Multi-taper on domains and risk rates for the spectral norm

José Luis Romero

University of Vienna and Austrian Academy of Sciences

Overview

- Sample complexity of Thomson's estimator
- MSE bounds and benchmarks for Gaussian series
- Number of tapers and bandwidth
- Multi-taper on domains
- Computation of the Slepian tapers versus computation of the multi-taper

Classical multi-taper

- Stationary (real) time-series: $X(k), k \in \mathbb{Z}$
- Observations: $X(0), \ldots, X(N-1)$

Classical multi-taper

- Stationary (real) time-series: $X(k), k \in \mathbb{Z}$
- Observations: $X(0), \ldots, X(N-1)$

Estimator

$$\widehat{S}^{\mathrm{mt}}(\xi) = rac{1}{K} \sum_{j=0}^{K-1} \Big| \sum_{k=0}^{N-1} X(k) \, S_j(k) \, e^{2\pi i k \xi} \Big|^2$$

 S_j Slepian tapers with bandwidth [-W/2, W/2]Estimate for the spectral density $S(\xi) = \sum_{k \in \mathbb{Z}} \mathbb{E}[X(k)X(0)] e^{2\pi i k \xi}$

Classical multi-taper

- Stationary (real) time-series: $X(k), k \in \mathbb{Z}$
- Observations: $X(0), \ldots, X(N-1)$

Estimator

$$\widehat{S}^{\mathrm{mt}}(\xi) = rac{1}{K} \sum_{j=0}^{K-1} \Big| \sum_{k=0}^{N-1} X(k) \, S_j(k) \, e^{2\pi i k \xi} \Big|^2$$

 S_j Slepian tapers with bandwidth [-W/2, W/2]Estimate for the spectral density $S(\xi) = \sum_{k \in \mathbb{Z}} \mathbb{E}[X(k)X(0)] e^{2\pi i k \xi}$ Parameters: K, W

Questions:

- Choice of parameters
- MSE and sample complexity
- Optimality?

Error metric

$$\|S-\widehat{S}\|_{\infty} = \max_{\xi\in\mathbb{R}} |S(\xi)-\widehat{S}(\xi)|$$

$$\|S-\widehat{S}\|_{\infty} = \max_{\xi\in\mathbb{R}} |S(\xi)-\widehat{S}(\xi)|$$

This is the spectral error for covariance estimation

$$\max\left\{\left|\lambda\right|:\lambda\in\sigma(\Sigma-\widehat{\Sigma})\right\}=\max_{\left\|a\right\|_{2}\leq1}\left\|\Sigma a-\widehat{\Sigma}a\right\|_{2}$$

 $\Sigma_{jk} = \mathbb{E}[X(k)X(0)]$ true covariance; $\widehat{\Sigma}_{jk}$ estimated covariance Mean-squared error:

 $\mathbb{E}\big[\|S-\widehat{S}\|_{\infty}^2\big]$

$$\|S - \widehat{S}\|_{\infty} = \max_{\xi \in \mathbb{R}} |S(\xi) - \widehat{S}(\xi)|$$

This is the spectral error for covariance estimation

$$\max\left\{\left|\lambda\right|:\lambda\in\sigma(\Sigma-\widehat{\Sigma})\right\}=\max_{\left\|a\right\|_{2}\leq1}\left\|\Sigma a-\widehat{\Sigma}a\right\|_{2}$$

 $\Sigma_{jk} = \mathbb{E}[X(k)X(0)]$ true covariance; $\widehat{\Sigma}_{jk}$ estimated covariance Mean-squared error:

 $\mathbb{E}\big[\|S-\widehat{S}\|_{\infty}^2\big]$

As opposed to, say, $\sup_{\xi} \mathbb{E}[|S(\xi) - \widehat{S}(\xi)|^2]$

$$\|S - \widehat{S}\|_{\infty} = \max_{\xi \in \mathbb{R}} |S(\xi) - \widehat{S}(\xi)|$$

This is the spectral error for covariance estimation

$$\max\left\{\left|\lambda\right|:\lambda\in\sigma(\Sigma-\widehat{\Sigma})\right\}=\max_{\left\|a\right\|_{2}\leq1}\left\|\Sigma a-\widehat{\Sigma}a\right\|_{2}$$

