CUTOFF PROFILE FOR RANDOM TRANSPOSITIONS

Lucas TEYSSIER

Universität Wien

BIRS Workshop on *Permutations and Probability*Banff, 2021

• : Different ways to shuffle a deck of cards

 $Spacial\ motion\ (Diaconis,\ Pal,\ 2017)$

 $Dovetail\ shuffle\ (Bayer,\ Diaconis,\ 1992)$

♠ : The random transposition shuffle

Method:

- Pick two cards uniformly and independently;
- ► If different, interchange them;
- ► If they are the same card, do nothing.

Method:

- Pick two cards uniformly and independently;
- ► If different, interchange them;
- ► If they are the same card, do nothing.

Interpretation:

ightharpoonup Random walk on \mathfrak{S}_n with

$$P(\sigma, \sigma \tau) = \mu_n(\tau) = \begin{cases} 1/n & \text{if } \tau = id \\ 2/n^2 & \text{if } \tau \text{ is a transp.} \end{cases}$$

P: transition matrix μ_n : increment measure.

♠: The random transposition shuffle

Method:

- Pick two cards uniformly and independently;
- ► If different, interchange them;
- ► If they are the same card, do nothing.

Interpretation:

▶ Random walk on \mathfrak{S}_n with

$$P(\sigma, \sigma \tau) = \mu_n(\tau) = \begin{cases} 1/n & \text{if } \tau = id \\ 2/n^2 & \text{if } \tau \text{ is a transp.} \end{cases}$$

P: transition matrix μ_n : increment measure.

Cayley graph for n=3

: Distance to stationarity

 ${\bf Question:}$ In which sense do we converge to uniformity?

Question: In which sense do we converge to uniformity?

 $v_n(t)$: distribution of the walk after t steps.

Définition

Distance to stationarity after t steps :

$$d_n(t) := d_{\text{TV}}(v_n(t), \text{Unif}_n).$$

where for probability measures μ and ν on \mathfrak{S}_n ,

$$d_{\text{TV}}(\mu, \nu) = \frac{1}{2} \sum_{\sigma \in \mathfrak{S}_n} |\mu(\sigma) - \nu(\sigma)| = \frac{1}{2} d_1(\mu, \nu).$$

: Cutoff for random transpositions

Theorem (DIACONIS AND SHAHSHAHANI, 1981)

It takes $\frac{1}{2}n\ln(n)$ steps to mix a deck of n cards by random transpositions. For every $0 < \epsilon < 1$,

$$d_n\left((1-\epsilon)\frac{1}{2}n\ln(n)\right)\xrightarrow[n\to+\infty]{}1\quad \&\quad d_n\left((1+\epsilon)\frac{1}{2}n\ln(n)\right)\xrightarrow[n\to+\infty]{}0$$

That is what is called the **cutoff phenomenon**.

: Cutoff for random transpositions

Theorem (DIACONIS AND SHAHSHAHANI, 1981)

It takes $\frac{1}{2}n\ln(n)$ steps to mix a deck of n cards by random transpositions. For every $0 < \epsilon < 1$,

$$d_n\left((1-\epsilon)\frac{1}{2}n\ln(n)\right)\xrightarrow[n\to+\infty]{}1\quad \&\quad d_n\left((1+\epsilon)\frac{1}{2}n\ln(n)\right)\xrightarrow[n\to+\infty]{}0$$

That is what is called the **cutoff phenomenon**.

More precisely, it takes $\frac{1}{2}n\ln(n) + \Theta(n)$ steps to mix.

Theorem (T., 2020)

For random transpositions, we have for every $c \in \mathbb{R}$,

$$d_n\left(\frac{1}{2}n\ln(n)+cn\right)\xrightarrow[n\to+\infty]{}f(c):=\mathrm{d_{TV}}\left(\mathrm{Poiss}\left(1+e^{-2c}\right),\mathrm{Poiss}(1)\right).$$

Theorem (T., 2020)

For random transpositions, we have for every $c \in \mathbb{R}$,

$$d_n\left(\frac{1}{2}n\ln(n)+cn\right)\xrightarrow[n\to+\infty]{}f(c):=\mathrm{d_{TV}}\left(\mathrm{Poiss}\left(1+e^{-2c}\right),\mathrm{Poiss}(1)\right).$$

Comments:

- \blacktriangleright We call f the **cutoff profile**.
- ▶ Question asked by N. Berestycki at an AIM workshop in 2016.
- ► The other known profiles can be written in a similar form.

