The number of occurrences of patterns and constrained patterns in a random permutation

Svante Janson

BIRS, Banff (virtually, alas) 23 September, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Patterns in a permutation

Let \mathfrak{S}_n be the set of permutations of $[n] := \{1, \ldots, n\}$.

If $\sigma = \sigma_1 \cdots \sigma_k \in \mathfrak{S}_k$ and $\pi = \pi_1 \cdots \pi_n \in \mathfrak{S}_n$, then an occurrence of σ in π is a subsequence $\pi_{i_1} \cdots \pi_{i_k}$, with $1 \leq i_1 < \cdots < i_k \leq n$, that has the same relative order as σ . σ is called a *pattern*.

Example: 31425 is an occurence of 213 in 31425

Let $occ_{\sigma}(\pi)$ be the number of occurrences of σ in π . For example, $occ_{21}(\pi)$ is the number of inversions in π .

A permutation π avoids a pattern σ if there is no occurrence of σ in π , i.e., if $occ_{\sigma}(\pi) = 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

General problem

Let π be a random permutation, drawn uniformly from all permutations with a given (large) length *n* in some given class of permutations.

Let σ be a fixed (small) permutation.

Problem Study the random variable $occ_{\sigma}(\pi)$. In particular, find its asymptotic distribution as $n \to \infty$.

Example Take $\sigma = 21$. What is the asymptotic distribution of the number of inversions in a random π ?

Remark

First order properties of $occ_{\sigma}(\pi)$ are closely connected with permuton limits. (In particular, when there is convergence in distrstribution to a random permuton limit.)

Today's talk will not discuss this. We will look at some cases where $occ_{\sigma}(\pi)$ is concentrated and study second order properties, more precisely we show asymptotically normal fluctuations around the mean for these cases. (Permuton limits are trivial in the examples discussed today.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The class of permutations considered here is often (but not always) a *pattern class*, i.e., the class of all permutations that avoid one or several given patterns.

Examples

312 Knuth, *The Art of Computer Programming, vol. 1*321 Tarjan (1972)
{2431, 4231} West (1995)
321; 312; 231; 132; {2413, 3142}; {1342, 1324}; {4231, 3412};
1342 Stanley, *Enumerative Combinatorics,* Exercises 6.19 x, y, ee, ff, ii, oo, xx; 6.25 g; 6.39 k, l, m; 6.47 a; 6.48.
{2413, 3142} (separable permutations) Bassino, Bouvel, Féray, Gerin, Pierrot (2018).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bóna (2004)

Remark

Many other properties of random permutations from a pattern class have been studied by a number of authors. For example:

consecutive patterns, descents, major index, number of fixed points, position of fixed points, exceedances, longest increasing subsequence, shape and distribution of individual values π_i .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

For $occ_{\sigma}(\pi)$, many permutation classes have been treated, by myself and others.

(I was convinced by Igor Pak that no general results for all pattern classes are possible.)

Today only a few that can be treated by a simple method: *U-statistics* (with some twists).

Unrestricted permutations

As a background, consider random permutations without restrictions.

Theorem (Bóna (2007, 2010), Janson, Nakamura and Zeilberger (2015))

Consider a random permutation $\pi_n \in \mathfrak{S}_n$. Then $\operatorname{occ}_{\sigma}(\pi_n)$ is asymptotically normally distributed, for any σ : if $k := |\sigma|$ then

$$\frac{\operatorname{occ}_{\sigma}(\boldsymbol{\pi}_n) - n^k/k!^2}{n^{k-1/2}} \stackrel{\mathrm{d}}{\longrightarrow} \mathsf{N}(0,\gamma_{\sigma}^2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for some constant $\gamma_{\sigma} > 0$.

Proof.

A random permutation π_n can be obtained by taking i.i.d. random variables $X_1, \ldots, X_n \sim U(0, 1)$ and considering their ranks. Then

$$\operatorname{occ}_{\sigma}(\boldsymbol{\pi}_n) = \sum_{i_1 < \cdots < i_m} f(X_{i_1}, \ldots, X_{i_m})$$

for a suitable (indicator) function f.

This sum is a U-statistic, and the result follows by general results Hoeffding (1948).