 $\Sigma_{jk} = \mathbb{E}[X(k)X(0)]$ true covariance; $\widehat{\Sigma}_{jk}$ estimated covariance Mean-squared error:

 $\mathbb{E}[\|S-\widehat{S}\|_{\infty}^2]$

As opposed to, say, $\sup_{\xi} \mathbb{E}[|S(\xi) - \widehat{S}(\xi)|^2]$ Assumptions: X is Gaussian, S is C^2

$$\|S - \widehat{S}\|_{\infty} = \max_{\xi \in \mathbb{R}} |S(\xi) - \widehat{S}(\xi)|$$

This is the spectral error for covariance estimation

$$\max\left\{\left|\lambda\right|:\lambda\in\sigma(\Sigma-\widehat{\Sigma})\right\}=\max_{\left\|a\right\|_{2}\leq1}\left\|\Sigma a-\widehat{\Sigma}a\right\|_{2}$$

 $\Sigma_{jk} = \mathbb{E}[X(k)X(0)]$ true covariance; $\widehat{\Sigma}_{jk}$ estimated covariance Mean-squared error:

 $\mathbb{E}\big[\|S-\widehat{S}\|_{\infty}^2\big]$

As opposed to, say, $\sup_{\xi} \mathbb{E}[|S(\xi) - \hat{S}(\xi)|^2]$ Assumptions: X is Gaussian, S is C^2 Budget: N observations

$$\inf_{\widehat{S}} \sup_{S} \mathbb{E} \Big[\big\| S - \widehat{S} \big\|_{\infty}^2 \Big] \asymp \left(\frac{\log N}{N} \right)^{4/5}, \qquad \| S \|_{C^2} \le 1$$

$$\inf_{\widehat{S}} \sup_{S} \mathbb{E} \Big[\big\| S - \widehat{S} \big\|_{\infty}^2 \Big] \asymp \left(\frac{\log N}{N} \right)^{4/5}, \qquad \| S \|_{C^2} \le 1$$

Theorem (Thomson's MT achieves the optimal rate; R-, Speckbacher, 2022)

$$\sup_{S} \mathbb{E}\left[\left\|S - \widehat{S}^{\mathrm{mt}}\right\|_{\infty}^{2}\right] \asymp \left(\frac{\log N}{N}\right)^{4/5}, \qquad \|S\|_{C^{2}} \leq 1$$

with K = NW and $K \asymp N^{4/5} \log(N)^{1/5}$

$$\inf_{\widehat{S}} \sup_{S} \mathbb{E} \Big[\big\| S - \widehat{S} \big\|_{\infty}^2 \Big] \asymp \left(\frac{\log N}{N} \right)^{4/5}, \qquad \| S \|_{C^2} \le 1$$

Theorem (Thomson's MT achieves the optimal rate; R-, Speckbacher, 2022)

$$\sup_{S} \mathbb{E}\left[\left\|S - \widehat{S}^{\mathrm{mt}}\right\|_{\infty}^{2}\right] \asymp \left(\frac{\log N}{N}\right)^{4/5}, \qquad \|S\|_{C^{2}} \leq 1$$

with K = NW and $K \asymp N^{4/5} \log(N)^{1/5}$

Explicit MSE bound with K = NW and K arbitrary

- Choices K < NW?

$$\inf_{\widehat{S}} \sup_{S} \mathbb{E} \Big[\big\| S - \widehat{S} \big\|_{\infty}^2 \Big] \asymp \left(\frac{\log N}{N} \right)^{4/5}, \qquad \| S \|_{C^2} \le 1$$

Theorem (Thomson's MT achieves the optimal rate; R-, Speckbacher, 2022)

$$\sup_{S} \mathbb{E}\left[\left\|S - \widehat{S}^{\mathrm{mt}}\right\|_{\infty}^{2}\right] \asymp \left(\frac{\log N}{N}\right)^{4/5}, \qquad \|S\|_{C^{2}} \leq 1$$

with K = NW and $K \asymp N^{4/5} \log(N)^{1/5}$

Explicit MSE bound with K = NW and K arbitrary

- Choices K < NW? High dynamic ranges

$$\inf_{\widehat{S}} \sup_{S} \mathbb{E} \Big[\big\| S - \widehat{S} \big\|_{\infty}^2 \Big] \asymp \left(\frac{\log N}{N} \right)^{4/5}, \qquad \| S \|_{C^2} \le 1$$

