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Functions cannot be bandlimited and spacelimited at the same time.

However, we can find a set of bandlimited functions that will optimize their spa-

tial concentration to some spatial domain, and we can find a set of spacelimited

functions that will minimize spectral leakage outside the bandlimit of interest.

We can use these “Slepian” functions as windows, for spectral analysis, or we can

use them as a (sparse) basis to represent geophysical observables—on a sphere.
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A brief history of Slepian functions — 1 3/42

In the 60s Slepian et al. solved the problem of concentrating a bandlimited signal

g(t) =
1

2π

∫ +W

−W
G(ω) eiωt dω, |W | <∞, (1)

into a time interval |t| ≤ T . The “Slepian functions” optimize the concentration

λ =

∫ +T

−T
g2(t) dt∫ +∞

−∞
g2(t) dt

, 0 < λ < 1. (2)

They are eigenfunctions of a Fredholm integral equation,∫ T

−T

[
sinW (t− t′)
π(t− t′)

]
g(t′) dt′ = λg(t).



A brief history of Slepian functions — 1 3/42

In the 60s Slepian et al. solved the problem of concentrating a bandlimited signal

g(t) =
1

2π

∫ +W

−W
G(ω) eiωt dω, |W | <∞, (1)

into a time interval |t| ≤ T . The “Slepian functions” optimize the concentration

λ =

∫ +T

−T
g2(t) dt∫ +∞

−∞
g2(t) dt

, 0 < λ < 1. (2)

They are eigenfunctions of a Fredholm integral equation,∫ T

−T

[
sinW (t− t′)
π(t− t′)

]
g(t′) dt′ = λg(t). (3)



A brief history of Slepian functions — 2 4/42

Similarly, two-dimensional Slepian functions are bandlimited Fourier expansions

g(x) =
1

(2π)2

∫
K
G(k) eik·x dk, |K| <∞, (4)

that concentrate into a finite spatial regionR ∈ R2 of area A by maximizing

λ =

∫
R
g2(x) dx∫ +∞

−∞
g2(x) dx

, 0 < λ < 1. (5)

These are also eigenfunctions of a Fredholm integral equation,∫
R

[
1

(2π)2

∫
K
eik·(x−x′) dk

]
g(x′) dx′ = λg(x).
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A brief history of Slepian functions — 3 5/42

On a sphere, Slepian functions are bandlimited spherical-harmonic expansions

g(r̂) =
L∑
l=0

l∑
m=−l

glmYlm(r̂), L <∞, (7)

that are concentrated within a region R ∈ Ω by optimizing the energy ratio

λ =

∫
R

g2(r̂) dΩ∫
Ω

g2(r̂) dΩ
, 0 < λ < 1. (8)

They are eigenfunctions of a Fredholm equation, with Pl a Legendre function,∫
R

[
L∑
l=0

(
2l + 1

4π

)
Pl(r̂ · r̂′)

]
g(r̂′) dΩ′ = λg(r̂).
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A unified framework — 1 8/42

The integral-equation kernels are all spectrally bandlimited spatial delta functions

that are “reproducing kernels” for the bandlimited functions of the kinds considered:

D(t, t′) =
1

2π

∫ +W

−W
eiω (t−t′) dω, tr{D} = 2

TW

π
, (10)
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Ylm(r̂)Ylm(r̂′), tr{D} = (L+ 1)2 A
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Thus, the Slepian functions are bases for bandlimited geophysical processes any-

where (not just on the domain for which they were constructed, though, there, they

will be a sparse basis). Their trace is a space-bandwidth joint “Shannon” area.

Remember that the trace of an operator is the sum of all of its eigenvalues, N .



A unified framework — 2 9/42

In the spectral domain, the Slepian functions are eigenfunctions of equations that

have spacelimited spectral delta functions as kernels. On the sphere, we solve for

the spherical harmonic expansion coefficients of the functions as

L∑
l′=0

l′∑
m′=−l′

[∫
R

YlmYl′m′ dΩ

]
gl′m′ = λglm, 0 < λ < 1. (13)

We define the spatiospectral localization kernel

Dlm,l′m′ =

∫
R

YlmYl′m′ dΩ, tr{D} = (L+ 1)2 A

4π
.

Many of the eigenvalues are very, very small. Thus, D may be hard to calculate—

and even harder to invert.

