An analogue of Slepian vectors on Boolean Hypercubes
BIRS Workshop on Multitaper Spectral Analysis June 25, 2022
joint work with Jeff Hogan

Overview

1. Review: Thomson's multitaper method
2. Dyadic processes (motivation, no actual results here)
3. Thomson's method for dyadic processes requires dyadic optimizers of spatio-spectral limiting (SSL)
4. SSL on Hypercube (\mathbb{Z}_{2}^{N}) graphs: definitions
5. Identification and computation of eigenvectors of SSL on \mathbb{Z}_{2}^{N}

Thomson's multitaper method

Thomson [1982]: estimate power spectrum of a (stationary ergodic, Gaussian) process from N equally spaced samples of an instance by averaging K tapered periodograms. $\{x(0), \ldots, x(N-1)\}$: N-contiguous sample observation Cramér representation: $x(n)=\int_{-1 / 2}^{1 / 2} e^{2 \pi i v[n-(N-1) / 2]} d Z(v)$, $d Z$: zero mean, orthogonal increments;
S : true spectrum of X
$S(f) d f=E\left\{|d Z(f)|^{2}\right\}$.

Tapers: Slepian DPSS's (Fourier coefficients of DPSWFs)
DPSSs $v_{n}^{(k)}$ satisfy $\sum_{m=0}^{N-1} \frac{\sin 2 \pi W(n-m)}{\pi(n-m)} v_{m}^{(k)}=\lambda_{k} v_{n}^{(k)}$
Spectrum estimate $\bar{S}\left(f_{0}\right)$: average of tapered eigenspectra

Figure: (Continuous) prolates $\varphi_{n}, n=0,3,10, c=\pi T \Omega / 2=5$

Dyadic processes

$X=\left\{X_{n}: n=0,1,2, \ldots\right\}$ is dyadic stationary if
$B(n, m)=\operatorname{cov}\left(X_{n}, X_{m}\right)=E\left(X_{n} X_{m}\right)$ depends only on $n \oplus m$
Dyadic representation: $n=\sum \epsilon_{k}(n) 2^{k}$, $n \oplus m=\sum\left[\left(\epsilon_{k}(n)+\epsilon_{k}(m)\right) \bmod 2\right] 2^{k}$
Walsh functions $W(n, x)$ define the dyadic Fourier transform. Hadamard-Walsh Fourier transform of $x(0), \ldots, x(M-1)$ is $(H x)(\lambda)=\frac{1}{\sqrt{M}} \sum_{t=0}^{M-1} X(t) W(t, \lambda)$.
Dyadic stationary processes admit a spectral representation:
$X_{n}=\int_{0}^{1} W(n, x) d Z(x)$
$d Z$: orthogonal increments; $E\left[|d Z(x)|^{2}\right]=d F(x)$ with $B(\tau)=\int_{0}^{1} W(\tau, x) d F(x)$.
F is called the dyadic spectral distribution function of X.
Morettin [1981, SIAM Review] Walsh spectrum estimation based on averaged Walsh periodograms of temporal slices.

Dyadic processes originally regarded as defined on $[0,1]$
Interest in dyadic processes waned in late 1980s
Stoffer [JASA, 1991]: reviewed use in analysis of categorical data
Observed problem with insistence on concept of dyadic time More appropriate for study of processes indexed by (limits of) \mathbb{Z}_{2}^{N} ?

Graph Setting
Stationary Graph Processes and Spectral Estimation: Marques et al., 2017, IEEE Trans. Sig. Process.
Signals on Graphs: Uncertainty Principle and Sampling, Tsitsvero et al. , 2016, IEEE Trans. Sig. Process. ("prolates")

Finite version of Slepian sequences for \mathbb{Z}_{2}^{N}

$\mathbb{Z}_{2}^{N}=\left\{\left(\epsilon_{1}, \ldots, \epsilon_{N}\right): \epsilon_{k} \in\{0,1\}\right\}$
Q_{K} : truncation to K-Hamming nbhd of zero:
$\left\{\left(\epsilon_{1}, \ldots, \epsilon_{N}\right): \sum \epsilon_{k} \leq K\right\}$
\mathbb{Z}_{2}^{N} has an isomorphic Fourier dual group
P_{K} : bandlimiting, $P_{K}=H Q_{K} H^{\top}$
Fix $0<K<N . P=P_{K}, Q=Q_{K}$.
BSV (Boolean Slepian Vectors) φ are eigenvectors of $P Q$:
$P Q \varphi=\lambda \varphi$ for suitable $\lambda>0$

Figure: Eigenvectors of $P Q$ on $\mathbb{Z}_{2}^{N}, N=8, K=3, r=2$.
Dotted curves: two different elements g of \mathcal{W}_{r} Dashed curves: corresponding eigenvectors f of $Q P$ Solid curves: Eigenvector Hf of $P Q$ for eigenvector f of $Q P$

