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Spectral analysis

Spectral analysis provides key insights into the frequency domain characteristics of a time

series [e.g., Priestley, 1981, Percival and Walden, 1993].

Analyzing the spectral density function (SDF):

• allows us to explore periodicities in the data;

• provides an alternative way to analyze and estimate the covariance structure of sta-

tionary time series;

• can be used to understand the effect of preprocessing a time series
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Spectral density estimation

• Nonparametric estimators provide an adequate tradeoff between bias and variance, but

often such estimates are still too noisy when a stable SDF estimate is required.

e.g., periodogram, direct spectral estimators, lag window and overlapping segment averaging

spectral estimators, and multitaper (MT) spectral estimators.

• Using a parametric approach, model misspecification induced by considering a limited

class of models for the SDF, can compromise estimation.

• We use a semiparametric model for the SDF, in which the log SDF is expressed in terms

of a truncated basis expansion, where the number of basis functions are allowed to increase

with the sample size.
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The statistical problem

How to enforce sparsity by selecting the basis functions and estimating the model parameters

to adequately estimate the SDF, but also have computational efficiency as the sample size

increases.

• Gao [1993], Gao [1997], Moulin [1994] and Walden et al. [1998] enforce sparsity using a

penalized least squaress (LS) for the log SDF with wavelet soft thresholding.

Computational complexity: O(N), for a time series of N regularly sampled values.

• A number of approaches enforce smoothness of the SDF via an L2 penalty: Cogburn and

Davis [1974], Wahba and Wold [1975] and Wahba [1980] use penalized LS, and Pawitan

and O’Sullivan [1994] uses a penalized Whittle method.

To enforce sparsity, some L2 methods use model selection, often in combination with cross-

validation, to select the basis functions.
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Our approach: Tang et al. [2019]

• Use a quasi-likelihood method for estimating SDFs with a Whittle likelihood [Whittle,

1953] based on multitaper (MT) spectral estimates while enforcing sparsity.

– MT estimates provide good bias–variance tradeoff and can yield more efficient estimates

of the SDF [Thomson, 1982, Percival and Walden, 1993, Walden et al., 1998].

– The Whittle likelihood method improves estimation over traditional LS approaches.
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Spectral representation of a time series

• For univariate stationary time series {Xt : t ∈ Z} collected at sampling interval ∆ = 1 let

γ(τ ) = cov(Xt, Xt+τ ), τ ∈ Z

be the autocovariance function (ACVF).

• For an absolutely summable ACVF, the spectral density function (SDF) is

S(f ) =

∞∑
τ=−∞

γ(τ )e−i2πfτ , for frequency |f | ≤ 1/2,

with

γX(τ ) =

∫ 1/2

−1/2
ei2πfτS(f )df, for all integers τ,

Thus, {γX(τ )} and {S(f )} are Fourier transform pairs.
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Multitaper spectral estimation

• Many estimates of the SDF can be written as a multitaper (MT) spectral estimate,

an average of a number of tapered spectral estimates [Walden, 2000].

• Suppose we observe N observations, X = (X1, . . . , XN)T , of process {Xt}.

Let {hk,t : k = 1, . . . , K, t = 1, . . . , N} denote K orthonormal data tapers.

• The standard MT spectral estimator of the SDF is

Ŝ(mt)(f ) =
1

K

K∑
k=1

Ŝ
(mt)
k (f ), (1)

where the kth (k = 1, . . . , K) tapered spectral estimator (eigenspectrum) is

Ŝ
(mt)
k (f ) =

∣∣∣∣∣
N∑
t=1

hk,tXt exp(−i2πft)

∣∣∣∣∣
2

.
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Basis models for SDFs

• With basis functions φ(f ) = (φ1(f ), . . . , φp(f ))T and letting β = (β1, . . . , βp)
T , for each

frequency f let

logS(f ) =

p∑
l=1

φl(f )βl = φT (f )β, (2)

where number of basis functions p is allowed to increase with the sample size.

• Many choices:

Orthogonal polynomial bases, Fourier bases, B-spline bases, wavelet bases, as well as some

mixed dictionary bases.