And remember that the spatial region R can be completely arbitrary.
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A “lucky accident”: the “magic of commutation” 12/42

Diagonalization of the operator D, with elements

Dlm,l′m′ =

∫
R

YlmYl′m′ dΩ, (15)

is often hard and sometimes impossible.
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Diagonalization of the operator D, with elements

Dlm,l′m′ =

∫
R

YlmYl′m′ dΩ, (16)

is often hard and sometimes impossible.

But if R is axisymmetric, i.e. a single polar cap or a double polar cap, we

can find the Slepian functions as the solutions to a different eigenvalue problem

involving a very simple kernel with very well-behaved eigenvalues.
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Spherical harmonics Ylm form an orthonormal basis on Ω:∫
Ω

YlmYl′m′ dΩ = δll′δmm′ . (17)

The spherical harmonics Ylm are not orthogonal on R:∫
R

YlmYl′m′ dΩ = Dlm,l′m′ . (18)
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Spherical harmonics Ylm form an orthonormal basis on Ω:∫
Ω

YlmYl′m′ dΩ = δll′δmm′ . (17)

The spherical harmonics Ylm are not orthogonal on R:∫
R

YlmYl′m′ dΩ = Dlm,l′m′ . (18)

The eigenfunctions of D are called Slepian functions, g(r̂). They form a band-

limited localized basis, doubly orthogonal: on R (to λ) and also on Ω (to 1).

The Shannon number, or sum of the eigenvalues, the space-bandwidth product,

N = (L+ 1)2 A

4π
,

is the effective dimension of the space for which the bandlimited g are a basis.



Application 1 : Sparse approximation 15/42

The expansion of a bandlimited process on the sphere in either spherical harmon-

ics or in Slepian functions is equal and exact :

s(r̂) =
L∑
l=0

l∑
m=−l

slmYlm(r̂) =

(L+1)2∑
α=1

sαgα(r̂). (19)
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s(r̂) =
L∑
l=0

l∑
m=−l

slmYlm(r̂) =

(L+1)2∑
α=1

sαgα(r̂). (19)

But if the signal is regional in nature, an expansion into Slepian functions up until

the Shannon number will be approximate but sparse:

s(r̂) ≈
N∑
α=1

sαgα(r̂), r̂ ∈ R. (20)

The mean squared reconstruction error in the noiseless case is determined by the

neglected eigenvalues, which are tiny beyond the Shannon number.



Basis I: spherical harmonics Ylm 16/42
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Spherical harmonics Ylm→ Slepian functions g 19/42

An orthogonal transform by the eigenmatrix of D introduces welcome sparsity.
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Basis II: Slepian functions g 20/42
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Common problems — 1 24/42

The data collected in or limited to R are signal plus noise:

d(r) =

 s(r) + n(r) if r ∈ R,

unknown/undesired if r ∈ Ω−R.

We assume that n(r) is zero-mean and uncorrelated with the signal

〈n(r)〉 = 0 and 〈n(r)s(r′)〉 = 0,

and consider known the noise covariance:

〈n(r)n(r′)〉.

In other words: we’ve got noisy and incomplete data on the sphere.
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Noisy: Earth’s time-variable gravity — 1 25/42
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Common problems — 2 28/42

Consider an unknown, noisily and incompletely observed spherical process:

s(r) =
∞∑
lm

slmYlm(r).

Linear Problem: Problem 1

Given d(r) and 〈n(r)n(r′)〉, estimate the signal s(r), realizing that the

estimate ŝ(r) is always bandlimited to 0 ≤ L <∞.

Quadratic Problem: Problem 2

Given d(r) and 〈n(r)n(r′)〉, and assuming the field behaves as

〈slm〉 = 0 and 〈slms∗l′m′〉 = Sl δll′δmm′ ,

estimate the power spectral density Sl, for 0 ≤ l <∞, as Ŝl.
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estimate ŝ(r) is always bandlimited to 0 ≤ L <∞.

Quadratic Problem: Problem 2

Given d(r) and 〈n(r)n(r′)〉, and assuming the field behaves as

〈slm〉 = 0 and 〈slmsl′m′〉 = Sl δll′δmm′ ,

estimate the power spectral density Sl, for 0 ≤ l <∞, as Ŝl.
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The data collected in or limited to R are signal plus noise:

The data are noisy and incomplete.
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The data collected in or limited to R are signal plus noise:

The data are noisy and incomplete.

Problem 1

Find the signal that gives rise to the data.
Kill this

Problem 2

Kill this

Find the power spectral density of the signal.

