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1 Overview of the Field
Digital data are being produced at a constantly increasing pace, and their availability is changing the approach
to science and technology. The fundamental hypothesis of Topological Data Analysis (TDA) is that data
come as samples taken from an underlying shape, and unveiling such shape is important to understanding
the studied phenomenon. Topological shape analysis amounts to determining non-trivial topological holes in
any dimension. Computational Topology provides tools to derive specific signatures – topological invariants
– which depend only on topological features of the shape of data and are robust to local noise. Among them,
persistent homology [10] stands out as the most useful. A useful generalization of persistent homology is
multiparameter persistent homology which, contrarily to persistent homology, allows us to consider multiple
aspects of the data simultaneously in order to compute topological summaries of the data.

The first step in the persistence pipeline is to build a family of nested simplicial complexes that model
the data at various scales varying one or more parameters. The second step focuses on the maps induced
in homology by the simplicial inclusions, to extract invariants such as persistence modules and their rank
invarant. The third step is to use persistence invariants as a source of feature vectors in machine learning
contexts. As final goal is to use the acquired topological information to improve the understanding of the
underlying data, an important feature of this pipeline is its robustness with respect to noise in the input data
[10]. This is guaranteed by appropriate metrics, such as the matching distance between persistence modules,
which gives a measure of dissimilarity of the underlying data sets.

Single parameter persistent homology [17] has proven to be useful in many applications [2, 3, 11, 14, 16],
yielding a summary of the data through a one-dimensional filtration. However, some data requires to be
filtered along multiple parameters to fully capture its information. This is the role of multiparameter persistent
homology [7, 8], the topic of interest in this report.

2 Recent Developments and Open Problems
Unfortunately, understanding, visualizing and computing invariants in multiparameter persistent homology
remains a difficult task theoretically and computationally. This difficulty holds as well when it comes to
computing distances between such invariants. In the one-dimensional case there are several ways to compare
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persistent homology modules, such as the bottleneck distance and Wasserstein distances, which exhibit some
stability property with respect to variations in the input [10].

For more than one parameter, there are also various definitions of distances between persistence modules
[15, 5]. Amongst them, the matching distance [4] is attracting the attention of multi-parameter persistence
practitioners. Using the fact that by restricting an n-parameter filtration to any line of positive slope through
the parameter space one gets a 1-parameter filtration, one can use knowledge of the 1-dimensional case.
Indeed, following this idea, the matching distance is defined as a supremum of the one-dimensional bottleneck
distance, over the collection of all lines of positive slope in the parameter space, i.e.,

dmatch(M,N) := sup
L : u=s~m+b

m̂L · dB(dgmML,dgmNL),

where m̂L is a weight necessary for this distance to yield 1-Lipschitzianity of the persistent homology trans-
form. However, computing exactly this distance is not an easy task given the nature of its definition. As a
first step towards an exact computation, several approximations of this distance have been provided [9, 13].

The exact computation of the matching distance is currently only possible for 2-dimensional modules
[12], with recent computational improvements in terms of time complexity [6]. These methods exploit the
duality of points and lines in the plane, which means that they are difficult to generalize to persistence modules
with more than two parameters. Moreover, the geometric interpretation of the optimal lines achieving the
matching distance is not clarified.

3 Workshop summary
Our research group, i.e. the meeting organizers together with participants Asilata Bapat (ANU) and Elizabeth
Stephenson (IST-Austria), focused on exploring a method to compute the matching distance based on a
refinement of the framework developed in [1]. In that work, we propose a step towards the interpretation and
visualization of the rank invariant for persistence modules for any given number of parameters. We show how
discrete Morse theory may be used to compute the rank invariant, proving that it is completely determined by
its values at points whose coordinates are critical with respect to a discrete Morse gradient vector field. These
critical values partition the set of all lines of positive slope in the parameter space into equivalence classes,
such that the rank invariant along lines in the same class are also equivalent. We show that we can deduce
all persistence diagrams of the restrictions to the lines in a given class from the persistence diagram of the
restriction to a representative in that class.

The critical values (closed under least upper bound) described in [1] capture all the changes in homology
occurring throughout the multifiltration and fully determine the rank invariant, which is equivalent to barcodes
in 1-dimensional persistence modules. Based on this intuition, we formulate the idea that the critical values
must be relevant to the choice of lines for the computation of the matching distance, which is the question we
focused on during the workshop.

Dealing with the matching distance from this perspective allows us to reduce the number of lines nec-
essary to compute it to a finite set, thus reducing the computation to a maximum rather than a supremum
without exploiting the point-line duality used in [12].

During our stay at BIRS, we built on this framework to derive a new method of computing the matching
distance. We worked through both the theoretical and computational aspects of this question, proving the the-
oretical completeness of our method of computation, as well as initializing and developing an implementable
algorithm for computation in Python.

Although at first we have focused in two dimensions, the advantages of exploiting this framework is that
there is the potential to extend it to more than two parameters. The method we propose aims at producing
algorithms with comparable time complexity to [12], however since we do not exploit the point-line duality
we may achieve a reduction of the space complexity.

4 Scientific Progress Made
Through some examples we have shown that considering only lines passing through pairs of points in the
closure of critical values CM and CN of 2-parameter persistence modules M and N , with respect to the least
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upper bound, is not sufficient. Indeed, the definition of matching distance uses the bottleneck distance of the
restrictions along lines. However, lines in the same equivalence class might not have the bottleneck distance
always given by the same pairing even though there is a bijection between their persistence diagrams.

To overcome this problem, we have analyzed where switches might happen in the matching giving the
bottleneck distance, identifying a set Ω of points in the projective completion of the parameter space, called
switch points. This set allows us to refine our equivalence relation on the set of positive lines by considering
the set of points CM ∪ CN ∪ Ω. Using this set of points it is possible to identify all the lines at which
the matching distance can potentially be realised, reducing the computation of a supremum to a that of a
maximum over a finite set of lines through the parameter space. We have found a detailed explanation of
how to compute these points and shown that the matching distance is attained either at a line through a pair
of points in CM ∪ CN ∪ Ω or a line of diagonal slope through exactly one of the points.

In contrast to other methods such as [12, 5], we thus provide a geometric understanding of different lines,
horizontal, vertical, diagonal, as well as passing through critical points, and their contribution to the matching
distance.

In conclusion, the progress achieved by this Focused Research Group has been to advance the state of the
art, although still restricted to two dimensions, in two ways: computing the matching distance in a way which
is both geometrically interpretable and implementable.

5 Outcome of the Meeting
As a result of the meeting, this Focused research Group has achieved enough theoretical results to explain
important lines for the matching distance computation in 2-parameter persistence. We aim at posting these
results on arXiv within the next few weeks. Moreover, all our proofs are constructive and such construction
will lead to algorithms.

Our next goal is the implementation of such algorithms in order to perform numerical tests to ascertain
the performances of the method in terms of speed, memory consumption, scalability, and, possibly, paral-
lelizability.
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