: Some related results

► On random transpositions themselves

Cutoff result: Diaconis, Shahshahani, 1981, *PTRF* Precise lower bound: Matthews, 1988, *J. of Th. Prob.*

Phase transition result: N. Beresticky, Durrett, 2006, PTRF

Probability of long cycles : Alon, Kozma, 2013, Duke

Strong stationary time: White, 2019 Cutoff profile: T., 2020, *Ann. Prob.*

► Generalisations to other conjugacy classes :

Cutoff for k-cycles : N. Beresticky, Schramm, Zeitouni, 2011, Ann. Prob.

Cutoff for conjugacy-invariant walks on \mathfrak{S}_n : N. Berestycki, Şengül, 2014, PTRF

Profile for k-cycles : Nestoridi, Olesker-Taylor, 2021, PTRF

▶ Other generalisations:

Biaised random transpositions: Matheau-Raven, 2020 Quantum random transpositions: Freslon, T., Wang, 2021

Using the **Fourier transform**: **key point** to study the walk. Idea initialy due to **Diaconis and Shahshahani**.

Using the **Fourier transform**: **key point** to study the walk. Idea initialy due to **Diaconis and Shahshahani**.

Not the one on \mathbb{R} , where for $\xi \in \mathbb{R}$,

$$\hat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-i\xi x} dx,$$

Using the **Fourier transform**: **key point** to study the walk. Idea initially due to **Diaconis and Shahshahani**.

Not the one on \mathbb{R} , where for $\xi \in \mathbb{R}$,

$$\hat{f}(\boldsymbol{\xi}) = \int_{\mathbb{R}} f(x)e^{-i\boldsymbol{\xi}x} dx,$$

but instead the one of **finite groups** G, where for $\lambda \in \widehat{G}$,

$$\hat{f}(\lambda) = \sum_{g \in G} f(g) \rho^{\lambda}(g).$$

Using the **Fourier transform**: **key point** to study the walk. Idea initially due to **Diaconis and Shahshahani**.

Not the one on \mathbb{R} , where for $\xi \in \mathbb{R}$,

$$\hat{f}(\boldsymbol{\xi}) = \int_{\mathbb{R}} f(x)e^{-i\boldsymbol{\xi}x} dx,$$

but instead the one of **finite groups** G, where for $\lambda \in \widehat{G}$,

$$\hat{f}(\lambda) = \sum_{g \in G} f(g) \rho^{\lambda}(g).$$

Inverse Fourier transform, isometry between Hilbert spaces, Parseval identity.

Pierre-Loïc Méliot, $Representation\ Theory\ of\ Symmetric\ Groups,\ chap.\ 1.$

♡ : A method to prove a cutoff phenomenon on finite groups

- ► Lower bound of the cutoff time (not a problem)
- ► The Diaconis-Shahshahani upper bound lemma: Note that $v_n(t) = \mu_n^{*t}$, and let $f = \mu_n^{*t} - \text{Unif}_n$.

$$\begin{split} 4\mathrm{d}_{n}(t)^{2} &= \left(\sum_{\sigma \in \mathfrak{S}_{n}} |f(\sigma)|\right)^{2} \overset{CS}{\leq} n! \sum_{\sigma \in \mathfrak{S}_{n}} f(\sigma)^{2} \overset{Pars.}{=} \sum_{\lambda \in \widehat{\mathfrak{S}_{n}}} \mathrm{d}_{\lambda} \mathrm{Tr} \left(\widehat{f}(\lambda) \widehat{f}(\lambda)^{*}\right) \\ &= \sum_{\lambda \in \widehat{\mathfrak{S}_{n}}^{*}} \mathrm{d}_{\lambda} \mathrm{Tr} \left(\widehat{\mu_{n}^{*t}}(\lambda) \widehat{\mu_{n}^{*t}}(\lambda)^{*}\right). \end{split}$$