Example

The number of inversions is

$$\operatorname{occ}_{21}(\pi_n) = \sum_{i_1 < i_2} \mathbf{1}\{X_{i_1} > X_{i_2}\}.$$

U-statistics

A U-statistic is a sum

$$S_n = S_n(f) = \sum_{i_1 < \cdots < i_m} f(X_{i_1}, \ldots, X_{i_m})$$

where X_1, \ldots, X_n is an i.i.d. sequence of random variables. and f is a measurable function.

 X_i may take values in any measurable space. For example, X_i may be real-valued, vectors, or random permutations.

Traditionally (Hoeffding, 1948), f is supposed to be symmetric (equivalently, the sum is taken over all distinct i_1, \ldots, i_m). In combinatorics, I usually need the asymmetric version above.

The asymmetric case can be reduced to the symmetric as follows: Let Y_1, \ldots, Y_n be uniform random variables on [0, 1], independent of (X_i) and each other, and define $Z_i := (X_i, Y_i)$. Let

$$F(Z_1,...,Z_m) := \sum_{\pi \in \mathfrak{S}_m} f(X_{\pi(1)},...,X_{\pi(m)}) \mathbf{1}\{Y_{\pi(1)} < \cdots < Y_{\pi(m)}\}$$

Then $S_n(F)$ is a symmetric U-statistic, and

 $S_n(F) \stackrel{\mathrm{d}}{=} S_n(f).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Hoeffding, 1948) Let $\mathbb{E} |f(X_1, ..., X_m)|^2 < \infty$. Then

$$\frac{S_n - \binom{n}{m}\mu}{n^{m-1/2}} \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0,\gamma^2),$$

where

$$\mu = \mathbb{E} f(X_1, \ldots, X_m)$$

and

 $\gamma^2 \ge 0.$

(Explicit formula, but omitted today.)

Degenerate cases

If $\gamma^2 = 0$, then we get non-normal limits with another normalization. Typically an infinite sum of squares of normal variables. (Higher degeneracies lead to higher-degree polynomials.)

Such cases typically do not occur, but they are easily constructed by taking linear combinations.

Example

 $\operatorname{occ}_{123}(\pi) + \operatorname{occ}_{231}(\pi) + \operatorname{occ}_{312}(\pi) - \operatorname{occ}_{132}(\pi) - \operatorname{occ}_{213}(\pi) - \operatorname{occ}_{321}(\pi).$

In fact, the space of non-trivial linear combinations of $\operatorname{occ}_{\sigma}(\pi)$, $\sigma \in \mathfrak{S}_k$, has dimension k! - 1. The space of normal limits has dimension $(k - 1)^2$, so the space of degenerate linear combinations has dimension $k! - 1 - (k - 1)^2$. (See further Even-Zohar, 2020.)

Hoeffding's proof

Hoeffding's proof is based on a projection method: Assume $\mathbb{E} F(X_1, \ldots, X_m) = 0$. Define

 $f_i(X_i) = \mathbb{E}[f(X_1,\ldots,X_m) \mid X_i].$

Approximate $f(X_1, \ldots, X_m)$ by $f_1(X_1) + \cdots + f_m(X_m)$. The resulting sum is, at least in the symmetric case, asymptotically normal by the standard central limit theorem. The error has small variance and can be ignored. QED

 $\gamma^2 = 0 \iff f_i(X_i) = 0$ a.s. for every $i = 1, \dots, m$.

Variations: vincular patterns

A *vincular pattern* is a pattern where some entries are marked, and we only count occurrences where a marked entry is adjacent to the next one.

Example

The vincular pattern 2*13 counts triples (i, i + 1, j) with i + 1 < jand $\pi_{i+1} < \pi_i < \pi_j$.

In particular, marking every element means that we count only substrings (consecutive patterns) $\pi_i \pi_{i+1} \cdots \pi_{i+m-1}$ that have the right order. (Bóna 2010).

Variations: vincular patterns

A *vincular pattern* is a pattern where some entries are marked, and we only count occurrences where a marked entry is adjacent to the next one.

Example

The vincular pattern 2*13 counts triples (i, i + 1, j) with i + 1 < jand $\pi_{i+1} < \pi_i < \pi_j$.

In particular, marking every element means that we count only substrings (consecutive patterns) $\pi_i \pi_{i+1} \cdots \pi_{i+m-1}$ that have the right order. (Bóna 2010).

