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Our group split our time at BIRS between two projects: the first was the cohomogeneity two project we
described in our proposal, and the second was on estimating the lengths of geodesics.

1 Project 1: Cohomogeneity Two

Setup
A manifold admitting a group action with k-dimensional orbit space is a cohomogeneity k manifold. Man-
ifolds of positive curvature admitting isometric group actions of cohomogeneity 0, that is homogeneous
spaces, have been classified. (see Berger [3], Bérard-Bergery [2], Wallach [20], Aloff and Wallach [1], Wilk-
ing [21], and Wilking and Ziller [23]). A classification of cohomogeneity one manifolds of positive curvature
was achieved in all dimensions except for 7, where a list of candidates have been given (see Searle [12], Ver-
diani [18, 19], and Grove, Wilking, and Ziller [10]). It is then natural to consider the problem of classifying
simply-connected, closed, cohomogeneity two manifolds of positive curvature.

Let G be a compact, connected Lie group. Recall that an isometric G-action on Mn, a complete n-
manifold, is called polar if it admits a section, that is, an immersed submanifold, Σ, of dimension equal to
dim(M/G), that meets every orbit orthogonally. By work of Fang, Grove, and Thorbergsson [6] a closed,
simply-connected, positively curved manifold admitting a polar cohomogeneity k action with k ≥ 2 is equiv-
ariantly diffeomorphic to a compact rank one symmetric space (CROSS) with the corresponding polar action.
Thus, in order to classify simply-connected, closed, cohomogeneity two manifolds of positive curvature, it
remains to understand the case of non-polar actions.

Goals
The broad goal here is to classify such cohomogeneity two actions: that is, to find all possible M , up to
diffeomorphism, and G, and to describe the action of G on M up to (equivariant) diffeomorphism. Coming
into our stay at BIRS, our goal was to prove a classification theorem in low dimensions for closed, simply-
connected, positively curved manifolds admitting an isometric, non-polar, cohomogeneity two action.

A useful tool for such actions is that of the G-manifold reduction, see Grove and Searle [9] and Skjelbred
and Straume [16]. The idea is to reduce the G-action on M to the case of a core group, cG, acting on a core
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manifold, cM . The core group cG is defined to be NG(H)/H , where NG(H) denotes the normalizer of H
in G, the set of g such that gHg−1 = H . The core manifold cM is defined to be the closure of the set MH of
points in M fixed by (a particular copy of) H . The quotient cM/cG is isometric to M/G, and the principal
isotropy of the action of cG on cM is the identity only. Thus, the only properties of the original G-action that
are not preserved in the reduction are that cM might not be simply connected and cG might not be connected.
Note that the original action is polar if and only if the core group cG is finite. Using this technique, we have
been able to prove the following proposition.

Proposition 1.1. Let G be a compact, connected Lie group acting isometrically, effectively and by coho-
mogeneity two on Mn a closed, simply-connected manifold of positive curvature. Suppose further that the
action is non-polar and that there is a G-manifold reduction of the G-action on M with core group of rank
≥ 2. Then M decomposes as a G-invariant union of disk bundles.

The proof of this theorem relies on understanding the orbit space of the group action, M/G. In particular,
M/G is homeomorphic to S2 or D2. If M/G = S2, then there can be at most 2 isolated exceptional
orbits, and if M/G = D2, there are 4 possibilities: M/G has 0, 1, 2, or 3 vertices. In all but the case where
M/G = D2 and has 3 vertices, it is well-understood that M admits a G-invariant disk bundle decomposition.
In the last case, in order to show that M admits a G-invariant disk bundle decomposition, it suffices to prove
that two of the vertices of M/G are right angles.

This still leaves us to better understand non-polar G-actions on M with cG0, the connected component of
cG, is isomorphic to S1. This case is well-understood when M = Sn, see Straume [14] and [15], but remains
to be explored for all other such manifolds. While we have not encountered any examples of such manifolds
that do not admit a G-invariant disk bundle decomposition, we also cannot rule out the possibility that such
examples do exist.

We were able to make significant progress on the classification question. Going into our stay, we were not
yet able to rule out the possibility that the Wu manifold, SU(3)/SO(3), could admit such an action with a
G-invariant metric of positive curvature in dimension 5, nor had we completed the classification in dimension
6. At the end of our stay, we were able to prove the following theorem.

Theorem 1.2. Let G be a compact, connected Lie group acting isometrically, effectively and by cohomo-
geneity two on Mn a closed, simply-connected n-manifold of positive curvature. Suppose further that the
action is non-polar, n ≤ 6, and for n = 5, the action cannot be almost free. Then Mn is (equivariantly)
diffeomorphic to Sn, CPn/2, or V 6 = SU(3)/T 2.