♡ : A method to prove a cutoff phenomenon on finite groups

- ► Lower bound of the cutoff time (not a problem)
- ► The Diaconis-Shahshahani upper bound lemma: Note that $v_n(t) = \mu_n^{*t}$, and let $f = \mu_n^{*t}$ – Unif_n.

$$4d_{n}(t)^{2} = \left(\sum_{\sigma \in \mathfrak{S}_{n}} |f(\sigma)|\right)^{2} \stackrel{CS}{\leq} n! \sum_{\sigma \in \mathfrak{S}_{n}} f(\sigma)^{2} \stackrel{Pars.}{=} \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}_{n}}} d_{\boldsymbol{\lambda}} \operatorname{Tr}\left(\widehat{f}(\boldsymbol{\lambda})\widehat{f}(\boldsymbol{\lambda})^{*}\right)$$
$$= \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}_{n}}^{*}} d_{\boldsymbol{\lambda}} \operatorname{Tr}\left(\widehat{\mu_{n}^{*t}}(\boldsymbol{\lambda})\widehat{\mu_{n}^{*t}}(\boldsymbol{\lambda})^{*}\right).$$

For random transpositions: the increment measure μ_n is **conjugacy** stable (i.e. $\mu_n(\sigma) = \mu_n(\eta \sigma \eta^{-1})$), so each $\widehat{\mu_n}(\lambda)$ is a **multiple of the** identity matrix: $\widehat{\mu_n}(\lambda) =: s_{\lambda} I_{d_{\lambda}}$. We deduce:

$$4 \mathbf{d}_n(t)^2 \leq \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}_n}^*} \mathbf{d}_{\boldsymbol{\lambda}}^2 s_{\boldsymbol{\lambda}}^{2t}.$$

♡ : A method to prove a cutoff phenomenon on finite groups

- ► Lower bound of the cutoff time (not a problem)
- ► The Diaconis-Shahshahani upper bound lemma: Note that $v_n(t) = \mu_n^{*t}$, and let $f = \mu_n^{*t} - \text{Unif}_n$.

$$4d_{n}(t)^{2} = \left(\sum_{\sigma \in \mathfrak{S}_{n}} |f(\sigma)|\right)^{2} \stackrel{CS}{\leq} n! \sum_{\sigma \in \mathfrak{S}_{n}} f(\sigma)^{2} \stackrel{Pars.}{=} \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}_{n}}} d_{\boldsymbol{\lambda}} \operatorname{Tr}\left(\widehat{f}(\boldsymbol{\lambda})\widehat{f}(\boldsymbol{\lambda})^{*}\right)$$
$$= \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}_{n}}^{*}} d_{\boldsymbol{\lambda}} \operatorname{Tr}\left(\widehat{\mu_{n}^{*t}}(\boldsymbol{\lambda})\widehat{\mu_{n}^{*t}}(\boldsymbol{\lambda})^{*}\right).$$

For random transpositions: the increment measure μ_n is **conjugacy stable** (i.e. $\mu_n(\sigma) = \mu_n(\eta \sigma \eta^{-1})$), so each $\widehat{\mu_n}(\lambda)$ is a **multiple of the identity matrix**: $\widehat{\mu_n}(\lambda) =: s_{\lambda} I_{d_{\lambda}}$. We deduce:

$$4\mathbf{d}_n(t)^2 \leq \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}_n}^*} \mathbf{d}_{\boldsymbol{\lambda}}^2 s_{\boldsymbol{\lambda}}^{2t}.$$

 $ightharpoonup s_{\lambda}$: eigenvalue of multiplicity d_{λ}^2 (of the transition matrix).