More general constraints: gaps at most d, or exactly d.

The marks in a vincular pattern in σ group the entries in *blocks*. (Example: 2*13 has the two blocks 2*1 and 3.)

Theorem (Hofer, 2016)

For any vincular pattern σ with b blocks,

$$\frac{S_n - \frac{n^b}{b!} \mu}{n^{b-1/2}} \stackrel{\mathrm{d}}{\longrightarrow} \mathsf{N}(0, \gamma^2),$$

where $\gamma^2 > 0$ unless σ has length 1.

Let again $(X_i)_1^n$ be i.i.d. uniform U(0,1) random variables, and let $\pi \in \mathfrak{S}_n$ be the corresponding permutation.

In the example 2^*13 above, define $Y_i := (X_i, X_{i+1}) \in \mathbb{R}^2$. Then

$$\operatorname{occ}_{\sigma}(\pi) = \sum_{i,j:i+1 < j} f(Y_i, Y_j)$$

for a suitable f. This is, up to a negligible error (viz., terms with j = i + 1), a *U*-statistic of order 2 based on (Y_i).

Let again $(X_i)_1^n$ be i.i.d. uniform U(0,1) random variables, and let $\pi \in \mathfrak{S}_n$ be the corresponding permutation.

In the example 2^*13 above, define $Y_i := (X_i, X_{i+1}) \in \mathbb{R}^2$. Then

$$\operatorname{occ}_{\sigma}(\pi) = \sum_{i,j:i+1 < j} f(Y_i, Y_j)$$

for a suitable f. This is, up to a negligible error (viz., terms with j = i + 1), a U-statistic of order 2 based on (Y_i). However, the sequence (Y_i) is not i.i.d. !

A D N A 目 N A E N A E N A B N A C N

Let again $(X_i)_1^n$ be i.i.d. uniform U(0,1) random variables, and let $\pi \in \mathfrak{S}_n$ be the corresponding permutation.

In the example 2^*13 above, define $Y_i := (X_i, X_{i+1}) \in \mathbb{R}^2$. Then

$$\operatorname{occ}_{\sigma}(\pi) = \sum_{i,j:i+1 < j} f(Y_i, Y_j)$$

for a suitable f. This is, up to a negligible error (viz., terms with j = i + 1), a U-statistic of order 2 based on (Y_i). However, the sequence (Y_i) is not i.i.d. !

A D N A 目 N A E N A E N A B N A C N

No problem!

Let again $(X_i)_1^n$ be i.i.d. uniform U(0,1) random variables, and let $\pi \in \mathfrak{S}_n$ be the corresponding permutation.

In the example 2^*13 above, define $Y_i := (X_i, X_{i+1}) \in \mathbb{R}^2$. Then

$$\operatorname{occ}_{\sigma}(\pi) = \sum_{i,j:i+1 < j} f(Y_i, Y_j)$$

for a suitable f. This is, up to a negligible error (viz., terms with j = i + 1), a U-statistic of order 2 based on (Y_i). However, the sequence (Y_i) is not i.i.d. !

No problem! The sequence is 1-dependent, and this is enough for the central limit theorem (Orey, 1958), and Hoeffding's proof can be modified. (Janson, 2021) (In general *m*-dependence is enough.)

Degenerate cases

New possibilities for degeneracy with vincular patterns. Example

 $\operatorname{occ}_{1^*3^*2}(\pi) + \operatorname{occ}_{2^*3^*1}(\pi) - \operatorname{occ}_{2^*1^*3}(\pi) - \operatorname{occ}_{3^*1^*2}(\pi) \in \{0, \pm 1\}.$

Not completely explored!

I have found a condition for non-degeneracy, which for example shows that for a single σ of length \geq 2, the asymptotic variance $\gamma^2 > 0$ as claimed above.

The trick is to find an encoding of the permutations in a given class such that the number of occurrences of some pattern σ can be written as a *U*-statistic.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The trick is to find an encoding of the permutations in a given class such that the number of occurrences of some pattern σ can be written as a *U*-statistic.

Possible only for some permutation classes!

The trick is to find an encoding of the permutations in a given class such that the number of occurrences of some pattern σ can be written as a *U*-statistic.

Possible only for some permutation classes!

