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Walks

Consider the walks in the quarter plane starting from (0, 0) with steps in a
fixed set

D ⊂ {←,↖, ↑,↗,→,↘, ↓,↙} ↔ {(i , j) | i , j ∈ {−1, 0, 1}}

Example with possible directions

D = { , , , }.

Assign probabilities di,j to each (i , j) ∈ D and ask what is

P
(
(0, 0)→k (l , s)

)
the probability that a walk starting at (0, 0) ending at (l , s) after k steps?
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Models and Generating Series

Weighted Model: Fix a set of probabilistic weights

W = {(di,j)i,j=−1,0,1 ∈ (Q ∩ [0, 1])9 with
∑

di,j = 1},

associated with a set of directions D := {(i , j)|di,j 6= 0}

Unweighted Model: the di,j =
1
|D| for all (i , j) ∈ D and d0,0 = 0. In this case

P
(
(0, 0)→k (l , s)

)
=

#(walks from (0, 0) to (l , s) with k steps)
|D|k

Generating Series: FixW (and therefore D)

QW(x , y , t) =
∑
l,s,k

P
(
(0, 0)→k (l , s)

)
x ly stk

converges for |x |, |y | ≤ 1 and |t | < 1.
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Classification

Algebraic/Analytic properties of QW(x , y , t)

m
Asymptotic properties of P

(
(0, 0)→k (l , s)

)
Classification problem: when is QD(x , y , t)

Algebraic over C(x , y , t)?
Holonomic over C(x , y , t)? (x-, y -, and t-holonomic)

Differentially Algebraic over C(x , y , t)? (x-,y -, and t-diff. algebraic)

f (x , y , t) is x-holonomic if for some n and ai ∈ C(x , y , t),

an(x , y , t)
∂nf
∂xn + . . .+ a1(x , y , t)

∂f
∂x

+ a0(x , y , t)f = 0
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Classification

Algebraic/Analytic properties of QW(x , y , t)

m
Asymptotic properties of P

(
(0, 0)→k (l , s)

)
Classification problem: when is QD(x , y , t)

Algebraic over C(x , y , t)?
Holonomic over C(x , y , t)? (x-, y -, and t-holonomic)

Differentially Algebraic over C(x , y , t)? (x-,y -, and t-diff. algebraic)

f (x , y , t) is x-differentially algebraic if for some n and polynomial P 6= 0,

P(x , y , t , f ,
∂f
∂x
, . . . ,

∂nf
∂xn ) = 0
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Classification

Fayolle, Iasnogorodski, Malyshev (1999), Bousquet-Mélou, Mishna (2010) -
associate to a modelW,

an algebraic curve EW of genus 0 or 1, and

a group GW , finite or infinite.

256 choices for D triviallity,symmetries−−−−−−−−−−−→ 79 interesting ones

Results: For the 79 unweighted models

|GD| <∞ for 23 walks⇒ QD(x , y , t) algebraic or holonomic.
→ A. Bostan, M. Bousquet-Mélou, M. van Hoeij, M. Kauers, M. Mishna, . . .

|GD| =∞ for 56 walks⇒ QD(x , y , t) not holonomic.
5 walks with genus(EW ) = 0→ S. Melzcer, M. Mishna, A. Rechnitzer, . . .
51 walks with genus(EW ) = 1→A. Bostan, I. Kurkova, K. Raschel, B. Salvy, . . .

Differentially Algebraic???
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Classification

QW(x , y , t) =
∑
l,s,k

P
(
(0, 0)→k (l , s)

)
x ly stk

QW(x , y , t) is x-DA⇐⇒ QW(x , 0, t) is x-DA (similarly for y -DA)

QW(x , 0, t) is x-DA⇐⇒ QW(0, y , t) is y -DA.

(Dreyfus-Hardouin 2019, Dreyfus 2021) QW(x , y , t) is NOT x-DA =⇒
QW(x , y , t) is NOT t-DA

Focus on y -DA-properties of QW(0, y , t)
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The 51 unweighted models with |GD| = ∞, genus(EW ) = 1

Theorem (Dreyfus-Hardouin-Roques-S, 2018): For t ∈ C\Q
1. In 42 cases,QD(0, y , t) is not y -DA.
2. In 9 cases, QD(0, y , t) is y -DA but not holon.