♡ : A method to find cutoff profiles

Method:

Apply the inverse Fourier transform on the **finite group** \mathfrak{S}_n to the function $f = \mu_n^{*t} - \mathrm{Unif}_n$:

$$2d_{n}(t) = \sum_{\sigma \in \mathfrak{S}_{n}} |f(\sigma)| = \sum_{\sigma \in \mathfrak{S}_{n}} \left| \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}_{n}}} \frac{d_{\boldsymbol{\lambda}}}{|\mathfrak{S}_{n}|} \operatorname{Tr}\left(\widehat{f}(\boldsymbol{\lambda}) \rho^{\boldsymbol{\lambda}}(\sigma)^{*}\right) \right|$$
$$= \frac{1}{|\mathfrak{S}_{n}|} \sum_{\sigma \in \mathfrak{S}_{n}} \left| \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}_{n}}^{*}} d_{\boldsymbol{\lambda}} \operatorname{Tr}\left(\widehat{\mu_{n}^{*t}}(\boldsymbol{\lambda}) \rho^{\boldsymbol{\lambda}}(\sigma)^{*}\right) \right|.$$

♡ : A method to find cutoff profiles

Method:

Apply the inverse Fourier transform on the **finite group** \mathfrak{S}_n to the function $f = \mu_n^{*t} - \mathrm{Unif}_n$:

$$\begin{aligned} 2\mathbf{d}_{n}(t) &= \sum_{\sigma \in \mathfrak{S}_{n}} |f(\sigma)| = \sum_{\sigma \in \mathfrak{S}_{n}} \left| \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}}_{n}} \frac{\mathbf{d}_{\boldsymbol{\lambda}}}{|\mathfrak{S}_{n}|} \mathrm{Tr} \left(\widehat{f}(\boldsymbol{\lambda}) \rho^{\boldsymbol{\lambda}}(\sigma)^{*} \right) \right| \\ &= \frac{1}{|\mathfrak{S}_{n}|} \sum_{\sigma \in \mathfrak{S}_{n}} \left| \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}}_{n}^{*}} \mathbf{d}_{\boldsymbol{\lambda}} \mathrm{Tr} \left(\widehat{\mu_{n}^{*t}}(\boldsymbol{\lambda}) \rho^{\boldsymbol{\lambda}}(\sigma)^{*} \right) \right|. \end{aligned}$$

For random transpositions, μ_n is conjugacy stable, so we have

$$2d_n(t) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \left| \sum_{\lambda \in \widehat{\mathfrak{S}_n}^*} d_{\lambda} s_{\lambda}^t \operatorname{ch}^{\lambda}(\sigma) \right|.$$

\heartsuit : A method to find cutoff profiles

Method:

Apply the inverse Fourier transform on the **finite group** \mathfrak{S}_n to the function $f = \mu_n^{*t} - \mathrm{Unif}_n$:

$$\begin{aligned} 2\mathrm{d}_{n}(t) &= \sum_{\sigma \in \mathfrak{S}_{n}} |f(\sigma)| = \sum_{\sigma \in \mathfrak{S}_{n}} \left| \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}_{n}}} \frac{\mathrm{d}_{\boldsymbol{\lambda}}}{|\mathfrak{S}_{n}|} \mathrm{Tr} \left(\widehat{f}(\boldsymbol{\lambda}) \rho^{\boldsymbol{\lambda}}(\sigma)^{*} \right) \right| \\ &= \frac{1}{|\mathfrak{S}_{n}|} \sum_{\sigma \in \mathfrak{S}_{n}} \left| \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}_{n}}^{*}} \mathrm{d}_{\boldsymbol{\lambda}} \mathrm{Tr} \left(\widehat{\mu_{n}^{*t}}(\boldsymbol{\lambda}) \rho^{\boldsymbol{\lambda}}(\sigma)^{*} \right) \right|. \end{aligned}$$

For random transpositions, μ_n is conjugacy stable, so we have

$$2d_n(t) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \left| \sum_{\lambda \in \widehat{\mathfrak{S}_n}^*} d_{\lambda} s_{\lambda}^t \operatorname{ch}^{\lambda}(\sigma) \right|.$$

- ▶ Understand which $\frac{\lambda}{\alpha}$ matter, and the (complicated) terms $\mathrm{ch}^{\lambda}(\sigma)$.
- ► Generalised to reversible Markov C. (Nestordi, Olesker-Taylor, 2021).