Observation 1.3. The theorem is rigid: we can show that all such manifolds admit an isometric, non-polar,
cohomogeneity two action.

Observation 1.4. The case where n = 5 and the action is free has recently been resolved by work of
Cavenaghi, Grama, and Sperança [5], who have shown that there is no such action. Using the Connectedness
Lemma of Wilking [22], one sees that if the action is almost free and the exceptional orbits are not isolated,
that there is no such action. However, the cases where the action is almost free and has isolated exceptional
orbits have yet to be understood. They have been studied by Simas [13] who showed that the only candidates
are diffeomorphic to the two S3 bundles over S2.

2 Project 2: Lengths of Geodesics
We note that this second project also includes Isabel Beach as a collaborator and will form part of the focus
of our team at the Women in Geometry 3 workshop to be held in November 2023 at BIRS.

Setup
Let MD

k,v(n) denote the set of n-dimensional closed Riemannian manifolds M , with sectional curvature
bounded below by k, volume bounded below by v, and diameter bounded above by D. The property that
distinguishes this class of manifolds is their uniform local contractibility: a result of Grove and Petersen in
[8], states that there exist r and R, both depending on k, v,D, n, such that every ball of radius r is null-
homotopic in the concentric ball of radius R.
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A theorem of Serre states that in a closed Riemannian manifold M , given any two points p and q there
are infinitely many geodesics from p to q. The goal of our project is to estimate the growth of the lengths of
these geodesics, as M ranges overMD

k,v(n). In particular, we have the following conjecture:

Conjecture 2.1. Let M ∈MD
k,v(n) and assume M is simply connected. Then there is a constant C(k, v,D, n),

such that for every ` ∈ N, there are at least ` geodesics from p to q of length at most C(k, v,D, n) · `.

Existing results
Our project is based on results of Nabutovsky and Rotman [11]. In [11], they paper prove that for any points
p and q in closed manifold M of diameter D, there are at least ` geodesics from p to q of length at most
4nD · `2. In particular, the sequence of lengths in order grows at most quadratically with `. The hope is
that by introducing the bounds on curvature and volume, we can improve the bound so that the lengths grow
linearly with `.

Immediate goal
We have sketched a proof of our conjecture with an additional hypothesis, namely, we suppose there is a
constant c such that all loops of length at most 2D are null-homotopic through loops of length at most cD. At
BIRS we began the process of writing up this result. With this additional constraint, instead of a obtaining a
constant C(k, v,D, n), we get a constant C(k, v,D, n, c) that depends on c as well. One special case is when
there are no loops of length at most 2D that are local minima of length. In this case, every loop of length at
most 2D is null-homotopic through a path of loops that never increases in length, so we have c = 2, and our
constant depends only on k, v,D, n. We hope to prove the conjecture without this additional hypothesis, but
so far do not have good techniques for eliminating it.

Next goal
As we worked on writing up our result, we also explored an extension of the problem, where instead of
geodesics between two points we consider periodic geodesics. While a periodic geodesic is a closed loop
that is geodesic all along the loop, a geodesic loop is a geodesic from a point p to itself, but the incoming
and outgoing directions at p might have some angle between them. The work of Gromoll and Meyer [7]
gives topological conditions on a closed manifold M that guarantee infinitely many periodic geodesics, and
Sullivan and Vigué-Poirrier [17] show that these conditions are satisfied if the rational cohomology of M
cannot be generated by a single generator. Under these hypotheses, it makes sense to ask about the growth of
the length of these periodic geodesics, and we can hope that the conclusion of our theorem for geodesics is
also true for periodic geodesics. When we count periodic geodesics, each periodic geodesic can be iterated
and/or shifted to produce infinitely many other periodic geodesics; thus, we say that periodic geodesics are
distinct only if their images are distinct loops in M .

What we hope to prove here is that if M ∈ MD
k,v(n) and the rational cohomology of M cannot be

generated by a single class, and all loops of length at most 2D are null-homotopic through loops of length at
most cD, then for all ` ∈ N, there are at least ` geometrically distinct periodic geodesics of length at most
C(k, v,D, n, c) · `. We spent some of our time at BIRS trying to understand the proof of Gromoll and Meyer,
which is based on careful analysis of index and nullity of a periodic geodesic and its iterates based on paper
[4] of Bott, to see how easily it could be made quantitative in this way.
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