• QD(x , y , t) are x-,y -, and t-DA in 9 cases first shown by O. Bernardi,
M. Bousquet-Mélou, K. Raschel

What about weighted models?
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Examples

Ex.1 The weighted model

is differentially algebraic iff d−1,−1d1,1 − d0,−1d0,1 = 0

Ex.2 The weighted model

is differentially algebraic iff d−1,1d2
0,1 − d0,1d−1,−1d0,−1 + d1,1d2

−1,−1 = 0

Ex.3 The weighted model

is differentially algebraic iff d1,0d−1,0 − d−1,1d1,−1 = 0. In this case the group
is D4 or D8 and the generating series is holonomic.
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Generalities about Walks: Functional Equation, Curve, Group, Difference
Equation

Theorems for Differential Algebraicity: Galois Theory, Certificates, Orbit
Residues

Algorithms for Differential Algebraicity: Mordell-Weil Lattices, Néron-Tate
Height
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Generalities: Functional Equation of the Walk

Generating series: FixW (and therefore D)

QW(x , y , t) =
∑
l,s,k

P
(
(0, 0)→k (l , s)

)
x ly stk

Step Inventory: SW(x , y) =
∑

(i,j) di,jx iy j

Kernel of the Walk: KW(x , y , t) = xy(1− tSW(x , y)) - biquadratic
Functional Equation:

KW(x , y , t)QW(x , y , t) = xy

− KW(x , 0, t)QW(x , 0, t)− KW(0, y , t)QW(0, y , t)

+ KW(0, 0, t)QW(0, 0, t).

Kernel Method: What hppens when KW(x , y , t) = xy(1− tSW(x , y)) = 0 tells
us what happens in general.
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Curve of the Walk
Step Inventory: SW(x , y) =

∑
(i,j)∈W qi,jx iy j

Kernel of the Walk: KW(x , y , t) = xy(1− tSW(x , y)) - biquadratic
Functional Equation:

KW(x , y , t)QW(x , y , t) = xy

− KW(x , 0, t)QW(x , 0, t)− KW(0, y , t)QW(0, y , t)

+ KW(0, 0, t)QW(0, 0, t).

Fix t ∈ C\Q. The Curve of the Walk is the curve

EW = {(x , y) | KW(x , y , t) = 0}
Zariski

⊂ P1(C)× P1(C)

Fact: KW irreducible⇒ EW has genus 0 or 1.

Ex: 1) D = EW : xy − t(y2 + x2y2 + x2 + x) = 0 ⇒ g(EW) = 1

2) D = EW : xy − t(y2 + xy2 + x2) = 0 ⇒ g(EW) = 0

for t ∈ C\Q
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Group of the Walk

EW = {(x , y) | KW(x , y , t) = 0}
Zariski

⊂ P1(C)× P1(C)

We define two involutions of EW and an automorphism:

ι1(x , y) = (x , 1
y

∑
i qi,−1x i∑
i qi,1x i )

ι2(x , y) = ( 1
x

∑
j q−1,j y

j∑
j q1,j y j , y)

σW = ι2 ◦ ι1

The Group of the Walk GW is the group generated by ι1, ι2.

Facts: 1) σW is a QRT-map. (Duistermaat - Discrete Integrable Systems)
2) GW is infinite iff σW is infinite.
3) g(EW) = 0⇒ GW are fractional linear trans.
4) g(EW) = 1⇒ ∃P ∈ EW , s.t. σW(Q) = Q⊕ P.
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Kernel Curve EW = {(x , y) | KW(x , y , t) = 0}
Zariski

⊂ P1(C)× P1(C)
Group of the Walk GW is the group generated by ι1, ι2. σW = ι2 ◦ ι1.

From now on, we will assume that EW has genus 1 and GW is infinite.

EW has genus 1⇐⇒ EW is irreducible and smooth.

GW is infinite⇐⇒ order of σ =∞.

Note: 1) σ(Q) = Q⊕ P for some P ∈ EW so

GW is infinite⇐⇒P has infinite order⇐⇒ order of P > 6 (Oguiso-Shioda).

