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Quantum states, channels and symmetry

H, HA, HB : finite dimensional Hilbert spaces
▶ A (quantum) state ρ on H is a positive element in B(H) with

Tr(ρ) = 1. We denote by D(H) the set of all states on H.
▶ A (quantum) channel Φ : B(HA) → B(HB) is a CPTP (completely

positive, trace-preserving) map.

Conservation of symmetry is a central theme in quantum theory,
where group action (or representation) play an important role.

For a fixed state ρ on H the set {U ∈ U(H) : UρU∗ = ρ} form a
subgroup G of U(H), i.e. we get a unitary representation
π : G → U(H).

G : a compact group ⇒ rich finite dimensional representation theory!
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Bipartite states and channels under symmetry

For bipartite states acting on the composite system HAB = HA⊗HB

it is natural to consider “local” unitaries of the form U ⊗ V .{
πA : G → U(HA)

πB : G → U(HB)
Unitary representations on a compact group G .

(Def) A bipartite state ρ on HAB is called (πA, πB)-invariant if

[πA(x)⊗ πB(x)] ρ [πA(x)
∗ ⊗ πB(x)

∗] = ρ, ∀x ∈ G .

In other words, ρ is invariant under the representation πA ⊗ πB .

(Def) A channel Φ : B(HA) → B(HB) is called (πA, πB)-covariant if

Φ(πA(x) ρ πA(x)
∗) = πB(x)Φ(ρ)πB(x)

∗, ∀x ∈ G , ∀ρ ∈ D(HA).

The above concepts can obviously be extended to any operators on
HAB and any linear maps from B(HA) into B(HB)
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The CJ-map and the state-channel duality

(Notations)

- L(A,B): linear maps from B(HA) into B(HB).
- CP(A,B), CPTP(A,B): CP, CPTP maps from B(HA) into B(HB).

(The CJ-map) L(A,B) → B(HAB), Φ 7→ CΦ :=
1

dA

dA∑
i ,j=1

eij ⊗ Φ(eij).

(Choi-Jamio lkowski) For Φ ∈ L(A,B)

Φ ∈ CP(A,B) ⇔ CΦ ∈ B(HAB)+.

(State-channel duality) For Φ ∈ L(A,B)

Φ ∈ CPTP(A,B) ⇔ CΦ ∈ D(HAB) with TrB(CΦ) = idA/dA.

(Prop) Φ ∈ L(A,B) is (πA, πB)-covariant ⇔ CΦ is (πA, πB)-invariant.

Recall π is the conjugate representation given by π(x) = π(x−1)T ,
where XT is the transpose of X .
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Questions and previous works

(Q) (1) Can we characterize invariant bipartite states/covariant
channels? (2) Can we describe QIT properties of those
states/channels more effectively?

(Werner, Holevo, Vollbrecht, Keyl, · · · )
▶ U: the fundamental representation (identity map) of U(n)

O: the fundamental representation of O(n)
▶ (Werner states/Werner-Holevo channels)

⋆ (U,U)-invariant states ρλ = λp0 + (1− λ)p1 ∈ D(Cn ⊗Cn), 0 ≤ λ ≤ 1
for some projections p0, p1 on C2n. ⇒ a line-segment (or a 1-simplex)

⋆ (U,U)-covariant channels Φλ : B(Cn) → B(Cn) with CΦλ = ρλ.

▶ (Isotropic states/depolarizing channels)
⋆ (U,U)-invariant states ρt = tq0 + (1− t)q1 ∈ D(Cn ⊗ Cn), 0 ≤ t ≤ 1

for some projections q0, q1 on C2n. ⇒ a line-segment (or a 1-simplex)
⋆ (U,U)-covariant channels Ψt : B(Cn) → B(Cn) with CΨt = ρt

depolarizing channels.

▶ (O,O)-inv. states (resp. (O,O)-cov. channels) form a 2-simplex.
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Previous works: continued

(Al Nuwairan ‘14, SU(2) case)

ŜU(2) = {πn : n ≥ 1, dimπn = n + 1}.
▶ A complete description of extreme points of the convex set of

(πn, πm)-covariant channels.
▶ Made connection to invariant states by Vollbrecht-Werner.
▶ Serious representation theory beyond the fundamental ones is used.

(Datta et al., ‘17, finite group case)
▶ Finite group cases (e.g. Sn, n = 3, 4) have been examined.
▶ Multiplicity free condition of tensor decomposition is used.

(Def) We say that the irreducible decomposition
πA ⊗ πB ∼= π1 ⊕ · · · ⊕ πn for two finite dimensional representations
πA, πB of G is called multiplicity free if πj and πk are not equivalent
for any j ̸= k .
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Main results and the Clebsch-Gordan channels
(Thm) Let πA, πB be irreducible unitary representations of a cpt
group G s.t. πA ⊗ πB is multiplicity-free. Then, the set of
(πA, πB)-covariant channels is a simplex whose extreme points are
exactly the Clebsch-Gordan channels.