Theorem (Thomson's MT achieves the optimal rate; R-, Speckbacher, 2022)

$$\sup_{S} \mathbb{E}\left[\left\|S - \widehat{S}^{\mathrm{mt}}\right\|_{\infty}^{2}\right] \asymp \left(\frac{\log N}{N}\right)^{4/5}, \qquad \|S\|_{C^{2}} \le 1$$

with K = NW and $K \asymp N^{4/5} \log(N)^{1/5}$

Explicit MSE bound with K = NW and K arbitrary

- Choices K < NW? High dynamic ranges Plenty of anecdotal evidence

$$\inf_{\widehat{S}} \sup_{S} \mathbb{E} \Big[\big\| S - \widehat{S} \big\|_{\infty}^2 \Big] \asymp \left(\frac{\log N}{N} \right)^{4/5}, \qquad \| S \|_{C^2} \le 1$$

Theorem (Thomson's MT achieves the optimal rate; R-, Speckbacher, 2022)

$$\sup_{S} \mathbb{E}\left[\left\|S - \widehat{S}^{\mathrm{mt}}\right\|_{\infty}^{2}\right] \asymp \left(\frac{\log N}{N}\right)^{4/5}, \qquad \|S\|_{C^{2}} \le 1$$

with K = NW and $K \asymp N^{4/5} \log(N)^{1/5}$

Explicit MSE bound with K = NW and K arbitrary

- Choices K < NW? High dynamic ranges Plenty of anecdotal evidence

- Wish / challenge: a formal model showing the optimality of a choice K < NW

$$\inf_{\widehat{S}} \sup_{S} \mathbb{E} \Big[\big\| S - \widehat{S} \big\|_{\infty}^2 \Big] \asymp \left(\frac{\log N}{N} \right)^{4/5}, \qquad \| S \|_{C^2} \le 1$$

Theorem (Thomson's MT achieves the optimal rate; R-, Speckbacher, 2022)

$$\sup_{S} \mathbb{E}\left[\left\|S - \widehat{S}^{\mathrm{mt}}\right\|_{\infty}^{2}\right] \asymp \left(\frac{\log N}{N}\right)^{4/5}, \qquad \|S\|_{C^{2}} \le 1$$

with K = NW and $K \simeq N^{4/5} \log(N)^{1/5}$

Explicit MSE bound with K = NW and K arbitrary

- Choices K < NW? High dynamic ranges Plenty of anecdotal evidence

- Wish / challenge: a formal model showing the optimality of a choice K < NW

- S. Karnik, J. Romberg, and M. A. Davenport,

"Thomson's multitaper method revisited." IEEE Trans. IT, to appear (see arxiv)

$$\mathbb{E}[\widehat{S}^{ ext{mt}}(\xi)] - S(\xi) = \int S(\xi - \xi')
ho(\xi') d\xi'$$

with the spectral window $\rho(\xi) = \frac{1}{K} \sum_{j=0}^{K-1} \left| \sum_{k=0}^{N-1} S_j(k) e^{2\pi i k \xi} \right|^2$

$$\mathbb{E}[\widehat{S}^{ ext{mt}}(\xi)] - S(\xi) = \int S(\xi - \xi')
ho(\xi') d\xi'$$

with the spectral window $\rho(\xi) = \frac{1}{K} \sum_{j=0}^{K-1} \left| \sum_{k=0}^{N-1} S_j(k) e^{2\pi i k \xi} \right|^2$

Figure: Thomson's 82

$$\mathbb{E}[\widehat{S}^{ ext{mt}}(\xi)] - S(\xi) = \int S(\xi - \xi')
ho(\xi') d\xi'$$

with the spectral window $\rho(\xi) = \frac{1}{K} \sum_{j=0}^{K-1} \left| \sum_{k=0}^{N-1} S_j(k) e^{2\pi i k \xi} \right|^2$

Heuristic:

Figure: Thomson's 82

$$\mathbb{E}[\widehat{S}^{ ext{mt}}(\xi)] - S(\xi) = \int S(\xi - \xi')
ho(\xi') \, d\xi'$$

with the spectral window $\rho(\xi) = \frac{1}{K} \sum_{j=0}^{K-1} \left| \sum_{k=0}^{N-1} S_j(k) e^{2\pi i k \xi} \right|^2$

