS, 16,
= Y dTr (;T:J(A)ﬁ;*?m)*).
}Leé;*

» For random transpositions : the increment measure y, is conjugacy
stable (i.e. 11,(0) = p,(non™1)), so each [i,;(1) is a multiple of the
identity matrix : fi,(1) =:s5,14,. We deduce :
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@ : A method to prove a cutoff phenomenon on finite

groups

» Lower bound of the cutoff time (not a problem)

» The Diaconis-Shahshahani upper bound lemma:
Note that v, (¢) = u*, and let / = p! — Unif,,.

2

CS Pars. T TP

4d,(t)” = ( > | (a)|) saly [P E Y daTr(FV/(W)Y)

€S, 0eG, 16,
= Y dTr (;T:J(A)ﬁ;*?m)*).
}Leé;*

» For random transpositions : the increment measure y, is conjugacy
stable (i.e. 11,(0) = p,(non™1)), so each [i,;(1) is a multiple of the
identity matrix : fi,(1) =:s5,14,. We deduce :

4d, (% < Y d3s%
Aea*
» s, : eigenvalue of multiplicity d% (of the transition matrix).



Q@ : A method to find cutoff profiles

Method:

» Apply the inverse Fourier transform on the finite group S, to the
function / = p;* — Unif,:

dr (-
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Q@ : A method to find cutoff profiles

Method:

» Apply the inverse Fourier transform on the finite group S, to the
function / = p;* — Unif,:

d ~
2d,()= Y If@l= Y | ¥ |GA|Tr( Wp' (@)
eSS, €Sy 1eG, '
_ 1 ey A *
T, & TR

» For random transpositions, y, is conjugacy stable, so we have

1
Zdn(t) = ; Z

roeG,

Y dis’ch(o)
Aeé\n*

» Understand which 1 matter, and the (complicated) terms ch’ (o).
» Generalised to reversible Markov C. (Nestordi, Olesker-Taylor, 2021).
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Q@ : Representations of the symmetric group

» Irreducible representations A of §,, — Young diagrams of size n.
(i.e. partitions A = (A1, Ag,...) of the integer n.)

Example: n =5.

ED:EDB:EDLE]&

6 D G G4q

» Definition: Let 1 = (11, A9,...) be a partition of n. Associated
truncated partition : Partition 1* := (19, 13,...). Example:

== B
T T B
A=G32,1) X =@1)
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1
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» Fix j € N and study together the partitions A with same A1 =n— .
» Eigenvalues (known by D& S). For 1 such that A1 =n—,
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n2 n
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S
n



Q@ : Ideas of the proof for random transpositions

» Starting point :

1
2dn(t) = _' Z

coe6,

Z d,{SﬁChA(U)
Aeé;*

» Fix j € N and study together the partitions A with same A1 =n— .
» Eigenvalues (known by D& S). For 1 such that A1 =n—,

_ n+2D;ag(/1):1_2_+O( 1)
n n

(D

S1 5|

n

» Multiplicities of eigenvalues (bound given by D& S: d; < (7 )da+),
(Hook-length formula),

- f-of2)



Q@ : Ideas of the proof for random transpositions

» Starting point :

1
2dn(t) = _' Z

coe6,

Z dﬂSﬁChA(U)
Aeé;*

» Fix j € N and study together the partitions A with same A1 =n— .
» Eigenvalues (known by D& S). For 1 such that A1 =n—,

_ n+2D;ag(/1):1_2_+O( 1)
n n

(D

S1 5|

n

» Multiplicities of eigenvalues (bound given by D& S: d; < (7 )da+),
(Hook-length formula),

- f-of2)

» "Eigenvectors" ch'(0) : complicated.
(Murnagham-Nakayama formula).
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dj-

Ao)= Y —ch'(0). 2
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@ : The polynomial convergence lemma

For j =1, let us define the weighted average of characters

Ao)= Y d—’fchﬂ(a). 2)

/leé\n :A1=n—

Lemma

Fix j = 1. Then for "almost all” permutations 0 € G,

A (o) =T (Fix(0)),

—1)
T(z)=z( Z.)( R

_ ]
br i 1!

where

"almost all" permutations = permutations with a cycle of length = ;.



@ : Consequence on the profile

We now can deal with dj,s) and ch(o).

we have for each ; at time ¢, = %nlog(n) +cn,

e—2 c

ch’(0)

te 1A n
,\Z dysych®(o) = ,\Z —’d,v
1S, i A1=n— 1eG, i A=n—; 7’

=e~2/°T (Fix(0)),

n

S0 We can rewrite

[e o]

Y e T (Fix(0))
=1

1
2d,(t.) = —
nlte) = — U€Z6n




@ : Consequence on the profile

We now can deal with dj,s) and ch(o).

we have for each ; at time ¢, = %nlog(n) +cn,

e—2 c

ch’(0)

te 1A n
,\Z dysych®(o) = ,\Z —’d,v
1S, i A1=n— 1eG, i A=n—; 7’

=e~2/°T (Fix(0)),

n

S0 We can rewrite

[e o]

Y e T (Fix(0))
=1

1
2d,(t.) = —
nlte) = — U€Z6n

Then simple computations and the fact that Fix(-) — Poiss(1) lead to

d,(t.) f(c):=drv (Poiss(1+e_2c),Poiss(1)).

n—+oo



@ : The Murnagham-Nakayama formula

Murnagham-Nakayama formula :
Gives an exact formula for the characters ch’(0) : we count how many
times we can cover the diagram A with ribbons corresponding to the cycle

structure of o.

Example 1:
cﬂ\%m (Lf'/ /1> =4

EDID :B:m@i’
4

44 +4



Q@ : Playing with the Murnagham-Nakayama formula

Example 2:

(ﬂ\%mm (%, 9 A4,4,1)

o e e o EE]EEZ T ™~

H - ~d e



Q@ : Playing with the Murnagham-Nakayama formula

Example 2:

(ﬂ\%mm (%, 9 A4,4,1)

o e e o EE]EEZ T ™~

H - ~d e

Question : How many elements in the first class?



Q@ : Playing with the Murnagham-Nakayama formula

Example 2:

3,2,21,1,1)

25

e © EE]EEZ T ™~

H - ~d e

Question : How many elements in the first class?

Answer : 6 = (}))(Y2). N; := number of i-cycles of 0.



Q@ : Playing with the Murnagham-Nakayama formula

Example 2:

25 (3,9, 1,,1)

T3 ~ W

VH‘" ] Dj N -t
Question : How many elements in the first class?
Answer : 6 = (}))(Y2). N; := number of i-cycles of 0.
Then we need to understand how to cover the truncated diagram 1* of

size j with small ribbons — Murnagham-Nakayama for diagrams of size
— characters of G ;.



Q@ : Playing with the Murnagham-Nakayama formula

Case
-As(0)=ch" *?(g) +ch" V(o)

o )

_ 2(Fix(a)

9 ) —2Fix(0) +1.

For larger ;’s, the formulas become rapidly more voluminous. For example

ch?=HLLLD(g) = 4 ]Zl +N3Nj + (]\272) —N4)
N
— 31 —N2N1 +N3)
N
- N.
+ 9 2)
-N;



¢ : Thank you for your attention!

dyv (Poiss (1+e™¢),Poiss(1))
dry (A (e7¢,1),.#(0,1))

dry (Meix* (—e™¢,0) * §,-,Meix " (0,0))