Let $\mathfrak{S}_n(\tau_1, \ldots, \tau_k)$ denote the set of permutations in \mathfrak{S}_n that avoid τ_1, \ldots, τ_k .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Avoiding {132, 312}

Theorem Let $m \ge 2$ and $\sigma \in \mathfrak{S}_m(132, 312)$. If π_n is random in $\mathfrak{S}_n(132, 312)$. then as $n \to \infty$,

$$\frac{\operatorname{occ}_{\sigma}(\pi_n) - 2^{1-m} n^m / m!}{n^{m-1/2}} \stackrel{\mathrm{d}}{\longrightarrow} N(0, \gamma^2).$$

Proof.

A permutation π belongs to the class $\mathfrak{S}_*(132, 312)$ if and only if every entry π_i is either a maximum or a minimum. [Simion and Schmidt, 1995]. Encode $\pi \in \mathfrak{S}_n(132, 312)$ by a sequence $\xi_2, \ldots, \xi_n \in \{\pm 1\}^{n-1}$, where $\xi_j = 1$ if π_j is a maximum in π , and $\xi_j = -1$ if π_j is a minimum. This is a bijection. Hence the code for a uniformly random π_n has ξ_2, \ldots, ξ_n i.i.d. with $\mathbb{P}(\xi_j = 1) = \mathbb{P}(\xi_j = -1) = \frac{1}{2}$. Let $\sigma \in \mathfrak{S}_m(132, 312)$ have the code η_2, \ldots, η_m . Then $\pi_{i_1} \cdots \pi_{i_m}$ is an occurrence of σ in π if and only if $\xi_{i_j} = \eta_j$ for $2 \le j \le m$. Consequently, $\operatorname{occ}_{\sigma}(\pi_n)$ is a *U*-statistic

$$\operatorname{occ}_{\sigma}(\boldsymbol{\pi}_n) = \sum_{i_1 < \cdots < i_m} f(\xi_{i_1}, \ldots, \xi_{i_m}),$$

where

$$f(\xi_1,\ldots,\xi_m):=\prod_{j=2}^m\mathbf{1}[\xi_j=\eta_j].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The result follows from Hoeffding's theorem.

Example

For the number of inversions, we have $\sigma = 21$ and m = 2, $\eta_2 = -1$. A calculation yields $\mu = \frac{1}{2}$ and $\gamma^2 = \frac{1}{12}$, and thus

$$\frac{\operatorname{occ}_{21}(\pi_n) - n^2/4}{n^{3/2}} \xrightarrow{\mathrm{d}} N(0, \frac{1}{12}),$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Block decompositions of permutations

If $\sigma \in \mathfrak{S}_m$ and $\tau \in \mathfrak{S}_n$, their (direct) sum $\sigma \oplus \tau \in \mathfrak{S}_{m+n}$ is defined by letting τ act on [m+1, m+n] in the natural way; more formally, $\sigma \oplus \tau = \pi \in \mathfrak{S}_{m+n}$ where $\pi_i = \sigma_i$ for $1 \le i \le m$, and $\pi_{j+m} = \tau_j + m$ for $1 \le j \le n$.

A permutation $\pi \in \mathfrak{S}_*$ is *decomposable* if $\pi = \sigma \oplus \tau$ for some $\sigma, \tau \in \mathfrak{S}_*$, and *indecomposable* otherwise; we also call an indecomposable permutation a *block*.

It is easy to see that any permutation $\pi \in \mathfrak{S}_*$ has a unique decomposition $\pi = \pi_1 \oplus \cdots \oplus \pi_\ell$ into indecomposable permutations (blocks) π_1, \ldots, π_ℓ ; we call these the *blocks of* π .

・ロト・日本・モト・モー シック

 $\{231, 312\}$ -avoiding permutations

Theorem

Let $\sigma \in \mathfrak{S}_*(231, 312)$ have b blocks. Then, for a random $\pi_n \in \mathfrak{S}_n(231, 312)$,

$$\frac{\operatorname{occ}_{\sigma}(\pi_n) - n^b/b!}{n^{b-1/2}} \stackrel{\mathrm{d}}{\longrightarrow} \mathsf{N}(0,\gamma^2)$$

for some constant γ^2 .