Heuristic: with K = NW: $\rho \approx \frac{1}{W} \mathbb{1}_{[-W/2,W/2]}$ Theorem (Abreu, R-, 2017) $\int |\rho - \frac{1}{W} \mathbb{1}_{[-W/2,W/2]}| \lesssim \frac{\log(N)}{K}$

Figure: Thomson's 82

$$\mathbb{E}[\widehat{S}^{ ext{mt}}(\xi)] - S(\xi) = \int S(\xi - \xi')
ho(\xi') \, d\xi'$$

with the spectral window $\rho(\xi) = \frac{1}{K} \sum_{j=0}^{K-1} \left| \sum_{k=0}^{N-1} S_j(k) e^{2\pi i k \xi} \right|^2$

Figure: Thomson's 82

Heuristic: with K = NW: $\rho \approx \frac{1}{W} \mathbb{1}_{[-W/2,W/2]}$ Theorem (Abreu, R-, 2017) $\int |\rho - \frac{1}{W} \mathbb{1}_{[-W/2,W/2]}| \lesssim \frac{\log(N)}{K}$

Coro: weak MSE bounds: $\sup_{\xi} \mathbb{E} |S(\xi) - \widehat{S}^{\mathrm{mt}}(\xi)|^2 \lesssim N^{-4/5}$

$$\mathbb{E}[\widehat{S}^{ ext{mt}}(\xi)] - S(\xi) = \int S(\xi - \xi')
ho(\xi') \, d\xi'$$

with the spectral window $\rho(\xi) = \frac{1}{K} \sum_{j=0}^{K-1} \left| \sum_{k=0}^{N-1} S_j(k) e^{2\pi i k \xi} \right|^2$

Figure: Thomson's 82

Heuristic: with K = NW: $\rho \approx \frac{1}{W} \mathbb{1}_{[-W/2,W/2]}$ Theorem (Abreu, R-, 2017) $\int |\rho - \frac{1}{W} \mathbb{1}_{[-W/2,W/2]}| \lesssim \frac{\log(N)}{K}$

Coro: weak MSE bounds: $\sup_{\xi} \mathbb{E} |S(\xi) - \widehat{S}^{\mathrm{mt}}(\xi)|^2 \lesssim N^{-4/5}$

Strong MSE bounds: $\mathbb{E} \sup_{\xi} |S - \widehat{S}|_{\infty}^2 \leq N^{-4/5} \log(N)^{4/5}$ concentration for quadratic forms

Lii and Rosenblatt 2008: Bias for individual tapered periodograms

Lii and Rosenblatt 2008: Bias for individual tapered periodograms Heuristic explanation with Szegő theorem - no estimates

Lii and Rosenblatt 2008: Bias for individual tapered periodograms Heuristic explanation with Szegő theorem - no estimates

Aggregated bias is much simpler!

$$\rho(\xi) = \frac{1}{K} \sum_{j=0}^{K-1} \left| \sum_{k=0}^{N-1} S_j(k) e^{2\pi i k \xi} \right|^2$$

- Stationary (real) process: $X(k), k \in \mathbb{Z}^d$
- Observations: X(k), $k \in \Omega$

- Stationary (real) process: $X(k), k \in \mathbb{Z}^d$
- Observations: X(k), $k \in \Omega$

Estimator

$$\widehat{S}^{\mathrm{mt}}(\xi) = \frac{1}{\kappa} \sum_{j=0}^{\kappa-1} \Big| \sum_{k \in \Omega} X(k) S_j(k) e^{2\pi i k \xi} \Big|^2$$

 S_j Slepian tapers with bandwidth $[-W/2, W/2]^d$

- Stationary (real) process: $X(k), k \in \mathbb{Z}^d$
- Observations: X(k), $k \in \Omega$

Estimator

$$\widehat{S}^{\text{mt}}(\xi) = \frac{1}{K} \sum_{j=0}^{K-1} \Big| \sum_{k \in \Omega} X(k) S_j(k) e^{2\pi i k \xi} \Big|^2$$

$$S_j \text{ Slepian tapers with bandwidth } [-W/2, W/2]^d$$

Parameters: K, W - natural choice: $K = N \cdot W^d$

- Stationary (real) process: $X(k), k \in \mathbb{Z}^d$
- Observations: X(k), $k \in \Omega$

Estimator

$$\widehat{S}^{\mathrm{mt}}(\xi) = \frac{1}{K} \sum_{j=0}^{K-1} \Big| \sum_{k \in \Omega} X(k) S_j(k) e^{2\pi i k \xi} \Big|^2$$

 S_j Slepian tapers with bandwidth $[-W/2, W/2]^d$

Parameters: K, W - natural choice: $K = N \cdot W^d$

Questions:

- Choice of parameters; MSE and sample complexity; Optimality?