Comparison of properties

Properties in Common (with PSWFs in $^{L^{2}(\mathbb{R}) \text {) }}$

PSWF setting	Property	Hypercube (BSV) setting	Property				
$\widehat{Q \varphi_{n}}= \pm \alpha i \sqrt{\lambda_{n}} v_{n}$	Trunc. Fourier eigenprop.	$H v= \pm \sqrt{\lambda} Q v$	\checkmark				
$\lambda_{n}=\left\\|Q \varphi_{n}\right\\|^{2}$	Concentrations	$\lambda=\\|Q v\\|^{2}$	\checkmark				
$\int_{-1}^{1} \varphi_{n}(t) \varphi_{m}(t) d t=\delta_{n m}$	Double orthogonality	$\langle Q v, Q w\rangle=0, v \neq w$	\checkmark				
span φ_{n} dense in $L^{2}[-1,1]$	Local completeness	$\operatorname{span}\{v\}=\operatorname{range} Q$	\checkmark				
$\sum \lambda_{k}\left\|U_{k}\right\|^{2}=$ const	Spectral accumulation	$\sum \lambda\|H v\|^{2}=\operatorname{dim}(K)$	\checkmark				

Differences

$\lambda_{n}>\lambda_{n+1}$	Simple eigenvalues	$\binom{N}{k}-\binom{N}{k-1}$	high multiplicity
$\lambda_{n} \approx 1, n<2 \Omega T$	$2 \Omega T$-Theorem		\boldsymbol{X}
$\frac{d}{d t}\left(1-t^{2}\right) \frac{d}{d t}-c^{2} t^{2}$	Commuting differential op	$D\left(\alpha I-T^{2}\right) D+\beta T^{2}$,	Almost
		$D=H T H$	

Eigenvalues for 1025 points, normalized area of 64

Figure: Eigenvalues of $P Q$ for 1025 point DFT, 2NW ≈ 64

Figure: Eigenvalues of $P Q$, for Boolean FT on $\mathbb{Z}_{2}^{20}, K=6$, with multiplicity, (60460). Corresponding case on \mathbb{Z}_{220} would have about 3486 eigenvalues larger than $1 / 2$

GOAL: eigen-decomposition of $P Q$ on \mathcal{B}_{N}

Outline
Geometry of \mathcal{B}_{N}
$D\left(\alpha I-T^{2}\right) D+\beta T^{2}$ almost commutes with $P Q$
Adjacency invariant spaces on which $D\left(\alpha I-T^{2}\right) D+\beta T^{2}$ acts as
a tridiagonal matrix
Basis of eigenvectors of BDO
Numerical method to compute eigenvectors of QP

Boolean cubes $\mathcal{B}_{N}: N=5$

VS

Slepian vectors on cubes

Some conventions for \mathcal{B}_{N}

$$
\begin{aligned}
& v=\left(\epsilon_{1}, \ldots, \epsilon_{N}\right) \in \mathbb{Z}_{2}^{N} \\
& S=\left\{i: \epsilon_{i}=1\right\} \subset\{1, \ldots, N\} \\
& v=v_{S} \text { or "v} \sim S "
\end{aligned}
$$

Adjacency: $A_{R S}=1$ if $R \Delta S$ is a singleton

Figure: Adjacency matrix for $N=8$ in dyadic lexicographic order.

Fourier transform H

The graph Fourier transform on \mathcal{B}_{N} is the same as the group
Fourier transform on \mathbb{Z}_{2}^{N}.
It is represented by a Walsh-Hadamard matrix H.
Lemma (Boolean Fourier transform)
Let $H_{S}(R)=2^{-N / 2}(-1)^{|R \cap S|}$ and $L=N I-A\left(\right.$ Laplacian of $\left.\mathcal{B}_{N}\right)$.
Then H_{S} is an eigenvector of L with eigenvalue $2|S|$.

Figure: Hadamard (Fourier) matrix, $N=8$ in dyadic lexicographic order.

Spatial and spectral limiting on \mathcal{B}_{N}

Space-limiting matrix $Q=Q_{K}: Q_{R, S}= \begin{cases}1, & R=S \&|S| \leq K \\ 0, & \text { else }\end{cases}$ Spectrum-limiting matrix $P=P_{K}$ by $P=H Q H$

Results and approach

Results: identify eigenvectors of spatio-spectral limiting $P Q$ Approach:

- Work in spectral domain: $Q P=H P Q H$
- Identify salient invariant subspaces of QP
- Subspaces factor
- Reduce to small matrix problem on radial factor
- Eigenvectors of small matrix determine eigenvectors of $Q P$
- Numerical computation via almost commuting operator and power method with a weight

Hamming spheres

Σ_{r} : Hamming sphere of radius r : vertices with r one-bits

Slepian vectors on cubes

Eigenspaces of $S S L$ on \mathcal{B}_{N} : Adjacency-invariant spaces

A: adjacency matrix of \mathcal{B}_{N} (dyadic lexicographic order) $A=A_{+}+A_{-}: A_{-}=A_{+}^{T} ; A_{+}$: lower triangular A_{+}maps data on Σ_{r} to data on Σ_{r+1} : outer adjacency
A_{-}maps data on Σ_{r} to data on Σ_{r-1} : inner adjacency