– A wavelet basis based on the discrete wavelet transform with the Daubechies least

asymmetric wavelet filter of width 8 had good performance across our simulations.
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MT-Whittle likelihood

Using the observations {X1, . . . , XN}, we evaluate the MT spectral estimates Ŝ(mt)(fj) on

the set of M = dN/2e − 1 non-zero, non-Nyquist (i.e., not equal to 1/2) (NZNN) Fourier

frequencies defined by {
fj =

j

N
: j = 1, . . . ,M

}
.

Definition 1: Using MT spectral estimators, a quasi-likelihood function with expression

lW (S(f )) =

M∑
j=1

{
logS(fj) +

Ŝ(mt)(fj)

S(fj)

}
(3)

is called the MT-Whittle likelihood function.
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MT-Whittle likelihood: asymptotics

Proposition 1 [Walden, 2000, Section 3.3]

Suppose that {Xt : t ∈ Z} is strictly stationary with all moments existing such that

∞∑
τ1,...,τl−1=−∞

|cum(Xt+τ1, . . . , Xt+τl−1, Xt)| <∞,

for l = 2, 3, . . ., where cum(Xt1, . . . , Xtl) denotes the joint cumulant function of order l (see,

e.g., Brillinger [1981], sec. 2.3). Also for each N , let {hk,t : k = 1, . . . , K, t = 1, . . . , N} be a

set of K orthonormal sine or DPSS data tapers. Then

Ŝ(mt)(f )→d S(f )
χ2
2K

2K
, for 0 < f < 1/2, as N →∞,

where χ2
2K denotes a chisquared random variable (RV) with 2K degrees of freedom.
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MT-Whittle likelihood: quasi-likelihood representation

In general MT-spectral estimators are correlated over frequencies [Thomson, 1982].

For a locally slowly varying spectrum, for 0 < f < f ′ < 1/2, with f close to f ′,

Cov{Ŝ(mt)(f ), Ŝ(mt)(f ′)} ≈ S2(f )

K2

K∑
k=1

K∑
l=1

∣∣∣∣∣
N∑
t=1

ht,kht,le
i2π(f ′−f)t

∣∣∣∣∣
2

.

However, the next result shows that our MT-Whittle likelihood (3) can be reinterpreted as a

gamma quasi-likelihood, which ignores these correlations between frequencies.

Proposition 2: The MT-Whittle likelihood (3) corresponds to a gamma quasi-likelihood

assuming the asymptotic distribution of Proposition 1 at the NZNN Fourier frequencies, and

assuming independence between the Fourier frequencies.
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L1 Penalized MT-Whittle Method

• Incorporating a Lasso-type penalty with the MT-Whittle likelihood (3), our optimization

problem is then

minβ lW (Φβ) + λ

p∑
l=1

|βl|, (4)

where λ ≥ 0 denotes the tuning parameter of the L1 penalty.

• Specifically, by introducing the equality constraints ζ = Φβ and η = β , the original

problem (4) is equivalent to

minζ ,η,β lW (ζ) + λ

p∑
l=1

|ηl|

subject to Φβ = ζ and β = η ,

where ζ ∈ RM and η = (η1, η2, . . . , ηp)
T ∈ Rp.

12



An alternating direction method of multipliers (ADMM) algorithm

Advantages:

• Favors distributed computing;

• Per-iteration cost is often much lower than that of the interior point algorithm in literature

for optimizing penalized non-Gaussian likelihood;

• An attractive choice when solutions of medium accuracy are sufficient, such as parameter

estimation problems.

Overall computational complexity for the ADMM algorithm to reach an ε-optimal solution is:

• O(ε−1M 2 + M 3) for a general basis;

• O(ε−1M) for orthogonal basis functions, such as wavelets.

