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Patterns in a permutation

Let Sn be the set of permutations of [n] := {1, . . . , n}.

If σ = σ1 · · ·σk ∈ Sk and π = π1 · · ·πn ∈ Sn, then an occurrence
of σ in π is a subsequence πi1 · · ·πik , with 1 ≤ i1 < · · · < ik ≤ n,
that has the same relative order as σ. σ is called a pattern.

Example: 31425 is an occurence of 213 in 31425

Let occσ(π) be the number of occurrences of σ in π.
For example, occ21(π) is the number of inversions in π.

A permutation π avoids a pattern σ if there is no occurence of σ in
π, i.e., if occσ(π) = 0.



General problem

Let π be a random permutation, drawn uniformly from all
permutations with a given (large) length n in some given class of
permutations.

Let σ be a fixed (small) permutation.

Problem
Study the random variable occσ(π).
In particular, find its asymptotic distribution as n→∞.

Example

Take σ = 21.
What is the asymptotic distribution of the number of inversions in
a random π?



Remark

First order properties of occσ(π) are closely connected with
permuton limits. (In particular, when there is convergence in
distrstribution to a random permuton limit.)

Today’s talk will not discuss this. We will look at some cases
where occσ(π) is concentrated and study second order properties,
more precisely we show asymptotically normal fluctuations around
the mean for these cases. (Permuton limits are trivial in the
examples discussed today.)



The class of permutations considered here is often (but not
always) a pattern class, i.e., the class of all permutations that
avoid one or several given patterns.

Examples

312 Knuth, The Art of Computer Programming, vol. 1
321 Tarjan (1972)
{2431, 4231} West (1995)
321; 312; 231; 132; {2413, 3142}; {1342, 1324}; {4231, 3412};
1342 Stanley, Enumerative Combinatorics, Exercises 6.19 x, y, ee,
ff, ii, oo, xx; 6.25 g; 6.39 k, l, m; 6.47 a; 6.48.
{2413, 3142} (separable permutations) Bassino, Bouvel, Féray,
Gerin, Pierrot (2018).

Bóna (2004)



Remark

Many other properties of random permutations from a pattern
class have been studied by a number of authors. For example:

consecutive patterns, descents, major index, number of fixed
points, position of fixed points, exceedances, longest increasing
subsequence, shape and distribution of individual values πi .



For occσ(π), many permutation classes have been treated, by
myself and others.

(I was convinced by Igor Pak that no general results for all pattern
classes are possible.)

Today only a few that can be treated by a simple method:
U-statistics (with some twists).



Unrestricted permutations

As a background, consider random permutations without
restrictions.

Theorem (Bóna (2007, 2010), Janson, Nakamura and
Zeilberger (2015))

Consider a random permutation πn ∈ Sn. Then occσ(πn) is
asymptotically normally distributed, for any σ: if k := |σ| then

occσ(πn)− nk/k!2

nk−1/2
d−→ N(0, γ2σ)

for some constant γσ > 0.



Proof.
A random permutation πn can be obtained by taking i.i.d. random
variables X1, . . . ,Xn ∼ U(0, 1) and considering their ranks. Then

occσ(πn) =
∑

i1<···<im

f
(
Xi1 , . . . ,Xim

)
for a suitable (indicator) function f .
This sum is a U-statistic, and the result follows by general results
Hoeffding (1948).

Example

The number of inversions is

occ21(πn) =
∑
i1<i2

1{Xi1 > Xi2}.



U-statistics

A U-statistic is a sum

Sn = Sn(f ) =
∑

i1<···<im

f
(
Xi1 , . . . ,Xim

)
where X1, . . . ,Xn is an i.i.d. sequence of random variables. and f
is a measurable function.

Xi may take values in any measurable space. For example, Xi may
be real-valued, vectors, or random permutations.

Traditionally (Hoeffding, 1948), f is supposed to be symmetric
(equivalently, the sum is taken over all distinct i1, . . . , im). In
combinatorics, I usually need the asymmetric version above.