Figure: Highlighted: $A_{-}, \Sigma_{3} \rightarrow \Sigma_{2}$
\mathcal{W}_{r} : the orthogonal complement of $A_{+} \ell^{2}\left(\Sigma_{r-1}\right)$ inside $\ell^{2}\left(\Sigma_{r}\right)$.

$$
\ell^{2}\left(\Sigma_{r}\right)=A_{+} \ell^{2}\left(\Sigma_{r-1}\right) \oplus \mathcal{W}_{r}
$$

Theorem (Multiplier theorem)
Let $g \in \mathcal{W}_{r}$ and k such that $k \leq N-2 r$. Then

$$
A_{-} A_{+}^{k+1} g=(k+1)(N-2 r-k) A_{+}^{k} g \equiv m(r, k) A_{+}^{k} g
$$

Adjacency invariant subspaces

$\mathcal{V}_{r}=: \operatorname{span}\left\{A_{+}^{k} g: g \in \mathcal{W}_{r}, k=0, \ldots, N-2 r\right\} \simeq \mathcal{W}_{r} \otimes \mathbb{R}^{N-2 r+1}$
Lemma
A_{+}and $A_{-} \operatorname{map} \mathcal{V}_{r}$ to itself.
Idea: Fix \mathcal{W}_{r} coordinate. A_{+}acts as right shift of coefficients:
$\left(c_{0}+c_{1} A_{+}+\ldots\right) g \mapsto\left(c_{0} A_{+}+c_{1} A_{+}^{2}+\ldots\right) g$
By multiplier theorem, A_{-}acts as multiplicative left shift:
$\left(c_{0}+c_{1} A_{+}+\ldots\right) g \mapsto\left(c_{1} m(r, 0)+c_{2} m(r, 1) A_{+}+\ldots\right) g$
Corollary
$A=A_{+}+A_{-}$maps \mathcal{V}_{r} to itself. Polynomials $p(A)$ preserve \mathcal{V}_{r}.

Proposition

The spectrum-limiting operator $P=P_{K}$ can be expressed as a polynomial $p(A)$ of degree N.

Proof.

$$
p_{k}=\prod_{j=0, j \neq k}^{N} \frac{x-(N-2 j)}{2(j-k)} ; \quad p(x)=\sum_{k=0}^{K} p_{k}
$$

Then $P=p(A)$ as verified on Hadamard basis.

Coefficient matrices on $\mathcal{V}_{r}: M_{(r)}^{P}=p\left(M_{A}\right)$

Matrices $M_{A_{+}}, M_{A_{-}}$of A_{+}, A_{-}on $\mathbb{R}^{N-2 r+1}$:
$M_{A_{+}}=\left(\begin{array}{ccccc}0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \ddots & \therefore & 0 \\ 0 & & 0 & \ddots & 0 \\ \vdots & \cdots & 0 & \ddots & 0\end{array}\right) M_{A_{-}}=\left(\begin{array}{ccccc}0 & m(r, 0) & 0 \\ 0 & m(r, r) & 0 & \therefore \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & & \cdots & 0 & m(r, k+1-r) \\ 0 & & & 0\end{array}\right)$ $M_{A}=M_{A_{+}}+M_{A_{-}}$

Matrix of $M_{(r)}^{P}$ of P by substituting M_{A} for A in $P=p(A)$ Matrix of $M_{(r)}^{Q P}$ of $Q P$ by truncating $M_{(r)}^{P}$ to principal minor

Figure: Matrices M_{A} and $M^{P}, N=9, K=4, r=1$. (log scale)

Corollary

(i) Eigenvectors of coefficient matrices $M_{(r)}^{Q P}$ define coefficients of eigenvectors of $Q P$
(ii) (Completeness) Any eigenvector of QP comes from a coefficient eigenvector of $M_{(r)}^{Q P}$ for some r.

Issue: Coefficient eigenvectors are orthogonal wrt $W_{r}=[w(0), \ldots, w(K+1-r)] ; \quad w_{k}=(k!)^{2}\binom{N-2 r}{k}$

Problem: w_{k} are large numbers

Boolean analogue of prolate differential operator

$$
(\mathrm{BDO}) \quad D\left(\alpha I-T^{2}\right) D+\beta T^{2}
$$

T : diagonal; T^{2} : eigenvalues of Laplacian
$D=H T H ; D^{2}=L$.
$\mathrm{HBDO}=H \mathrm{BDOH}$

Proposition

If $\beta=2 \sqrt{K(K+1)}$ then HBDO commutes with Q_{K}, almost commutes with P_{K}, and has tridiagonal, W-s.a. coefficient matrix $M^{\text {HBDO }}$
Eigenvectors of M^{HBDO} can be used as seeds for a weighted power method to compute coefficient eigenvectors of $M_{r}^{Q P}$

Figure: Matrix $M^{\mathrm{HBDO}}, N=9, K=4$