♡ : Representations of the symmetric group

► Irreducible representations λ of $\mathfrak{S}_n \longleftrightarrow$ Young diagrams of size n. (i.e. partitions $\lambda = (\lambda_1, \lambda_2, ...)$ of the integer n.)

♡ : Representations of the symmetric group

► Irreducible representations λ of $\mathfrak{S}_n \longleftrightarrow$ Young diagrams of size n. (i.e. partitions $\lambda = (\lambda_1, \lambda_2, ...)$ of the integer n.)

Example: n = 5.

\heartsuit : Representations of the symmetric group

► Irreducible representations λ of $\mathfrak{S}_n \longleftrightarrow$ Young diagrams of size n. (i.e. partitions $\lambda = (\lambda_1, \lambda_2, ...)$ of the integer n.)

Example: n = 5.

Definition: Let $\lambda = (\lambda_1, \lambda_2, ...)$ be a partition of *n*. Associated truncated partition: Partition $\lambda^* := (\lambda_2, \lambda_3, ...)$. **Example:**

$$\lambda = (+,2,1)$$

$$\lambda = (2,1)$$

► Starting point:

$$2d_n(t) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \left| \sum_{\lambda \in \widehat{\mathfrak{S}_n}^*} d_{\lambda} s_{\lambda}^t \operatorname{ch}^{\lambda}(\sigma) \right|.$$

♡: Ideas of the proof for random transpositions

► Starting point :

$$2d_n(t) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \left| \sum_{\lambda \in \widehat{\mathfrak{S}_n}^*} d_{\lambda} s_{\lambda}^t \operatorname{ch}^{\lambda}(\sigma) \right|.$$

► Fix $j \in \mathbb{N}$ and study together the partitions λ with same $\lambda_1 = n - j$.

♡: Ideas of the proof for random transpositions

Starting point :

$$2d_n(t) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \left| \sum_{\lambda \in \widehat{\mathfrak{S}_n}^*} d_{\lambda} s_{\lambda}^t \operatorname{ch}^{\lambda}(\sigma) \right|.$$

- ► Fix $j \in \mathbb{N}$ and study together the partitions λ with same $\lambda_1 = n j$.
- **Eigenvalues** (known by D& S). For λ such that $\lambda_1 = n j$,

$$s_{\lambda} = \frac{n + 2\operatorname{Diag}(\lambda)}{n^2} = 1 - \frac{2j}{n} + O\left(\frac{1}{n^2}\right). \tag{1}$$

► Starting point :

$$2\mathbf{d}_n(t) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \left| \sum_{\lambda \in \widehat{\mathfrak{S}_n}^*} \mathbf{d}_{\lambda} s_{\lambda}^t \mathbf{ch}^{\lambda}(\sigma) \right|.$$

- ► Fix $j \in \mathbb{N}$ and study together the partitions λ with same $\lambda_1 = n j$.
- **Eigenvalues** (known by D& S). For λ such that $\lambda_1 = n j$,

$$s_{\lambda} = \frac{n + 2\operatorname{Diag}(\lambda)}{n^2} = 1 - \frac{2j}{n} + O\left(\frac{1}{n^2}\right). \tag{1}$$

► Multiplicities of eigenvalues (bound given by D& S: $d_{\lambda} \le {n \choose \lambda_1} d_{\lambda^*}$), (Hook-length formula),

$$\mathbf{d}_{\lambda} = \frac{n^{j}}{j!} \mathbf{d}_{\lambda^{*}} \left(1 - O\left(\frac{1}{n}\right) \right).$$