2) σ : EW → EW induces an action on function on EW by σ(f (Q)) = f (σ(Q)).
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The Difference Equation

The generating series satisfies

KW(x , y , t)QW(x , y , t) = xy

− KW(x , 0, t)QW(x , 0, t)− KW(0, y , t)QW(0, y , t)

+ KW(0, 0, t)QW(0, 0, t).

Setting KW(x , y , t) = 0 we have

0 = −KW(x , 0, t)QW(x , 0, t)−KW(0, y , t)QW(0, y , t)+KW(0, 0, t)QW(0, 0, t)

for {x |, |y | < 1} ∩ EW .

QW(x , 0, t) and QW(0, y , t) can be continued to multivalued meromorphic
functions of EW and that for F = KW(0, y , t)QW(0, y , t) and
b = x(ι1(y)− y)we have

σ(F )− F = b

on EW . F-I-M (1999), Kurkova/Raschel (2012) (unweighted), Dreyfus/Raschel (2019)
(weighted)
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The Difference Equation and Differential Algebraicity

Curve: EW = {(x , y) | KW(x , y , t) = 0}
Zariski

⊂ P1(C)× P1(C)
Group: GW = 〈ι1, ι2〉, σ = ι2 ◦ ι1, σ(Q) = Q⊕ P; P,Q ∈ EW , P infinite order.

QW(0, y , t) can be continued to multivalued meromorphic function of EW
such that for F = KW(0, y , t)QW(0, y , t) and b = x(ι1(y)− y) we have

σ(F )− F = b

on EW .

Fact: There is a derivation δ on functions on EW such that δ ◦ σ = σ ◦ δ.

Prop.

QW(x , y , t) is DA
m

QW(0, y , t) is y -DA
m

F = KW(0, y , t)QW(0, y , t) is DA with respect to δ over EW
m

σ(F )− F = b has a DA solution in a σδ-extension of C(EW).
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Theorems for Differential Algebraicity: Galois Theory

k a σδ-field, σ an automorphism, δ a derivation, σδ = δσ.
kδ = {c ∈ k | δ(c) = 0} alg. closed.

Prop. (Hardouin, 2006) Let b ∈ k , TFAE:

1. There exists a σδ extension k ⊂ K and y ∈ K s.t.
σ(y)− y = b, and
y satisfies a δ-differential equation over k .

2. There exists a σδ extension k ⊂ K and y ∈ K s.t.
σ(y)− y = b, and
∃g ∈ k , ci ∈ kδ s.t.

δn(y) + cn−1δ
n−1(y) + . . .+ c1δ(y) + c0y = g.

3. ∃g ∈ k , ci ∈ kδ s.t.

δn(b) + cn−1δ
n−1(b) + . . .+ c1δ(b) + c0b = σ(g)− g.
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Theorems for Differential Algebraicity: Certificates

Prop.(D-H-R-S, 2018) Let b = x(ι1(y)− y) ∈ C(EW).TFAE:

1. QW(0, y , t) is y -DA

2. There exists an integer n ≥ 0 and g ∈ C(EW) such that

δn(b) + cn−1δ
n−1(b) + . . .+ c1δ(b) + c0b = σ(g)− g

for some ci ∈ C and suitable derivation δ : C(EW)→ C(EW).

Prop.(H-S, 2020) The following are equivalent:

1. QW(0, y , t) is y -DA

2. There exists g ∈ C(EW) such that b = σ(g)− g

This g is called a certificate

QW(x , y , t) is DA
m

x(ι1(y)− y) = σ(g)− g for some g ∈ C(EW)
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Theorems for DIfferential Algebraicity: Orbit Residues
Def.EW elliptic curve, σW the addition by a non-torsion point P, K = C(EW)

{uQ | Q ∈ EW} local param. are coherent if uQ	P = σ(uQ).

For g ∈ C(EW), Q ∈ EW , write

g =
cQ,N

uQ
N + · · ·+ cQ,i

u i
Q

+ · · ·+ cQ,1

uQ
+ f

with f regular at Q. Then, the ith orbit residue of g at Q is

oresi
Q(g) =

∑
n∈Z

c i
σn(Q).

Prop. (D-H-R-S (2018)) The following are equivalent for
b ∈ C(EW), ι1(b) = −b:

b has a certificate.

For all i ∈ N>0,Q ∈ EW , oresi
Q(b) = 0.