The asymmetric case can be reduced to the symmetric as follows:
Let Y1, . . . ,Yn be uniform random variables on [0, 1], independent
of (Xi ) and each other, and define Zi := (Xi ,Yi ). Let

F (Z1, ...,Zm) :=
∑
π∈Sm

f (Xπ(1), . . . ,Xπ(m))1{Yπ(1) < · · · < Yπ(m)}

Then Sn(F ) is a symmetric U-statistic, and

Sn(F )
d
= Sn(f ).



Theorem (Hoeffding, 1948)

Let E |f (X1, . . . ,Xm)|2 <∞. Then

Sn −
(n
m

)
µ

nm−1/2
d−→ N(0, γ2),

where
µ = E f (X1, . . . ,Xm)

and
γ2 ≥ 0.

(Explicit formula, but omitted today.)



Degenerate cases

If γ2 = 0, then we get non-normal limits with another
normalization. Typically an infinite sum of squares of normal
variables. (Higher degeneracies lead to higher-degree polynomials.)

Such cases typically do not occur, but they are easily constructed
by taking linear combinations.

Example

occ123(π)+occ231(π)+occ312(π)−occ132(π)−occ213(π)−occ321(π).

In fact, the space of non-trivial linear combinations of occσ(π),
σ ∈ Sk , has dimension k!− 1. The space of normal limits has
dimension (k − 1)2, so the space of degenerate linear combinations
has dimension k!− 1− (k − 1)2. (See further Even-Zohar, 2020.)



Hoeffding’s proof

Hoeffding’s proof is based on a projection method:
Assume EF (X1, . . . ,Xm) = 0. Define

fi (Xi ) = E
[
f (X1, . . . ,Xm) | Xi

]
.

Approximate f (X1, . . . ,Xm) by f1(X1) + · · ·+ fm(Xm). The
resulting sum is, at least in the symmetric case, asymptotically
normal by the standard central limit theorem.
The error has small variance and can be ignored.
QED

γ2 = 0 ⇐⇒ fi (Xi ) = 0 a.s. for every i = 1, . . . ,m.



Variations: vincular patterns

A vincular pattern is a pattern where some entries are marked, and
we only count occurrences where a marked entry is adjacent to the
next one.

Example
The vincular pattern 2∗13 counts triples (i , i + 1, j) with i + 1 < j
and πi+1 < πi < πj .

In particular, marking every element means that we count only
substrings (consecutive patterns) πiπi+1 · · ·πi+m−1 that have the
right order. (Bóna 2010).

More general constraints: gaps at most d , or exactly d .
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The marks in a vincular pattern in σ group the entries in blocks.
(Example: 2∗13 has the two blocks 2∗1 and 3.)

Theorem (Hofer, 2016)

For any vincular pattern σ with b blocks,

Sn − nb

b!µ

nb−1/2
d−→ N(0, γ2),

where γ2 > 0 unless σ has length 1.



My proof.

Let again (Xi )
n
1 be i.i.d. uniform U(0, 1) random variables, and let

π ∈ Sn be the corresponding permutation.
In the example 2∗13 above, define Yi := (Xi ,Xi+1) ∈ R2. Then

occσ(π) =
∑

i ,j :i+1<j

f (Yi ,Yj)

for a suitable f . This is, up to a negligible error (viz., terms with
j = i + 1), a U-statistic of order 2 based on (Yi ).

However, the sequence (Yi ) is not i.i.d. !

No problem!
The sequence is 1-dependent, and this is enough for the central
limit theorem (Orey, 1958), and Hoeffding’s proof can be modified.
(Janson, 2021)
(In general m-dependence is enough.)
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Degenerate cases

New possibilities for degeneracy with vincular patterns.

Example

occ1∗3∗2(π) + occ2∗3∗1(π)− occ2∗1∗3(π)− occ3∗1∗2(π) ∈ {0,±1}.

Not completely explored!

I have found a condition for non-degeneracy, which for example
shows that for a single σ of length ≥ 2, the asymptotic variance
γ2 > 0 as claimed above.



Other permutation classes

The trick is to find an encoding of the permutations in a given
class such that the number of occurrences of some pattern σ can
be written as a U-statistic.

Possible only for some permutation classes!