► Starting point :

$$2\mathbf{d}_n(t) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \left| \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}_n}^*} \mathbf{d}_{\boldsymbol{\lambda}} s_{\boldsymbol{\lambda}}^t \mathbf{ch}^{\boldsymbol{\lambda}}(\sigma) \right|.$$

- ► Fix $j \in \mathbb{N}$ and study together the partitions λ with same $\lambda_1 = n j$.
- **Eigenvalues** (known by D& S). For λ such that $\lambda_1 = n j$,

$$s_{\lambda} = \frac{n + 2\operatorname{Diag}(\lambda)}{n^2} = 1 - \frac{2j}{n} + O\left(\frac{1}{n^2}\right). \tag{1}$$

► Multiplicities of eigenvalues (bound given by D& S: $d_{\lambda} \le {n \choose \lambda_1} d_{\lambda^*}$), (Hook-length formula),

$$\mathbf{d}_{\lambda} = \frac{n^{j}}{j!} \mathbf{d}_{\lambda^{*}} \left(1 - O\left(\frac{1}{n}\right) \right).$$

► "Eigenvectors" $ch^{\lambda}(\sigma)$: complicated. (Murnagham-Nakayama formula).

♡: The polynomial convergence lemma

For $j \ge 1$, let us define the *weighted average of characters*

$$A_{j}(\sigma) := \sum_{\lambda \in \widehat{\mathfrak{S}}_{n} : \lambda_{1} = n - j} \frac{d_{\lambda^{*}}}{j!} \operatorname{ch}^{\lambda}(\sigma).$$
 (2)

♡: The polynomial convergence lemma

For $j \ge 1$, let us define the *weighted average of characters*

$$A_{j}(\sigma) := \sum_{\lambda \in \widehat{\mathfrak{S}_{n}} : \lambda_{1} = n - j} \frac{\mathsf{d}_{\lambda^{*}}}{j!} \mathsf{ch}^{\lambda}(\sigma). \tag{2}$$

Lemma

Fix $j \ge 1$. Then for "almost all" permutations $\sigma \in \mathfrak{S}_n$,

$$A_j(\boldsymbol{\sigma}) = T_j(\operatorname{Fix}(\boldsymbol{\sigma})),$$

where

$$T_j(z) = \sum_{i=0}^{j} {z \choose j-i} \frac{(-1)^i}{i!}.$$

♡: The polynomial convergence lemma

For $j \ge 1$, let us define the *weighted average of characters*

$$A_{j}(\sigma) := \sum_{\lambda \in \widehat{\mathfrak{S}_{n}} : \lambda_{1} = n - j} \frac{\mathbf{d}_{\lambda^{*}}}{j!} \operatorname{ch}^{\lambda}(\sigma).$$
 (2)

Lemma

Fix $j \ge 1$. Then for "almost all" permutations $\sigma \in \mathfrak{S}_n$,

$$A_{i}(\sigma) = T_{i}(\operatorname{Fix}(\sigma)),$$

where

$$T_j(z) = \sum_{i=0}^{j} {z \choose j-i} \frac{(-1)^i}{i!}.$$

"almost all" permutations = permutations with a cycle of length $\geq j$.

\heartsuit : Consequence on the profile

We now can deal with d_{λ} , s_{λ} and $\operatorname{ch}^{\lambda}(\sigma)$.

we have for each *j* at time $t_c = \frac{1}{2}n\log(n) + cn$,

$$\sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}_n} : \lambda_1 = n - j} d_{\boldsymbol{\lambda}} s_{\boldsymbol{\lambda}}^{t_c} \operatorname{ch}^{\boldsymbol{\lambda}}(\sigma) \approx \sum_{\boldsymbol{\lambda} \in \widehat{\mathfrak{S}_n} : \lambda_1 = n - j} \frac{n^j}{j!} d_{\boldsymbol{\lambda}^*} \frac{e^{-2jc}}{n^j} \operatorname{ch}^{\boldsymbol{\lambda}}(\sigma)$$
$$= e^{-2jc} T_j(\operatorname{Fix}(\sigma)),$$

so we can rewrite

$$2d_n(t_c) \approx \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \left| \sum_{j=1}^{\infty} e^{-2jc} T_j(\operatorname{Fix}(\sigma)) \right|.$$

