A transcendental dynamical degree

Jeffrey Diller
Unversity of Notre Dame
\title{ BIRS Algebraic Dynamics，Difference and Differential Equations } November 17， 2021

Joint work with Jason Bell，Mattias Jonsson，and Holly Krieger

Degrees of one variable rational maps

Let $f(z)=P(z) / Q(z)$ be a rational map of a complex variable z.

- The degree of f is the integer $\operatorname{deg} f:=\max \{\operatorname{deg} P, \operatorname{deg} Q\}$;
- Alternatively, $\operatorname{deg}(f)=\# f^{-1}(z)$, for any point $z \in \mathbb{P}^{1}$ in the Riemann sphere.
- Hence $\operatorname{deg}\left(f^{n}\right)=(\operatorname{deg} f)^{n}$ for all $n \in \mathbb{Z}_{>0}$

Rational maps of more variables

A rational map $f: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$ is one given (in affine coordinates) by $f\left(x_{1}, \ldots, x_{k}\right)=\left(f_{1}, \ldots, f_{k}\right)$, where each component f_{j} is rational in x_{1}, \ldots, x_{k}.

- Alternatively, f is given in homogeneous coordinates by $f=\left[F_{0}, \ldots, F_{k}\right]$ where F_{j} are homogeneous polynomials in x_{0}, \ldots, x_{k} with $\operatorname{deg} F_{j}$ independent of j.
- Set $\operatorname{deg}(f):=\operatorname{deg} F_{j}=$ the (first) degree of f.
- Warning 1: $\operatorname{deg}(f)$ is not the topological degree of f. Instead $\operatorname{deg}(f)=\operatorname{deg} f^{-1}\left(H_{1}\right)$, where $H_{1} \subset \mathbb{P}^{k}$ is a hyperplane.
- Warning 2: unlike $k=1$, rational maps need not be open or even well-defined everywhere when $k \geq 2$. Let $I(f)$ denote the (codimension ≥ 2) 'indeterminate set' of f.

The first dynamical degree

Proposition

If $f: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$ is rational, then $\operatorname{deg}\left(f^{n+m}\right) \leq \operatorname{deg}\left(f^{m}\right) \operatorname{deg}\left(f^{n}\right)$. Hence the first dynamical degree

$$
\lambda(f):=\lim \operatorname{deg}\left(f^{n}\right)^{1 / n} \in[1, \operatorname{deg}(f)] .
$$

exists.
Strict inequality can hold in this proposition and $\lambda(f)$ need not be an integer.

Problem

How do we compute $\lambda(f)$? What are it's possible values?

Why care?

$\lambda(f)$ is a measure of the complexity of iterates of f. If $p \in \mathbb{P}^{k}$ is a rational point, i.e. in homogeneous coordinates $p=\left[x_{0}, x_{1}, x_{2}\right]$, where $x_{0}, x_{1}, x_{2} \in \mathbb{Z}$ have no common prime factors, and we let $\|p\|:=\max \left|x_{j}\right|$ then

$$
\lambda_{\text {arith }}(f, p):=\lim \sup \left(\log \left\|f^{n}(p)\right\|\right)^{1 / n} \leq \lambda(f)
$$

Might hope that equality holds for typical p and f.
This idea is sometimes used in e.g.s to compute $\lambda(f)$.
$\lambda(f)$ and other dynamical degrees also control the topological entropy of f.

Bonus slide: Results from smooth dynamics

Let $f: M \rightarrow M$ be a C^{∞} map on a compact smooth manifold. Topological entropy $h_{\text {top }}(f) \geq$ logarithm of:

- (Misiurewicz-Przytycki) the topological degree $d_{t o p}(f)$ of f.
- (Manning) the spectral radius $\rho\left(f_{*}\right)$ of $f_{*}: H_{1}(M, \mathbb{R}) \rightarrow H_{1}(M, \mathbb{R})$.
- (Yomdin) the spectral radius of $f_{*}: H_{*}(M, \mathbb{R}) \rightarrow H_{*}(M, \mathbb{R})$ acting on all homology groups of M.

In any case, $e^{h_{\text {top }}(f)}$ is bounded below by the magnitude of an eigenvalue of an integer matrix.

Bonus slide: All the dynamical degrees

The j th degree of a rational map $f: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$ is the quantity

$$
d_{j}(f):=\left(f^{-1}\left(H_{j}\right) \cdot H_{n-j}\right),
$$

where $H_{j} \subset \mathbb{P}^{k}$ is a general codimension j subspace. The $j t h$ dynamical degree is $\lambda_{j}(f):=\lim d_{j}\left(f^{n}\right)^{1 / n}$.

Theorem (Gromov, Dinh-Sibony)
$h_{\text {top }}(f) \leq \log \max _{1 \leq j \leq k} \lambda_{j}(f)$.

Remark: equality is known to hold in many cases.

Endomorphisms: $f: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$ with $I(f)=\emptyset$. Then $\lambda(f)=\operatorname{deg}(f)$.