(Remember M is the number of NZNN Fourier frequencies.)
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An ADMM algorithm

Step 0. Initialize β(0), ζ(0), η(0), u
(0)
1 and u

(0)
2 ;

Step 1. Alternately update the primal variables (ζ,η,β) and the associated dual vari-

ables (u1,u2). The (n + 1)-th set of updates are:

β(n+1) = (ΦTΦ + Ip)
−1
{

ΦT (ζ(n)− u(n)
1 ) + η(n)− u(n)

2

}
;

ζ
(n+1)
j = arg minζj {ζj + Ŝ(mt)(fj) exp(−ζj) +

ρ

2
{φT (fj)β

(n+1) − ζj + u
(n)
1j }

2}, j = 1, . . . ,M ;

η
(n+1)
l = ST

(
β
(n+1)
l + u

(n)
2l ,

λl
ρ

)
, l = 1, . . . , p;

u
(n+1)
1 = u

(n)
1 + Φβ(n+1) − ζ(n+1);

u
(n+1)
2 = u

(n)
2 + β(n+1) − η(n+1),

Step 2. Iterate Step 1. until when both the primal and dual residuals are smaller than pre-

specified precisions following the criterion in Boyd et al. [2011].

ρ > 0 is a penalty parameter; ST(x, a) = Sign(x) max(|x| − a, 0) is soft-thresholding

function with threshold a ≥ 0.
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Tuning parameter selection

1. Scale-calibrated universal threshold, adapted from Donoho and Johnstone [1994],

λuniv =
√

1/K
√

2 log p.

(1/K follows from asymptotic quasi-likelihood theory for the MT-Whittle estimator of β.)

2. Generalized information criterion [Fan and Tang, 2013],

λGIC = arg minλ {2K lW (Φβλ) + cM |pλ|} , (5)

where βλ is the optimizer of L1 penalized MT-Whittle likelihood with tuning parameter

λ, |pλ| denotes the number of non-zero elements in βλ, and cM is the penalty parameter.

When the number of predictors, p, increases exponentially as the sample size M increases

Fan and Tang [2013] suggest cM = log logM log p.
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Theory – assumptions

Assumption A1: (Sparsity condition) Assume that

logS(fj) = 〈φ(fj) ,β
0〉, j = 1, . . . ,M,

for some sparse vector β0 ∈ Rp and basis functions φ(fj) satisfying ‖φ(f )‖∞ ≤ B for f ∈

[−1/2, 1/2] and some constant B.

Assumption A2: (Compatibility condition) Let S = {l : β0
l 6= 0} and s0 = |S|. Assume

that for any v ∈ Rp with ‖vSc‖1 ≤ 3‖vS‖1 that

1

M

M∑
j=1

Rj

{
exp(v>φ(fj))− v>φ(fj)− 1

}
≥ min

{
c0
s0
‖vS‖21 , c1Mγ−1

2‖vS‖1
}
,

with probability tending to 1 as M → ∞ for some constants c0 > 0, c1 > 0, 0 < γ ≤ 1
2 and

where we define Rj ≡ Ŝ(mt)(fj)/S(fj) for j = 1, . . . ,M .
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Theorem

Under Assumptions (A1) and (A2) and on the event∥∥∥∥∥∥
M∑
j=1

(Rj − 1)φ(fj)

∥∥∥∥∥∥
∞

<
c1
3
Mγ+1

2 , (6)

we have that
∥∥∥β̂(λ)− β0

∥∥∥
1
≤ 3λs0

2c0M
for any λ satisfying 2

∥∥∥∑M
j=1 (Rj − 1)φ(fj)

∥∥∥
∞
≤ λ <

2
3c1M

γ+1
2 . In particular, when

λ = 2

∥∥∥∥∥∥
M∑
j=1

(Rj − 1)φ(fj)

∥∥∥∥∥∥
∞

,

we have, on the event (6), that∥∥∥β̂(λ)− β0
∥∥∥
1
≤ 3s0
c0M

∥∥∥∥∥∥
M∑
j=1

(Rj − 1)φ(fj)

∥∥∥∥∥∥
∞

,

and

supf∈[−1
2 ,

1
2 ]
| log Ŝ(f )− logS(f )| ≤ 3Bs0

c0M

∥∥∥∑M
j=1 (Rj − 1)φ(fj)

∥∥∥
∞
,

where log Ŝ(f ) is the L1 penalized MT-Whittle estimator of the log SDF.

17



Implications

• By Proposition 1, we have that Rj − 1 behaves like χ2
2K/2K − 1 RVs asymptotically.

