A transcendental dynamical degree

Jeffrey Diller

Unversity of Notre Dame

BIRS Algebraic Dynamics, Difference and Differential Equations
November 17, 2021

Joint work with Jason Bell, Mattias Jonsson, and Holly Krieger

Degrees of one variable rational maps

Let f(z) = P(z)/Q(z) be a rational map of a complex variable z.

- The *degree* of f is the integer deg $f := \max\{\deg P, \deg Q\}$;
- Alternatively, $\deg(f) = \#f^{-1}(z)$, for any point $z \in \mathbb{P}^1$ in the Riemann sphere.
- Hence $\deg(f^n) = (\deg f)^n$ for all $n \in \mathbb{Z}_{>0}$

Rational maps of more variables

A rational map $f: \mathbb{P}^k \dashrightarrow \mathbb{P}^k$ is one given (in affine coordinates) by $f(x_1, \ldots, x_k) = (f_1, \ldots, f_k)$, where each component f_j is rational in x_1, \ldots, x_k .

- Alternatively, f is given in homogeneous coordinates by $f = [F_0, \ldots, F_k]$ where F_j are homogeneous polynomials in x_0, \ldots, x_k with deg F_j independent of j.
- Set $deg(f) := deg F_j = the$ (first) degree of f.
- Warning 1: $\deg(f)$ is not the topological degree of f. Instead $\deg(f) = \deg f^{-1}(H_1)$, where $H_1 \subset \mathbb{P}^k$ is a hyperplane.
- Warning 2: unlike k=1, rational maps need not be open or even well-defined everywhere when $k \ge 2$. Let I(f) denote the (codimension ≥ 2) 'indeterminate set' of f.

The first dynamical degree

Proposition

If $f : \mathbb{P}^k \longrightarrow \mathbb{P}^k$ is rational, then $\deg(f^{n+m}) \leq \deg(f^m) \deg(f^n)$. Hence the first dynamical degree

$$\lambda(f) := \lim \deg(f^n)^{1/n} \in [1, \deg(f)].$$

exists.

Strict inequality can hold in this proposition and $\lambda(f)$ need *not* be an integer.

Problem

How do we compute $\lambda(f)$? What are it's possible values?

Why care?

 $\lambda(f)$ is a measure of the complexity of iterates of f. If $p \in \mathbb{P}^k$ is a rational point, i.e. in homogeneous coordinates $p = [x_0, x_1, x_2]$, where $x_0, x_1, x_2 \in \mathbb{Z}$ have no common prime factors, and we let $\|p\| := \max |x_j|$ then

$$\lambda_{arith}(f,p) := \limsup (\log ||f^n(p)||)^{1/n} \le \lambda(f).$$

Might hope that equality holds for typical p and f.

This idea is sometimes used in e.g.s to compute $\lambda(f)$.

 $\lambda(f)$ and other dynamical degrees also control the topological entropy of f.

Bonus slide: Results from smooth dynamics

Let $f: M \to M$ be a C^{∞} map on a compact smooth manifold. Topological entropy $h_{top}(f) \ge \text{logarithm of:}$

- (Misiurewicz-Przytycki) the topological degree $d_{top}(f)$ of f.
- (Manning) the spectral radius $\rho(f_*)$ of $f_*: H_1(M,\mathbb{R}) \to H_1(M,\mathbb{R})$.
- (Yomdin) the spectral radius of $f_*: H_*(M, \mathbb{R}) \to H_*(M, \mathbb{R})$ acting on *all* homology groups of M.

In any case, $e^{h_{top}(f)}$ is bounded below by the magnitude of an eigenvalue of an integer matrix.

Bonus slide: All the dynamical degrees

The *jth degree* of a rational map $f: \mathbb{P}^k \dashrightarrow \mathbb{P}^k$ is the quantity

$$d_j(f) := (f^{-1}(H_j) \cdot H_{n-j}),$$

where $H_j \subset \mathbb{P}^k$ is a general codimension j subspace. The jth dynamical degree is $\lambda_j(f) := \lim_{n \to \infty} d_j(f^n)^{1/n}$.

Theorem (Gromov, Dinh-Sibony)

$$h_{top}(f) \leq \log \max_{1 \leq j \leq k} \lambda_j(f).$$

Remark: equality is known to hold in many cases.

Cases

Endomorphisms: $f: \mathbb{P}^k \to \mathbb{P}^k$ with $I(f) = \emptyset$. Then $\lambda(f) = \deg(f)$.