Let Sn(τ1, . . . , τk) denote the set of permutations in Sn that
avoid τ1, . . . , τk .
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Avoiding {132, 312}

Theorem
Let m ≥ 2 and σ ∈ Sm(132, 312). If πn is random in
Sn(132, 312). then as n→∞,

occσ(πn)− 21−mnm/m!

nm−1/2
d−→ N

(
0, γ2

)
.

Proof.
A permutation π belongs to the class S∗(132, 312) if and only if
every entry πi is either a maximum or a minimum.
[Simion and Schmidt, 1995].
Encode π ∈ Sn(132, 312) by a sequence ξ2, . . . , ξn ∈ {±1}n−1,
where ξj = 1 if πj is a maximum in π, and ξj = −1 if πj is a
minimum. This is a bijection. Hence the code for a uniformly
random πn has ξ2, . . . , ξn i.i.d. with P(ξj = 1) = P(ξj = −1) = 1

2 .



Let σ ∈ Sm(132, 312) have the code η2, . . . , ηm. Then πi1 · · ·πim is
an occurrence of σ in π if and only if ξij = ηj for 2 ≤ j ≤ m.
Consequently, occσ(πn) is a U-statistic

occσ(πn) =
∑

i1<···<im

f
(
ξi1 , . . . , ξim

)
,

where

f
(
ξ1, . . . , ξm

)
:=

m∏
j=2

1[ξj = ηj ].

The result follows from Hoeffding’s theorem.



Example

For the number of inversions, we have σ = 21 and m = 2,
η2 = −1. A calculation yields µ = 1

2 and γ2 = 1
12 , and thus

occ21(πn)− n2/4

n3/2
d−→ N

(
0, 1

12

)
,



Block decompositions of permutations

If σ ∈ Sm and τ ∈ Sn, their (direct) sum σ ⊕ τ ∈ Sm+n is defined
by letting τ act on [m + 1,m + n] in the natural way; more
formally, σ ⊕ τ = π ∈ Sm+n where πi = σi for 1 ≤ i ≤ m, and
πj+m = τj + m for 1 ≤ j ≤ n.

A permutation π ∈ S∗ is decomposable if π = σ ⊕ τ for some
σ, τ ∈ S∗, and indecomposable otherwise; we also call an
indecomposable permutation a block.

It is easy to see that any permutation π ∈ S∗ has a unique
decomposition π = π1 ⊕ · · · ⊕ π` into indecomposable
permutations (blocks) π1, . . . , π`; we call these the blocks of π.



{231, 312}-avoiding permutations

Theorem
Let σ ∈ S∗(231, 312) have b blocks. Then, for a random
πn ∈ Sn(231, 312),

occσ(πn)− nb/b!

nb−1/2
d−→ N(0, γ2)

for some constant γ2.

Example The number of inversions.

occ21(πn)− n

n1/2
d−→ N(0, 6).



Proof.

I π ∈ S∗(231, 312) ⇐⇒ each block is decreasing:
`(`− 1) · · · 21 [Simion and Schmidt, 1995].

I If the block lengths of πn are `1, . . . , `m, and the block
lengths of σ are s1, . . . , sb, then

occσ(πn) =
∑

i1<···<ib

b∏
j=1

(
`ij
sj

)
.

I If the block lengths of πn are `1, . . . , `m, then
∑

i `i = n, and
(`1, . . . , `m) is a uniformly random composition of n.
Thus, the block lengths `1, . . . , `m can be realized as the first
elements, up to sum n, of an i.i.d. sequence L1, L2, . . . of
random variables with a Geometric Ge(1/2) distribution.
I.e., define N(n) := max{k :

∑k
1 Li ≥ n}. Then the block

lengths can be taken as (L1, . . . , LN(n)) (with the last term
truncated if necessary).



I Hence, up to a negligble error (from the last block),

occσ(πn) =
∑

1≤i1<···<ib≤N(n)

b∏
j=1

(
Lij
sj

)
.

This is a U-statistic, based on the i.i.d. sequence (Li ).

But the sum is up to the random N(n) and not to a fixed n.

I No problem!
Renewal theory shows that Hoeffding’s proof can be adapted.
(Janson, 2018)
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{231, 312, 321}-avoiding permutations

Theorem
Let σ ∈ S∗(231, 312, 321) have b blocks. Then, for a random
πn ∈ Sn(231, 312, 321),

occσ(πn)− µnb

nb−1/2
d−→ N(0, γ2)

for some constants µ, γ.