- Stationary (real) process: $X(k), k \in \mathbb{Z}^d$
- Observations: X(k), $k \in \Omega$

Estimator

$$\widehat{S}^{\mathrm{mt}}(\xi) = \frac{1}{K} \sum_{j=0}^{K-1} \left| \sum_{k \in \Omega} X(k) S_j(k) e^{2\pi i k \xi} \right|^2$$

 S_j Slepian tapers with bandwidth $[-W/2, W/2]^d$

Parameters: K, W - natural choice: $K = N \cdot W^d$

Questions:

- Choice of parameters; MSE and sample complexity; Optimality?
- Numerical stability of the calculation of the tapers

- Stationary (real) process: $X(k), k \in \mathbb{Z}^d$
- Observations: X(k), $k \in \Omega$

Estimator

$$\widehat{S}^{\mathrm{mt}}(\xi) = \frac{1}{K} \sum_{j=0}^{K-1} \Big| \sum_{k \in \Omega} X(k) S_j(k) e^{2\pi i k \xi} \Big|^2$$

 S_j Slepian tapers with bandwidth $[-W/2, W/2]^d$

Parameters: K, W - natural choice: $K = N \cdot W^d$

Questions:

- Choice of parameters; MSE and sample complexity; Optimality?
- Numerical stability of the calculation of the tapers

Motivation: Geophysics (F. Simons)

From: Joakim Andén

From: Joakim Andén

From: Joakim Andén

(Proxy tapers; Andén, R-, 2020)

If $\{S_1^*, \ldots, S_K^*\}$ is an o.n.b. for the span of the Slepian tapers, then

$$\widehat{S}^{\mathrm{mt}}(\xi) = \frac{1}{K} \sum_{j=0}^{K-1} \Big| \sum_{k \in \Omega} X(k) S_j^*(k) e^{2\pi i k \xi} \Big|^2$$

- Individual tapered periodograms = ill-conditioned
- Average tapered periodograms = well-conditioned

- Individual tapered periodograms = ill-conditioned
- Average tapered periodograms = well-conditioned
- SVD-based computations work even if they show warnings

- \bullet Individual tapered periodograms = ill-conditioned
- Average tapered periodograms = well-conditioned
- SVD-based computations work even if they show warnings
- Other more direct approaches also work:
- Draw $\approx K$ random vectors
- Apply the Toeplitz matrix (band-time limiting) 2/3 times
- Orthogonalize the output

- Individual tapered periodograms = ill-conditioned
- Average tapered periodograms = well-conditioned
- SVD-based computations work even if they show warnings
- Other more direct approaches also work:
- Draw $\approx K$ random vectors
- Apply the Toeplitz matrix (band-time limiting) 2/3 times
- Orthogonalize the output

Theorem (dimension $d \ge 2$; R-, Speckbacher, 2022)

Assuming $\#\partial\Omega \lesssim N^{1-1/d}$. For $K = N \cdot W^d$ and $K = (\log(\operatorname{diam}(\Omega))^d \cdot N^2)^{1/3}$:

$$\mathbb{E}\big[\|S - \widehat{S}^{\mathrm{mt}}\|_{\infty}^2\big] \lesssim \Big(\frac{\log(\mathrm{diam}\Omega)}{N^{1/d}}\Big)^{4/3}$$

Theorem (dimension $d \ge 2$; R-, Speckbacher, 2022)

Assuming $\#\partial\Omega \lesssim N^{1-1/d}$. For $K = N \cdot W^d$ and $K = (\log(\operatorname{diam}(\Omega))^d \cdot N^2)^{1/3}$:

$$\mathbb{E}\big[\|S - \widehat{S}^{\mathrm{mt}}\|_{\infty}^2\big] \lesssim \Big(\frac{\log(\mathrm{diam}\Omega)}{N^{1/d}}\Big)^{4/3}$$