\heartsuit : Consequence on the profile

We now can deal with d_{λ} , s_{λ} and $\operatorname{ch}^{\lambda}(\sigma)$.

we have for each j at time $t_c = \frac{1}{2}n\log(n) + cn$,

$$\sum_{\lambda \in \widehat{\mathfrak{S}}_n : \lambda_1 = n - j} d_{\lambda} s_{\lambda}^{t_c} \operatorname{ch}^{\lambda}(\sigma) \approx \sum_{\lambda \in \widehat{\mathfrak{S}}_n : \lambda_1 = n - j} \frac{n^j}{j!} d_{\lambda^*} \frac{e^{-2jc}}{n^j} \operatorname{ch}^{\lambda}(\sigma)$$
$$= e^{-2jc} T_j(\operatorname{Fix}(\sigma)),$$

so we can rewrite

$$2\mathbf{d}_n(t_c) \approx \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \left| \sum_{j=1}^{\infty} e^{-2jc} T_j(\operatorname{Fix}(\sigma)) \right|.$$

Then simple computations and the fact that $Fix(\cdot) \rightarrow Poiss(1)$ lead to

$$d_n(t_c) \xrightarrow[n \to +\infty]{} f(c) := d_{\text{TV}} \left(\text{Poiss} \left(1 + e^{-2c} \right), \text{Poiss}(1) \right).$$

♡: The Murnagham-Nakayama formula

Murnagham-Nakayama formula:

Gives an exact formula for the characters $\operatorname{ch}^{\lambda}(\sigma)$: we count how many times we can cover the diagram λ with ribbons corresponding to the cycle structure of σ .

Example 1:

Example 2:

Example 2:

 ${\bf Question:}$ How many elements in the first class?

Example 2:

Question: How many elements in the first class?

Answer: $6 = \binom{N_1}{1} \binom{N_2}{1}$. $N_i :=$ number of *i*-cycles of σ .

Example 2:

Question: How many elements in the first class?

Answer: $6 = \binom{N_1}{1} \binom{N_2}{1}$. $N_i :=$ number of *i*-cycles of σ .

Then we need to understand how to cover the truncated diagram λ^* of size j with small ribbons \to Murnagham-Nakayama for diagrams of size j \to characters of \mathfrak{S}_j .

Case j=2.

$$\begin{aligned} 2! \cdot A_2(\sigma) &= \operatorname{ch}^{(n-2,2)}(\sigma) + \operatorname{ch}^{(n-2,1,1)}(\sigma) \\ &= \left(N_2 + \binom{N_1}{2} - N_1 \right) + \left(-N_2 + \binom{N_1}{2} - N_1 + 1 \right) \\ &= 2 \binom{\operatorname{Fix}(\sigma)}{2} - 2\operatorname{Fix}(\sigma) + 1. \end{aligned}$$

For larger j's, the formulas become rapidly more voluminous. For example

$$\operatorname{ch}^{(n-4,1,1,1,1)}(\sigma) = + \left(\binom{N_1}{4} + N_3 N_1 + \binom{N_2}{2} - N_4 \right)$$
$$- \left(\binom{N_1}{3} - N_2 N_1 + N_3 \right)$$
$$+ \left(\binom{N_1}{2} - N_2 \right)$$
$$- N_1$$
$$+ 1.$$

♦ : Thank you for your attention!

$$\mathrm{d_{TV}}\left(\mathrm{Poiss}\left(1+e^{-c}\right),\mathrm{Poiss}(1)\right)$$

$$\mathrm{d_{TV}}\left(\mathcal{N}\left(e^{-c},1\right),\mathcal{N}\left(0,1\right)\right)$$

$$\mathrm{d_{TV}}\big(\mathrm{Meix}^+\left(-e^{-c},0\right)*\delta_{e^{-c}},\mathrm{Meix}^+(0,0)\big)$$