When this happens one can find g such that b = σ(g)− g.

To determine if QW(x , y , t) is DA

find the orbits of the poles of b = x(ι1(y)− y) and their orbit residues.
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Theorems for DIfferential Algebraicity: Orbit Residues

Prop. (D-H-R-S (2018)) The following are equivalent for b = x(ι1(y)− y):

b has a certificate.

For all i ∈ N>0,Q ∈ EW , oresi
Q(b) = 0.

(D-S (2020)) For two specific poles N,M depending onW,∃n ∈ Z s.t.

σn(N) = M.

Ex. The weighted model

and

M = ([1 : 0], [0 : 1])

N = ([−d0,1 : d1,1], [1 : 0])

QW(x , y , t) is DA⇐⇒ M = σn
W(N) for some n.
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Theorems for DIfferential Algebraicity: Orbit Residues
In general, we have

the generating series of a weighted modelW is differentially algebraic
m

two specific poles of b lie in the same orbit.

The two poles giving this criterion depend on the relative positions of the (at
most 6) poles of b and their behavior under ι1, ι2 and not on the weights.

The condition that these poles lie in the same orbit does depend on the
weights and gives the NASC, in terms of weights, for the generating series to
be DA.

How does one decide if ∃n ∈ Z s.t. M = σn
W(N)?

Ex. The weighted model

has differential algebraic generating series if and only

([1 : 0], [0 : 1]) = σ1
W([−d0,1 : d1,1], [1 : 0]).
m

d1,0d−1,0 − d−1,1d1,−1 = 0

How does one find 1?
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Algorithms for DA: Mordell-Weil Lattices, Néron-Tate Height

Mordell-Weil-Néron Theorem. If E be an elliptic curve defined over k , a
finitely generated extension of Q then the group E(k) of k -rational points, is a
finitely generated abelian group,

E(k) = Z⊕ . . .⊕ Z⊕ E(k)torsion.

Denote E(k)/E(k)torsion by MWL(E).

Now assume E is defined over k = Q(t) and that E does not descend to Q.

There is a Q-valued symm. bilinear form

〈∗, ∗〉 : E(k)× E(k)→ Q

called the Néron-Tate Pairing and the quadratic form

ĥ(Q) = 〈Q,Q〉

is called the Néron-Tate Height.
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Algorithms for DA: Mordell-Weil Lattices, Néron-Tate Height

k = Q(t)

(Oguiso-Shioda): As groups, there are 26 possibilites for for E(k). The order
of any element is at most 6 or infinite.

Properties of ĥ:

If N is a torison point, then ĥ(N) = 0.

σW : Q 7→ Q⊕ P has finite order iff ĥ(P) = 0

If M = nN, then ĥ(M) = n2ĥ(N).

Can reduce finding n s.t. M = σn
W(N) to fnding n s.t. M = nσW(N).

ĥ(N) is computable. For the points we consider, this depends on the
configuration of the 8 points common to all curves in the family
K (x , y , t) = 0 (base points), not on the weights.
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Algorithms for DA

Fix a rational step setW such that the curve is an elliptic curve EW and the
GW = 〈ι1, ι2〉 is infinite. Let σW (Q) = Q⊕ P.

The generating series is DA

m
b = x(ι1(y)− y) has a certificate.

m
There are two poles of b, M,N ∈ EW (Q(t)), such that σn

W (N) = M, n ∈ Z
M,N depend only on D, not on the weights.

m

Determine if ∃n ∈ Z s.t. ĥ(M) = n2ĥ(σW (N)).
If no, the generating series is not DA.

If yes, the condition σn
W (N) = M yields polynomial conditions on the weights giving DA.

Ex.

DA gen. series⇔ ([1 : 0], [0 : 1]) = σ1
W ([−d0,1 : d1,1], [1 : 0])⇔ d1,0d−1,0 − d−1,1d1,−1 = 0
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wIIB.1 wIIB.2 wIIC.1

All All All

wIIB.3 wIIC.4 wIIC.2

All d−1,−1d1,1 − d1,0d−1,0 = 0 d0,1d0,−1 − d1,1d−1,−1 = 0

wIIB.6 wIIC.5 wIIB.7

All All d−1,1d1,−1 − d0,−1d0,1 = 0
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