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Why Should We Care??
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What Real Earthquake Data Looks Like



Need to deconvolve the components of the seismogram
to remove the effect of the earthquake source

Receiver Functions (Phinney, 1964, Langston, 1981)

IDEA: for a vertically-incident P wave, most motion is
on the vertical component

SO . . . . Use the vertical component record 
to predict the radial horizontal component,
This approximately reconstructs the P-SV
conversions in the form of a prediction filter

P SV



A Prediction Filter?  
Time-Domain Deconvolution
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Assumption: u
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Problem: uR(f), uV(f) are estimated from the DFT of the 
P-wave data, and their spectral ratio has high variance

Typical solution: add a damping constant to the
denominator (water-level trick)
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Or compute a prediction filter H(f) in the frequency domain



Multitaper Receiver Function Estimate:
Eschew spectral ratios for cross-correlation (more stable!)
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The coherence between horizontal and vertical is spotty!



Uncertainties
on H(f)

Pre-event
 amplitude

H(t) damped at 
long delay times

Uncertainties allow us to stack H(f) in a variance-weighted sum



Radial-Vertical coherence

Transverse-Vertical coherence



Levin and Park (1998)
Time-domain deconvolution 

Park and Levin (2000)
Multiple-taper correlation



Levin and Park (1998)
Time-domain deconvolution 

Park and Levin (2000)
Multiple-taper correlation
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Backus (1965) parameters for wavespeeds

ξ is the angle between wave propagation 
and symmetry axis

φ is the strike of symmetry axis
ψ is the tilt of symmetry axis
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Test model with tilted-axis in middle crust,
horizontal symmetry axis in lower crust

Compute synthetic receiver functions 
for 471 events at GSN Station RAYN 

(Ar Rayn, Saudi Arabia) 

Synthetic RFs for events in 
10° bins of back-azimuth 

are stacked in the freq domain 
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Moveout correction
to 30-km depth target

Strong sensitivity
to tilted-axis 
Vp anisotropy
(2-lobed) Ps splitting 

(weak signal)
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Moveout correction
to 30-km depth target

Strong sensitivity
to tilted-axis 
Vp anisotropy
(2-lobed)

Ps splitting
(4-lobed) 
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Ps splitting
(4-lobed)
depends only
on VS anisotropy

Fast and slow
split Ps arrivals

With no tilted-axis 
VP anisotropy 
(2-lobed), 
Ps back-azimuth 
variation is modest.
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GSN Station ARU (Arti, Russia), near Urals-Mtns Suture

Moho Ps

Ps from layer 
interfaces

972 earthquakes
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Tilted-axis anisotropy 
within basal crustal layer

Possible Ps-splitting signature

GSN Station ARU: Short-Period RFs
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GSN Station ARU: Long-period RFs
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Crustal Velocity/Anisotropy Models for GSN Station ARU

Short Period:
Shear zone underlies 

Low-velocity zone

Long Period:
Shear zone not localized  
LVZ weakly constrained
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Comments on Crustal Anisotropy:
� VP anisotropy has stronger influence on Ps and Sp converted waves 
than does VS anisotropy

� A tilted axis of symmetry generates larger Ps and Sp waves 
than a horizontal symmetry axis, particularly for near-vertical incidence.

� Sheared layers with the crust are common, but are better to 
isolate with short-period Ps receiver functions than with Ps birefringence. 

� Gradual gradients of anisotropy within 5-20-km shear zones 
have characteristic signatures in RF back-azimuth sweeps 
and may be detectable in data

� Sp converted-wave amplitudes have harmonic dependence on 
back azimuth and may be useful in constraining anisotropy at sheared 
interfaces and sharp gradients within the mantle and even the crust, 
if high-frequency data can be obtained across full range of back-azimuth.
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