Monomial maps: (Lin, Favre-Wulcan) $x \mapsto x^{A}:=\left(x^{A_{1}}, \ldots, x^{A_{k}}\right)$ where $A \in \operatorname{Mat}_{\mathrm{k} \times \mathrm{k}}(\mathbb{Z})$ is a matrix with rows A_{j}. Then

$$
\lambda=\rho(A)
$$

where $\rho(A)=\mid$ leading eigenvalue of $A \mid$ is the spectral radius.
Plane polynomial maps: (Favre-Jonsson) $f=\left(f_{1}, f_{2}\right)$, where f_{j} are polynomials. Then $\lambda(f)$ is a quadratic integer. Recently generalized to higher dimensions by Dang-Favre.

Plane birational maps: (D-Favre) f is invertible. Then $\lambda(f)$ is an algebraic integer.

More about dynamical degrees

Let $X \rightarrow \mathbb{P}^{k}$ be obtained by blowing up. Can lift $f: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$ to get $f: X \rightarrow X$. Say f is algebraically stable on X if $\forall n \in \mathbb{Z}_{\geq 0}$,

$$
\left(f^{*}\right)^{n}=\left(f^{n}\right)^{*}: \operatorname{Pic}(X) \rightarrow \operatorname{Pic}(X)
$$

Proposition

If f is algebraically stable on X, then $\lambda=\rho\left(f^{*}\right)$.

Proposition (Fornæss-Sibony)

When $k=2$, f fails to be algebraically stable on X iff there exists a complex curve $C \subset X$ such that $f^{n}(C) \in I(f)$ for some $n>0$.

Blowing up your problems

Theorem (D-Favre)

If $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ is birational, then there exists a blowup $X \rightarrow \mathbb{P}^{2}$ such that $f: X \rightarrow X$ is algebraically stable.
\exists more recent proofs by Lonjou-Urech and Birkett.

Theorem (Bonifant-Fornæss)

The set of all possible first dynamical degrees λ is countable.

Monomial maps again

Theorem (Favre)

If $A \in \operatorname{Mat}_{2 \times 2}(\mathbb{Z})$ has eigenvalues $\zeta, \bar{\zeta} \in \mathbb{C}$ such that $\frac{\arg \zeta}{2 \pi} \notin \mathbb{Q}$, then $x \mapsto x^{A}$ is not algebraically stable on any blowup $X \rightarrow \mathbb{P}^{2}$.

Idea of the proof: $x \mapsto x^{A}$ restricts to an endomorphism of $\mathbb{C}^{*} \times \mathbb{C}^{*}$. Suffices to consider 'toric' blowups $X \rightarrow \mathbb{P}^{2}$.
'Poles' $C_{\sigma} \subset X \backslash\left(\mathbb{C}^{*}\right)^{2}$ are indexed by rational rays $\sigma \subset \mathbb{R}^{2}$ and map forward according to

$$
C_{\sigma} \mapsto C_{A \sigma} .
$$

All monomial maps preserve the rational two form $\frac{d x_{1} \wedge x_{2}}{x_{1} x_{2}}$.
Converse isn't true. E.g. the involution

$$
g:\left(x_{1}, x_{2}\right) \mapsto\left(x_{1} \frac{x_{1}-x_{2}-1}{1-x_{1}-x_{2}}, x_{2} \frac{x_{2}-x_{1}-1}{1-x_{1}-x_{2}}\right)
$$

Theorem (D-Lin)

If $f: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ preserves $\frac{d x_{1} \wedge d x_{2}}{x_{1} x_{2}}$, then there exists a homogeneous, piecewise linear covering $A_{f}: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}^{2} \backslash\{0\}$ such that if $X \rightarrow \mathbb{P}^{2}$ is toric and $C_{\sigma} \subset X$ is a pole, then $f\left(C_{\sigma}\right)=C_{A_{f}(\sigma)}$.

Can check $A_{g}=$ id. Hence for $f(x):=g\left(x^{A}\right)$, we have $A_{f}=A$; thus f is 'unstabilizable' whenever x^{A} is.

A power series formula

Theorem (Bell-D-Jonsson)

Let ζ be a Gaussian integer with $\frac{\arg \zeta}{2 \pi} \notin \mathbb{Q}, A=\left(\begin{array}{cc}\operatorname{Re} \zeta & -\operatorname{Im} \zeta \\ \operatorname{Im} \zeta & \operatorname{Re} \zeta\end{array}\right)$, and $f(x):=g\left(x^{A}\right)$. Then $t=\lambda(f)^{-1}$ is the unique positive solution of

$$
\Delta(t):=\sum_{n=1}^{\infty} \operatorname{deg}\left(x^{A^{n}}\right) t^{n}=1
$$

Hence $\lambda(f)>\rho(A)$ is no longer an eigenvalue of A.

Proposition

In the theorem,

$$
\operatorname{deg}\left(x^{A^{n}}\right)=\max _{\gamma \in \Gamma} \operatorname{Re} \gamma \zeta^{n},
$$

where $\Gamma=\{-2, \pm 2 i, 1+ \pm 2 i\}$ is independent of A.