Example The number of inversions.

$$\frac{\operatorname{occ}_{21}(\pi_n)-n}{n^{1/2}} \stackrel{\mathrm{d}}{\longrightarrow} N(0,6).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

- $\pi \in \mathfrak{S}_*(231, 312) \iff$ each block is decreasing: $\ell(\ell 1) \cdots 21$ [Simion and Schmidt, 1995].
- If the block lengths of π_n are ℓ₁,..., ℓ_m, and the block lengths of σ are s₁,..., s_b, then

$$\operatorname{occ}_{\sigma}(\pi_n) = \sum_{i_1 < \cdots < i_b} \prod_{j=1}^b \binom{\ell_{i_j}}{s_j}.$$

 If the block lengths of π_n are ℓ₁,..., ℓ_m, then ∑_i ℓ_i = n, and (ℓ₁,..., ℓ_m) is a uniformly random composition of n. Thus, the block lengths ℓ₁,..., ℓ_m can be realized as the first elements, up to sum n, of an i.i.d. sequence L₁, L₂,... of random variables with a Geometric Ge(1/2) distribution.
 I.e., define N(n) := max{k : ∑₁^k L_i ≥ n}. Then the block lengths can be taken as (L₁,..., L_{N(n)}) (with the last term truncated if necessary). Hence, up to a negligible error (from the last block),

$$\operatorname{occ}_{\sigma}(\boldsymbol{\pi}_n) = \sum_{1 \leq i_1 < \cdots < i_b \leq N(n)} \prod_{j=1}^b {L_{i_j} \choose s_j}.$$

This is a *U*-statistic, based on the i.i.d. sequence (L_i) .

But the sum is up to the random N(n) and not to a fixed n.

Hence, up to a negligble error (from the last block),

$$\operatorname{occ}_{\sigma}(\boldsymbol{\pi}_n) = \sum_{1 \leq i_1 < \cdots < i_b \leq N(n)} \prod_{j=1}^b \binom{L_{i_j}}{s_j}.$$

This is a U-statistic, based on the i.i.d. sequence (L_i).
But the sum is up to the random N(n) and not to a fixed n.
No problem!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hence, up to a negligble error (from the last block),

$$\operatorname{occ}_{\sigma}(\boldsymbol{\pi}_n) = \sum_{1 \leq i_1 < \cdots < i_b \leq \mathcal{N}(n)} \prod_{j=1}^b \binom{L_{i_j}}{s_j}.$$

This is a *U*-statistic, based on the i.i.d. sequence (L_i) .

But the sum is up to the random N(n) and not to a fixed n.

► No problem!

Renewal theory shows that Hoeffding's proof can be adapted. (Janson, 2018)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

{231, 312, 321}-avoiding permutations

Theorem

Let $\sigma \in \mathfrak{S}_*(231, 312, 321)$ have b blocks. Then, for a random $\pi_n \in \mathfrak{S}_n(231, 312, 321)$,

$$\frac{\mathsf{pcc}_{\sigma}(\boldsymbol{\pi}_n) - \mu n^b}{n^{b-1/2}} \stackrel{\mathrm{d}}{\longrightarrow} \mathsf{N}(0,\gamma^2)$$

for some constants μ, γ .

Example The number of inversions. $\sigma = 21$. b = 1. A calculation yields $\mu = (3 - \sqrt{5})/2$ and $\gamma^2 = 5^{-3/2}$.

$$\frac{\operatorname{occ}_{21}(\pi_n) - \frac{3-\sqrt{5}}{2}n}{n^{1/2}} \stackrel{\mathrm{d}}{\longrightarrow} N(0, 5^{-3/2}).$$

A D N A 目 N A E N A E N A B N A C N

Proof.

- ▶ $\pi \in \mathfrak{S}_*(231, 312, 321) \iff$ each block is of the type 1 or 21. [Simion and Schmidt, 1995].
- Thus π is determined by its sequence of block lengths ℓ_1, \ldots, ℓ_m with $\ell_i \in \{1, 2\}$ and $\sum_i \ell_i = n$.
- Let p := (√5 − 1)/2, the golden ratio, so that p + p² = 1. Let X₁, X₂,... be an i.i.d. sequence of random variables with

$$\mathbb{P}(X_i=1)=p, \qquad \mathbb{P}(X_i=2)=p^2.$$

Let $S_k := \sum_{i=1}^k X_i$ and $N(n) := \min\{k : S_k \ge n\}$. Then, the sequence ℓ_1, \ldots, ℓ_B of block lengths of a uniformly random permutation $\pi_n \in \mathfrak{S}_*(231, 312, 321)$ has the same distribution as $(X_1, \ldots, X_{N(n)})$ conditioned on $S_{N(n)} = n$. Consequently, $\operatorname{occ}_{\sigma}(\pi_n)$ can be expressed as a *U*-statistic based on $X_1, \ldots, X_{N(n)}$, conditioned as above. This is almost as in the preceding case.