Monomial maps: (Lin, Favre-Wulcan) $x \mapsto x^A := (x^{A_1}, \dots, x^{A_k})$ where $A \in \mathsf{Mat}_{k \times k}(\mathbb{Z})$ is a matrix with rows A_j . Then

$$\lambda = \rho(A),$$

where $\rho(A) = |\text{leading eigenvalue of } A|$ is the spectral radius.

Plane polynomial maps: (Favre-Jonsson) $f = (f_1, f_2)$, where f_j are polynomials. Then $\lambda(f)$ is a quadratic integer. Recently generalized to higher dimensions by Dang-Favre.

Plane birational maps: (D-Favre) f is invertible. Then $\lambda(f)$ is an algebraic integer.

More about dynamical degrees

Let $X \to \mathbb{P}^k$ be obtained by blowing up. Can lift $f: \mathbb{P}^k \dashrightarrow \mathbb{P}^k$ to get $f: X \dashrightarrow X$. Say f is algebraically stable on X if $\forall n \in \mathbb{Z}_{\geq 0}$,

$$(f^*)^n = (f^n)^* : \operatorname{Pic}(X) \to \operatorname{Pic}(X).$$

Proposition

If f is algebraically stable on X, then $\lambda = \rho(f^*)$.

Proposition (Fornæss-Sibony)

When k = 2, f fails to be algebraically stable on X iff there exists a complex curve $C \subset X$ such that $f^n(C) \in I(f)$ for some n > 0.

Blowing up your problems

Theorem (D-Favre)

If $f: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ is birational, then there exists a blowup $X \to \mathbb{P}^2$ such that $f: X \dashrightarrow X$ is algebraically stable.

 \exists more recent proofs by Lonjou-Urech and Birkett.

Theorem (Bonifant-Fornæss)

The set of all possible first dynamical degrees λ is **countable**.

Monomial maps again

Theorem (Favre)

If $A \in \mathsf{Mat}_{2 \times 2}(\mathbb{Z})$ has eigenvalues $\zeta, \bar{\zeta} \in \mathbb{C}$ such that $\frac{\mathsf{arg}\,\zeta}{2\pi} \notin \mathbb{Q}$, then $x \mapsto x^A$ is not algebraically stable on any blowup $X \to \mathbb{P}^2$.

Idea of the proof: $x \mapsto x^A$ restricts to an endomorphism of $\mathbb{C}^* \times \mathbb{C}^*$. Suffices to consider 'toric' blowups $X \to \mathbb{P}^2$.

'Poles' $C_\sigma\subset X\setminus(\mathbb{C}^*)^2$ are indexed by rational rays $\sigma\subset\mathbb{R}^2$ and map forward according to

$$C_{\sigma} \mapsto C_{A\sigma}$$
.

.

... plus an involution

All monomial maps preserve the rational two form $\frac{dx_1 \wedge dx_2}{x_1x_2}$. Converse isn't true. E.g. the involution

$$g:(x_1,x_2)\mapsto \left(x_1\frac{x_1-x_2-1}{1-x_1-x_2},x_2\frac{x_2-x_1-1}{1-x_1-x_2}\right)$$

Theorem (D-Lin)

If $f: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ preserves $\frac{dx_1 \wedge dx_2}{x_1 x_2}$, then there exists a homogeneous, piecewise linear covering $A_f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 \setminus \{0\}$ such that if $X \to \mathbb{P}^2$ is toric and $C_\sigma \subset X$ is a pole, then $f(C_\sigma) = C_{A_f(\sigma)}$.

Can check $A_g = id$. Hence for $f(x) := g(x^A)$, we have $A_f = A$; thus f is 'unstabilizable' whenever x^A is.

A power series formula

Theorem (Bell-D-Jonsson)

Let ζ be a Gaussian integer with $\frac{\arg \zeta}{2\pi} \notin \mathbb{Q}$, $A = \begin{pmatrix} \operatorname{Re} \zeta & -\operatorname{Im} \zeta \\ \operatorname{Im} \zeta & \operatorname{Re} \zeta \end{pmatrix}$, and $f(x) := g(x^A)$. Then $t = \lambda(f)^{-1}$ is the unique positive solution of

$$\Delta(t) := \sum_{n=1}^{\infty} \deg(x^{A^n}) t^n = 1.$$

Hence $\lambda(f) > \rho(A)$ is no longer an eigenvalue of A.

Proposition

In the theorem,

$$\deg(x^{A^n}) = \max_{\gamma \in \Gamma} \operatorname{Re} \gamma \zeta^n,$$

where $\Gamma = \{-2, \pm 2i, 1 + \pm 2i\}$ is independent of A.