We conjecture this leads to the following rate of convergence for β̂ and the log SDF:∥∥∥β̂(λ)− β0
∥∥∥
1

= Op

(
s0

log(M)√
M

)
,

sup
f∈[−1

2 ,
1
2 ]

| log Ŝ(f )− logS(f )| = Op

(
s0

log(M)√
M

)
.

• If we further assume that s0 is quite small, that is, the true log SDF has a sparse basis

representation, a parametric rate M−1/2 can be achieved (up to a log factor).

• This is in contrast to the slower nonparametric rate for typical one-dimensional nonpara-

metric regression or density estimation problems (see, e.g., Tsybakov [2009]).

• Our theory suggests that by exploring sparsity, if it is indeed present in the signal, a

significant improvement in estimation efficiency can be achieved using our proposed method.
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Simulation study

We use the following processes:

1. AR(2) process: Xt = ϕ1,1Xt−1 + ϕ1,2Xt−2 + εt with ϕ1,1 = 0.97
√

2, ϕ1,2 = −0.972;

2. AR(4) process: Xt = ϕ2,1Xt−1 + ϕ2,2Xt−2 + ϕ2,3Xt−3 + ϕ2,4Xt−4 + εt with ϕ2,1 =

2.7607, ϕ2,2 = −3.8106, ϕ2,3 = 2.6535, ϕ2,4 = −0.9238;

3. High-order MA process: Xt =
∑15000

l=0 θlεt−l with θ0 = 1, θ1 = π/4, and θl = sin(π(l −

1)/2)/(l − 1) for l = 2, 3, . . . , 15000.

We demonstrate how our estimation method performs when the innovations {εt} are N(0, 1)

RVs, but also present the same AR(2) process case 1 with innovations generated by a shifted

Exponential distribution with mean 0 and variance 1.

19



A comparison of spectral estimates for different four processes
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Decibel-scale integrated root mean squared error (IRMSE) comparisons
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Biomedical application: Electroencephalography (EEG)

Electroencephalogram (EEG) signals are often used to monitor brain activity and diagnose

disease such as epileptic seizures.

(Source: https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875)
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Application: EEG signals

• We analyze two channels of EEG data collected from the left and right front cortex of one

male rat. Quiroga et al. [2002] argue that, genetically, analyzing these series is relevant to

the study of human epilepsy.

• The data is presented in van Luijtelaar [1997], and was originally downloaded from http:

//www.vis.caltech.edu/~rodri (no longer available).

• Each channel contains 1,000 voltages recorded in units of microvolts (mV) collected at a

sampling rate of 200 Hz.
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Application: EEG signals, continued
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Conclusions

• Enforcing sparsity, our L1 penalized MT-Whittle estimator performs better or as good as

previous methods for estimating the SDF.

• Extends to the broader classes of basis functions and their mixtures, beyond those tradi-

tionally used with wavelet thresholding.

• Simulations demonstrate a clear advantage of using the GIC and universal threshold over

cross-validation for tuning parameter selection.

• Computationally, universal threshold is data-invariant (it only relies on the number of

tapers K) whereas the calculation of GIC is data-dependent.

• ADMM algorithm can be accelerated when parallel computing and orthogonal bases used.
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Extensions for univariate spectral analysis

• Sandwich-based interval estimation based on sample splitting and de-sparsifying the

lasso to improve statistical inference [e.g. Meinshausen et al., 2009, Dezeure et al., 2015,

Faraway, 2016]

• Varying the initial number of basis, p, may further improve the estimation. Related ap-

proaches include the truncated lasso by Shen et al. [2012].

• A dictionary of different types of basis functions, and how to automatically choose the best

basis type [e.g. Wasserman, 2006].

• Time series prediction using estimated SDF [e.g., Brockwell and Davis, 1991].
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Multivariate and beyond

• Cholesky-based approaches for estimating the spectral density matrix (SDM).

• Comparison to non-Cholesky-based approaches for estimating the SDM [e.g. Holan et al.,

2017, Chau and von Sachs, 2020].

• Asymptotic theory of the L1 penalized multivariate MT-Whittle estimators for SDM.

• An extension of the sandwich method to interval estimation of the SDM elements, and the

construction of a joint confidence region.

• Spectral analysis of nonstationary time series

• Spatio-temporal processes.
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