But in this case, we also condition on the event $S_{N(n)} = n$, i.e., that some sum S_k exactly equals n.

This is almost as in the preceding case.

But in this case, we also condition on the event $S_{N(n)} = n$, i.e., that some sum S_k exactly equals n.

No problem!

This is almost as in the preceding case.

But in this case, we also condition on the event $S_{N(n)} = n$, i.e., that some sum S_k exactly equals n.

No problem!

More renewal theory shows that Hoeffding's proof can be adapted to this case too. (Janson, 2018)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Forest permutations = $\{321, 3412\}$ -avoiding

If π is a permutation of [n], then its *permutation graph* G_{π} is the graph with an edge *ij* for each inversion (i, j) in π .

Acan and Hitczenko (2016) define π to be a *tree permutation* [*forest permutation*] if G_{π} is a tree [forest].

{forest permutations} = $\mathfrak{S}(321, 3412)$.

A permutation is a forest permutation \iff every block is a tree permutation.

Define a random tree permutation (of random length) τ such that, for every tree permutation σ ,

$$\mathbb{P}(\boldsymbol{\tau}=\sigma)=\boldsymbol{p}^{|\sigma|},$$

with $p = (3 - \sqrt{5})/2$ chosen such that $\sum_{\sigma} \mathbb{P}(\tau = \sigma) = 1$.

Let τ_1, τ_2, \ldots , be i.i.d. random tree permutations with this distribution. Let $S_k := \sum_{i=1}^k |\tau_k|$, the total length of the k first, and let $N(n) := \min\{k : S_k \ge n\}$. Then, conditioned on $S_{N(n)} = n$, the sum $\pi := \tau_1 \oplus \cdots \oplus \tau_{N(n)}$ is a uniformly distributed forest permutation of length n.

Let $\sigma = \sigma_1 \oplus \ldots, \oplus \sigma_b$ be a forest permutation, decomposed into tree permutations σ_i . Then, up to a small error,

$$\operatorname{occ}_{\sigma}(\pi) = \sum_{i_1 < \cdots < i_b} \prod_{j=1}^b \operatorname{occ}_{\sigma_j}(\tau_{i_j}).$$

This is a *U*-statistic based on the i.i.d. sequence (τ_i) .

Theorem

For a random forest permutation

$$\frac{\operatorname{occ}_{\sigma}(\boldsymbol{\pi}_n) - \mu n^b}{n^{b-1/2}} \stackrel{\mathrm{d}}{\longrightarrow} \mathsf{N}(0,\gamma^2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for some constants μ, γ .

Proof.

Hoeffding's theorem, with modifications as above.

Random tree permutations

"Theorem". For a random tree permutation π_n of length n, and a tree permutation σ ,

$$\frac{\operatorname{occ}_{\sigma}(\boldsymbol{\pi}_n) - \mu n^b}{n^{b-1/2}} \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0,\gamma^2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for some $b \geq 1$ and constants μ, γ .

Proof.

To be completed next week.

Random tree permutations

"Theorem". For a random tree permutation π_n of length n, and a tree permutation σ ,

$$\frac{\operatorname{occ}_{\sigma}(\boldsymbol{\pi}_n) - \mu n^b}{n^{b-1/2}} \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0,\gamma^2)$$

for some $b \geq 1$ and constants μ, γ .

Proof.

To be completed next week.

Uses a coding of tree permutations by a sequence of runs of 0's or 1's, which again permits $occ_{\sigma}(\pi_n)$ to be written as a *U*-statistic. This time we have to take a vincular *U*-statistic, and also use renewal theory as above. Hence the two variations of *U*-statistics are combined. Hoeffding's proof can still be adapted. (I believe.)