The transcendence result

Theorem (Bell-D-Jonsson)

If t>0 is within the radius of convergence of $\Delta(t)$, then $\Delta(t)$ and t can't both be algebraic.

Corollary

 $f = g(x^A)$ has transcendental first dynamical degree.

Note that f is *not* invertible; its topological degree is $|\det A| \neq 1$.

Proof of transcendence

For $j \in \mathbb{N}$, let $\gamma(j) \in \Gamma$ be the element that maximizes $\operatorname{Re} \gamma \zeta^j$. If ζ^n is nearly real, then $\gamma(j)$ is nearly *n*-periodic.

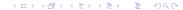
For real $t \in (0, |\zeta|^{-1})$ write $\alpha = t\zeta^{-1}$. Then $\Delta(\alpha) = \text{Re}\,\Phi(\alpha)$, where

$$\Phi(z) = \sum \gamma(j)z^j$$

is very well-approximated by $\Phi_n(z) = (1-z^n)^{-1} \sum_{j=1}^n \gamma(j) z^j$. Indeed

$$|1-z^n|^2\operatorname{Re}(\Phi(z)-\Phi_n(z))=\sum_{j>n}(\gamma(j)-\gamma(j-n))z^j,$$

where most j > n are *n*-regular, i.e. $\gamma(j) = \gamma(j - n)$.



Proof of transcendence

Lemma

Suppose that the continued fraction expansion of $\frac{\arg \zeta}{2\pi}$ has unbounded coefficients. Then for any C>1, there exist arbitrarily large n>0 such that all $j\in(n,Cn]$ are n-regular. So

$$0 < |1 - \alpha^n|^2 \operatorname{Re}(\Phi(\alpha) - \Phi_n(\alpha)) \lesssim \alpha^{Cn}$$

Now assume to get a contradiction that α and $\Delta(\alpha) = \text{Re}\,\Phi(\alpha)$ lie in a number field $K \hookrightarrow \bar{\mathbb{Q}}$ (also assumed to contain e.g. Γ).

Theorem (Evertse. Sort of.)

Fix a finite subset $\Gamma \subset K$, positive integers ℓ , D and $\epsilon > 0$. If x_1, \ldots, x_ℓ are polynomials in $\alpha, \bar{\alpha}$ with coefficients in Γ and total degree $D = \sum \deg x_i$, then there exist B', r > 0 such that

$$|x_1 + \dots + x_\ell| \ge B' r^{D+\epsilon} \max |x_j|$$

provided no subsum on the left side vanishes

Applying the theorem with $\ell = 2$, $x_1 = |1 - \alpha^{2n}| \operatorname{Re} \Phi(\alpha)$, $x_2 = |1 - \alpha^n|^2 \operatorname{Re} \Phi_n(\alpha)$, we get

$$|1-\alpha|^2\operatorname{Re}(\Phi(\alpha)-\Phi_n(\alpha))\gtrsim r^{2n+\epsilon}.$$

which contradicts the previous estimate when C is large.

QED, except arg $\zeta/2\pi$ might (for all we know) be of bounded type.

Bellon-Viallet conjecture fails

Theorem (Bell-D-Jonsson-Krieger)

For all $k \geq 3$, there exist $A \in SL_k(\mathbb{Z})$ and a birational involution $g_k : \mathbb{P}^k \longrightarrow \mathbb{P}^k$ such that $\lambda(g_k(x^A))$ is transcendental.

As before:

- $g(x^A)$ is now birational.
- Get a power series formula for λ similar to the one in the k=2 theorem.
- Again use Evertse's Theorem, continued fraction arguments etc to prove transcendence.

But!

The matrix A is much harder to pin down. One needs

- (to deal with bounded type issues) no 'angular resonances' among roots of the characteristic polynomial for A;
- and 'discordance' which requires replacing initial choice of $A \in SL_k(\mathbb{Z})$ by a conjugate.
- (for the power series formula) A-orbits of finitely many integer vectors avoid finitely many rational hyperplanes, which requires replacing A by a power.

At least when k=3, we can use Mathematica to verify all of these things for a particular matrix A with entries bounded by 20.

Further questions

- Just what does the set of all possible dynamical degrees look like?
- Do the 'arithmetic degree's of these rational maps equal the first dynamical degrees? I.e. can they also be transcendental?
- Are there Gaussian integers with irrational arguments of unbounded type?
- Can we somehow circumscribe rational maps that can't be stabilized by e.g. blowing up?

Thanks to the organizers and to BIRS and thanks for your attention!