Kill this



Problem 1 — Finding the signal 30/42

Construct a bandlimited estimate in the spherical harmonic basis by minimizing

the misfit to the data over R. The—linear—optimal solution depends on D−1:

ŝlm =
L∑
l′m′

D−1
lm,l′m′

∫
R

d Yl′m′ dΩ.
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Construct a bandlimited estimate in the spherical harmonic basis by minimizing

the misfit to the data over R. The—linear—optimal solution depends on D−1:

ŝlm =
L∑
l′m′

D−1
lm,l′m′

∫
R

d Yl′m′ dΩ.

Finding D−1 is tough, so construct a truncated-Slepian basis estimate instead:

ŝ(r) =
J∑
α

ŝαgα(r).

The solution depends on the localization eigenvalue at the same rank:

ŝα = λ−1
α

∫
R

dgα dΩ.
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Problem 2 — Finding the spectrum 32/42

If we simply worked with the available data we’d be using a boxcar window:

ŜSP
l =

1

2l + 1

∑
m

∣∣∣∣∫
R

d(r)Ylm(r) dΩ

∣∣∣∣2 .
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This estimate is biased (unless Sl = S orR = Ω), coupling over the entire band.

Its bias, variance, and thus mean-squared error depend, again, on D:

mseSP
l ∼

∑
mm′

|Dlm,lm′|2 .

The multitaper estimate uses a small L for the Slepian windows gα(r) over R,

ŜMT
l =

∑
α

λα

(
1
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∑
m

∣∣∣∣∫
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∣∣∣∣2
)
.



The multitaper method 33/42

It returns a spectrally bandlimited (to ±L) average of the true spectral power

while being sensitive to a spatially localized patch R of data.

Spectral and spatial concentration trade off via the Shannon number, which is the

sole parameter to be chosen by the analyst:

N = (L+ 1)2 A

4π
.

This dictates the deliberate bias of the estimate. More tapers means→ bias, but

the covariance matrix of the estimates between tapers is almost diagonal.

Thus, weighted averaging of estimates made with many different tapers reduces

the estimation variance. And with eigenvalue weighting, the bias is strictly limited

to the bandwidth L, and independent of the shape of the region R.
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sole parameter to be chosen by the analyst:

N = (L+ 1)2 A

4π
.

This dictates the deliberate bias of the estimate. More tapers→ more bias, but

the covariance matrix of the estimates between tapers is almost diagonal.

Thus, weighted averaging of estimates made with many different tapers reduces

the estimation variance. And with eigenvalue weighting, the bias is strictly limited

to the bandwidth L, and independent of the shape of the region R.
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Using the choice of the eigenvalues λ of D as weights of the multitaper spectral

estimate, the multitaper coupling matrix is

Kll′ =
2l′ + 1

(L+ 1)2

L∑
p

(2p+ 1)

 l p l′

0 0 0

2

,

which — amazingly — depends only upon the chosen bandwidth L.
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The covariance between the multitaper estimates is relatively simple when the

spectra is moderately colored (compared to the bandwidth L of the estimator):

ΣMT
ll′ =

1

2π
(Sl +Nl)(Sl′ +Nl′)

∑
p

(2p+ 1) Γp

 l p l′

0 0 0

2

, (13)

Γp =
1

K2

LX
ss′

LX
uu′

(2s + 1)(2s
′

+ 1)(2u + 1)(2u
′

+ 1)
2LX
e

(−1)
p+e

(2e + 1)Be

×
(

s e s′

u p u′

) 
s e s′

0 0 0

! 
u e u′

0 0 0

! 
s p u′

0 0 0

! 
u p s′

0 0 0

!
, (14)

with Be the boxcar power, which depends on the shape of the region of interest,

and the sums over angular degrees are limited by Wigner 3-j selection rules.

The term in curly braces is a Wigner 6-j symbol. Ugly, but computable.
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� Slepian functions are both spectrally and spatially concentrated

� They form a doubly orthogonal basis on the sphere and any portion of it

� They are the ideal basis to separate signal from noise, for approximation and

inverse problems

� They are ideal data windows for spectral analysis

� The Slepian multitaper method yields a smoothed and thus biased estimate

of the spectrum, but it requires neither iteration nor large-scale matrix inver-

sion. Its variance is much lower than that of any other method, and the only

parameter that needs to be specified by the analyst is the Shannon number,

or the space-bandwidth product diagnostic of the spatiospectral concentration.