Example The number of inversions. σ = 21. b = 1. A calculation
yields µ = (3−

√
5)/2 and γ2 = 5−3/2.

occ21(πn)− 3−
√
5

2 n

n1/2
d−→ N

(
0, 5−3/2

)
.



Proof.

I π ∈ S∗(231, 312, 321) ⇐⇒ each block is of the type 1 or 21.
[Simion and Schmidt, 1995].

I Thus π is determined by its sequence of block lengths
`1, . . . , `m with `i ∈ {1, 2} and

∑
i `i = n.

I Let p := (
√

5− 1)/2, the golden ratio, so that p + p2 = 1.
Let X1,X2, . . . be an i.i.d. sequence of random variables with

P(Xi = 1) = p, P(Xi = 2) = p2.

Let Sk :=
∑k

i=1 Xi and N(n) := min{k : Sk ≥ n}. Then, the
sequence `1, . . . , `B of block lengths of a uniformly random
permutation πn ∈ S∗(231, 312, 321) has the same distribution
as (X1, . . . ,XN(n)) conditioned on SN(n) = n.
Consequently, occσ(πn) can be expressed as a U-statistic
based on X1, . . . ,XN(n), conditioned as above.



I This is almost as in the preceding case.

But in this case, we also condition on the event SN(n) = n,
i.e., that some sum Sk exactly equals n.

I No problem!
More renewal theory shows that Hoeffding’s proof can be
adapted to this case too. (Janson, 2018)



I This is almost as in the preceding case.

But in this case, we also condition on the event SN(n) = n,
i.e., that some sum Sk exactly equals n.

I No problem!

More renewal theory shows that Hoeffding’s proof can be
adapted to this case too. (Janson, 2018)



I This is almost as in the preceding case.

But in this case, we also condition on the event SN(n) = n,
i.e., that some sum Sk exactly equals n.

I No problem!
More renewal theory shows that Hoeffding’s proof can be
adapted to this case too. (Janson, 2018)



Forest permutations = {321, 3412}-avoiding

If π is a permutation of [n], then its permutation graph Gπ is the
graph with an edge ij for each inversion (i , j) in π.

Acan and Hitczenko (2016) define π to be a tree permutation
[forest permutation] if Gπ is a tree [forest].

{forest permutations} = S(321, 3412).

A permutation is a forest permutation ⇐⇒ every block is a tree
permutation.



Define a random tree permutation (of random length) τ such that,
for every tree permutation σ,

P(τ = σ) = p|σ|,

with p = (3−
√

5)/2 chosen such that
∑

σ P(τ = σ) = 1.

Let τ 1, τ 2, . . . , be i.i.d. random tree permutations with this
distribution. Let Sk :=

∑k
i=1 |τ k |, the total length of the k first,

and let N(n) := min{k : Sk ≥ n}. Then, conditioned on SN(n) = n,
the sum π := τ 1 ⊕ · · · ⊕ τN(n) is a uniformly distributed forest
permutation of length n.



Let σ = σ1 ⊕ . . . ,⊕σb be a forest permutation, decomposed into
tree permutations σi . Then, up to a small error,

occσ(π) =
∑

i1<···<ib

b∏
j=1

occσj (τ ij ).

This is a U-statistic based on the i.i.d. sequence (τ i ).

Theorem
For a random forest permutation

occσ(πn)− µnb

nb−1/2
d−→ N(0, γ2)

for some constants µ, γ.

Proof.
Hoeffding’s theorem, with modifications as above.



Random tree permutations

“Theorem”. For a random tree permutation πn of length n, and a
tree permutation σ,

occσ(πn)− µnb

nb−1/2
d−→ N(0, γ2)

for some b ≥ 1 and constants µ, γ.

Proof.
To be completed next week.

Uses a coding of tree permutations by a sequence of runs of 0’s or
1’s, which again permits occσ(πn) to be written as a U-statistic.
This time we have to take a vincular U-statistic, and also use
renewal theory as above.
Hence the two variations of U-statistics are combined.
Hoeffding’s proof can still be adapted. (I believe.)
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