For πA ⊗ πB ∼= π1 ⊕ · · · ⊕ πn
⇒ πA is a subrepresentation of πB ⊗ πj for each 1 ≤ j ≤ n
⇒ there is an isometry Vj : HA → HB ⊗Hj such that

V ∗
j [πB(x)⊗ πj(x)]Vj = πA(x), x ∈ G .

(Def) The channel Φj ∈ CPTP(A,B) with Vj as the Stinespring
isometry, i.e.

Φj(X ) := (Id ⊗ Tr)(VjXV
∗
j ), X ∈ B(HA)

is called the Clebsch-Gordan channels (shortly, CG-channels).

(Brannan/Collins/L./Youn, CMP ’20) SU(2)-CG-channels are not
“coming from” known examples including quantum erasure,
amplitude damping, dephasing and depolarizing channels.
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Remarks on the proof

(Step 1) We first focus on the (πA, πB)-invariant states acting on
HAB and observe that they form a simplex with extreme points being
orthogonal projections onto the subspaces appearing in the
decomposition of πA ⊗ πB .

(Step 2) We check that the mentioned projections are exactly the
images of CG-channels through the CJ-map.

(Our contributions) We highlighted the role of the CJ-map and the
CG-channels.
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When do we get the multiplicity-free condition?
(SU(2) case) Recall ŜU(2) = {πn : n ≥ 1, dimπn = n + 1}.

πn ⊗ πm ∼= πn+m ⊕ · · · ⊕ π|n−m|

is multiplicity-free! Note πn ∼= πn.

(U(n), O(n) cases) U ⊗ U, U ⊗ U, O ⊗ O are multiplicity free.
Note O = O.

(Sn case) Recall that the the fundamental representation of Sn, i.e.
permutation matrices decomposes into (n)⊕ (n − 1, 1). The
(n − 1)-dimensional component (n − 1, 1) will be denoted by V .

V ⊗ V ∼= (n)⊕ (n − 1, 1)⊕ (n − 2, 2)⊕ (n − 2, 1, 1)

is multiplicity free. Note V = V .
▶ Thus, (V ,V )-covariant channels form a 3-simplex.
▶ When we can specify the intertwining isometries, we can write down

the corresponding CG-channels. For example, n = 4 case has been
examined in the paper [LY].
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The case of projective representations
All the above results can be extended to projective representations.

Recall that σ : G → T is called a 2-cocycle if

σ(s, t)σ(st, u) = σ(s, tu)σ(t, u), σ(s, e) = σ(e, t) = 1, s, t, u ∈ G .

We say a strongly continuous map π : G → U(H) is a projective
representation w.r.t. σ (shortly, σ-rep.) if

π(st) = π(s)π(t)σ(s, t), s, t ∈ G .

F : finite abelian group, G := F × F̂
▶ σ((x , γ), (y , δ)) := γ(y).
▶ The unique σ-rep. W : G → U(ℓ2(F )) is given by W (x , γ) := MγTx ,

where Tx f (y) = f (y − x), Mγ f (y) = γ(y)f (y), f ∈ ℓ2(F ).

W ⊗W : multiplicity-free with the associated CG-channels AdW (s),
s ∈ G .

(W ,W )-covariant channels for G = Zd , d ≥ 1 are called the Weyl
covariant channels in the literature.
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Applications (in progress): Degradability

A channel Φ with its Stinespring representation
Φ(X ) = id ⊗ Tr(VXV ∗) has a complementary channel Φc given by
Φc(X ) = Tr⊗ id(VXV ∗). We say that Φ is degradable if there is
another channel Ψ such that Ψ ◦ Φ = Φc .

(Remarks)
▶ When a (πA, πB)-cov. channel Φ is degradable, we can take Ψ with a

suitable covariance (with the multiplicity free assumption)!
▶ Covariance is well-preserved by composition.

(Thm) π2: irreducible SU(2)-representation with dim= 3.
There are only two degradable channels among (π2, π2)-covariant
channels.

We use composition rules of CG-channels and the above remarks for a
systematic approach.
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Applications (in progress): EBT and PPT

Recall that a channel Φ is called EBT (entanglement breaking) and
PPT if CΦ is separable and PPT, respectively.

(Recall)
- Φ is EBT ⇔ Ψ ◦ Φ is CP for any positive Ψ
- Φ is PPT ⇔ T ◦ Φ is CP, where T is the transpose map.

(Rem)
- Covariance is actually a property of a linear map and positive
covariance maps have similar structure (with the multiplicity free
assumption)
- Sometimes taking a unitary conjugate after T can be covariant.

(Thm) EBT = PPT among (π2, π2)-covariant channels.

We use, again, composition rules of CG-channels and the above
remarks for a systematic approach.
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Quantum groups

All the results in the above are true (except the projective
representation case) for compact quantum groups of Kac-type.

For non-Kac type quantum groups (e.g. SUq(2)) we can adapt the
Heisenberg picture, i.e. UCP maps for quantum channels. The
Clebsch-Gordan maps still play an important role, but we need to use
quantum trace instead of the usual trace.

The usual Schrödinger picture is not suitable for non-Kac case since
we can show that SUq(2)-covariant channels are rarely TP.
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Thank you for your attention.
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