Follows from bound for general K

Theorem (dimension $d \ge 2$; R-, Speckbacher, 2022)

Assuming $\#\partial\Omega \lesssim N^{1-1/d}$. For $K = N \cdot W^d$ and $K = \left(\log(\operatorname{diam}(\Omega))^d \cdot N^2\right)^{1/3}$:

$$\mathbb{E} ig \| S - \widehat{S}^{ ext{mt}} \|_{\infty}^2 ig] \lesssim \Big(rac{\log(ext{diam} \Omega)}{N^{1/d}} \Big)^{4/3}$$

Follows from bound for general K

Theorem (some benchmarks $d \ge 2$; R-, Speckbacher, 2022) $\inf_{\widehat{S}} \sup_{S} \mathbb{E}[\|S - \widehat{S}\|_{\infty}^{2}] \gtrsim \left(\frac{\log N}{[\operatorname{diam}\Omega]^{d}}\right)^{\frac{4}{4+d}}, \qquad \|S\|_{C^{2}} \le 1$

Theorem (dimension $d \ge 2$; R-, Speckbacher, 2022)

Assuming $\#\partial\Omega \lesssim N^{1-1/d}$. For $K = N \cdot W^d$ and $K = \left(\log(\operatorname{diam}(\Omega))^d \cdot N^2\right)^{1/3}$:

$$\mathbb{E}\big[\|S - \widehat{S}^{\mathrm{mt}}\|_{\infty}^2\big] \lesssim \Big(\frac{\log(\mathrm{diam}\Omega)}{N^{1/d}}\Big)^{4/3}$$

Follows from bound for general K

Theorem (some benchmarks $d \ge 2$; R-, Speckbacher, 2022) $\inf_{\widehat{S}} \sup_{S} \mathbb{E}[\|S - \widehat{S}\|_{\infty}^{2}] \gtrsim \left(\frac{\log N}{[\operatorname{diam}\Omega]^{d}}\right)^{\frac{4}{4+d}}, \qquad \|S\|_{C^{2}} \le 1$

Theorem (dimension $d \ge 2$; R-, Speckbacher, 2022)

Assuming $\#\partial\Omega \lesssim N^{1-1/d}$. For $K = N \cdot W^d$ and $K = (\log(\operatorname{diam}(\Omega))^d \cdot N^2)^{1/3}$:

$$\mathbb{E}\big[\|S - \widehat{S}^{\mathrm{mt}}\|_{\infty}^2\big] \lesssim \Big(\frac{\log(\mathrm{diam}\Omega)}{N^{1/d}}\Big)^{4/3}$$

Follows from bound for general K

Theorem (some benchmarks $d \ge 2$; R-, Speckbacher, 2022)

$$\inf_{\widehat{S}} \sup_{S} \mathbb{E} \big[\big\| S - \widehat{S} \big\|_{\infty}^2 \big] \gtrsim \left(\frac{\log N}{[\operatorname{diam} \Omega]^d} \right)^{\frac{4}{4+d}}, \qquad \| S \|_{C^2} \leq 1$$

(Optimality of MT for some acquisition geometries) If d = 2 and diam $\Omega \approx N^{1/2}$ then Benchmark $MSE = N^{-2/3} (\log N)^{2/3}$ Multi-taper $MSE = N^{-2/3} (\log N)^{4/3}$ The spectral window

$$\rho(\xi) := \frac{1}{K} \sum_{j=0}^{K-1} \left| \sum_{k \in \Omega} S_j(k) e^{2\pi i k \xi} \right|^2$$

Theorem (Andén, R-, 2020) With $K = N \cdot W^d$: $\int \left| \rho - \frac{1}{W^d} \mathbb{1}_{[-W/2, W/2]^d} \right| \lesssim \frac{\# \partial \Omega \cdot W^{d-1}}{K} \left[1 + \log\left(\frac{N}{\# \partial \Omega}\right) \right]$

 K = N · W^d: no instabilities in computation of MT (proxy tapers work)

- K = N · W^d: no instabilities in computation of MT (proxy tapers work)
- Need to understand better advantages $K < N \cdot W^d$

- K = N · W^d: no instabilities in computation of MT (proxy tapers work)
- Need to understand better advantages $K < N \cdot W^d$
- Can we just use $K < N \cdot W^d$ proxy tapers?