Theorem (Bell-D-Jonsson)

If $t>0$ is within the radius of convergence of $\Delta(t)$, then $\Delta(t)$ and t can't both be algebraic.

Corollary

$f=g\left(x^{A}\right)$ has transcendental first dynamical degree.

Note that f is not invertible; its topological degree is $|\operatorname{det} A| \neq 1$.

For $j \in \mathbb{N}$, let $\gamma(j) \in \Gamma$ be the element that maximizes $\operatorname{Re} \gamma \zeta^{j}$. If ζ^{n} is nearly real, then $\gamma(j)$ is nearly n-periodic.

For real $t \in\left(0,|\zeta|^{-1}\right)$ write $\alpha=t \zeta^{-1}$. Then $\Delta(\alpha)=\operatorname{Re} \Phi(\alpha)$, where

$$
\Phi(z)=\sum \gamma(j) z^{j}
$$

is very well-approximated by $\Phi_{n}(z)=\left(1-z^{n}\right)^{-1} \sum_{j=1}^{n} \gamma(j) z^{j}$. Indeed

$$
\left|1-z^{n}\right|^{2} \operatorname{Re}\left(\Phi(z)-\Phi_{n}(z)\right)=\sum_{j>n}(\gamma(j)-\gamma(j-n)) z^{j},
$$

where most $j>n$ are n-regular, i.e. $\gamma(j)=\gamma(j-n)$.

Proof of transcendence

Lemma

Suppose that the continued fraction expansion of $\frac{\arg \zeta}{2 \pi}$ has unbounded coefficients. Then for any $C>1$, there exist arbitrarily large $n>0$ such that all $j \in(n, C n]$ are n-regular. So

$$
0<\left|1-\alpha^{n}\right|^{2} \operatorname{Re}\left(\Phi(\alpha)-\Phi_{n}(\alpha)\right) \lesssim \alpha^{C_{n}}
$$

Now assume to get a contradiction that α and $\Delta(\alpha)=\operatorname{Re} \Phi(\alpha)$ lie in a number field $K \hookrightarrow \overline{\mathbb{Q}}$ (also assumed to contain e.g. Γ).

Theorem (Evertse. Sort of.)

Fix a finite subset $\Gamma \subset K$, positive integers ℓ, D and $\epsilon>0$. If x_{1}, \ldots, x_{ℓ} are polynomials in $\alpha, \bar{\alpha}$ with coefficients in Γ and total degree $D=\sum \operatorname{deg} x_{j}$, then there exist $B^{\prime}, r>0$ such that

$$
\left|x_{1}+\cdots+x_{\ell}\right| \geq B^{\prime} r^{D+\epsilon} \max \left|x_{j}\right|
$$

provided no subsum on the left side vanishes

Applying the theorem with $\ell=2, x_{1}=\left|1-\alpha^{2 n}\right| \operatorname{Re} \Phi(\alpha)$, $x_{2}=\left|1-\alpha^{n}\right|^{2} \operatorname{Re} \Phi_{n}(\alpha)$, we get

$$
|1-\alpha|^{2} \operatorname{Re}\left(\Phi(\alpha)-\Phi_{n}(\alpha)\right) \gtrsim r^{2 n+\epsilon} .
$$

which contradicts the previous estimate when C is large.
QED, except $\arg \zeta / 2 \pi$ might (for all we know) be of bounded type.

Bellon-Viallet conjecture fails

Theorem (Bell-D-Jonsson-Krieger)

For all $k \geq 3$, there exist $A \in S L_{k}(\mathbb{Z})$ and a birational involution $g_{k}: \mathbb{P}^{k} \rightarrow \mathbb{P}^{k}$ such that $\lambda\left(g_{k}\left(x^{A}\right)\right)$ is transcendental.

As before:

- $g\left(x^{A}\right)$ is now birational.
- Get a power series formula for λ similar to the one in the $k=2$ theorem.
- Again use Evertse's Theorem, continued fraction arguments etc to prove transcendence.

The matrix A is much harder to pin down. One needs

- (to deal with bounded type issues) no 'angular resonances' among roots of the characteristic polynomial for A;
- and 'discordance' which requires replacing initial choice of $A \in S L_{k}(\mathbb{Z})$ by a conjugate.
- (for the power series formula) A-orbits of finitely many integer vectors avoid finitely many rational hyperplanes, which requires replacing A by a power.
At least when $k=3$, we can use Mathematica to verify all of these things for a particular matrix A with entries bounded by 20 .
- Just what does the set of all possible dynamical degrees look like?
- Do the 'arithmetic degree's of these rational maps equal the first dynamical degrees? I.e. can they also be transcendental?
- Are there Gaussian integers with irrational arguments of unbounded type?
- Can we somehow circumscribe rational maps that can't be stabilized by e.g. blowing up?

Thanks to the organizers and to BIRS and thanks for your attention!

