Amenability Gaps for Central Fourier Algebras of Finite Groups

John Sawatzky
University of Waterloo

June 18, 2022

Banach Algebra Amenability

Amenability

A bounded approximate diagonal for Banach algebra \mathcal{A} is a bounded net $\left(d_{\alpha}\right)_{\alpha}$ in $\mathcal{A} \hat{\otimes} \mathcal{A}$ such that for $a \in \mathcal{A}$

- $a \cdot d_{\alpha}-d_{\alpha} \cdot a \rightarrow 0$
- $a m\left(d_{\alpha}\right) \rightarrow a$

If a bounded approximate diagonal exists than \mathcal{A} is called amenable.

Banach Algebra Amenability

Amenability

A bounded approximate diagonal for Banach algebra \mathcal{A} is a bounded net $\left(d_{\alpha}\right)_{\alpha}$ in $\mathcal{A} \hat{\otimes} \mathcal{A}$ such that for $a \in \mathcal{A}$

- $a \cdot d_{\alpha}-d_{\alpha} \cdot a \rightarrow 0$
- $a m\left(d_{\alpha}\right) \rightarrow a$

If a bounded approximate diagonal exists than \mathcal{A} is called amenable.
Amenability constant: We denote the amenability constant of a Banach algebra \mathcal{A} by
$A M(\mathcal{A})=\inf \left\{\sup \left\|\omega_{\alpha}\right\|:\left(\omega_{\alpha}\right)\right.$ is a bounded approximate diagonal for $\left.\mathcal{A}\right\}$

Banach Algebra Amenability

Amenability

A bounded approximate diagonal for Banach algebra \mathcal{A} is a bounded net $\left(d_{\alpha}\right)_{\alpha}$ in $\mathcal{A} \hat{\otimes} \mathcal{A}$ such that for $a \in \mathcal{A}$

- $a \cdot d_{\alpha}-d_{\alpha} \cdot a \rightarrow 0$
- $a m\left(d_{\alpha}\right) \rightarrow a$

If a bounded approximate diagonal exists than \mathcal{A} is called amenable.
Amenability constant: We denote the amenability constant of a Banach algebra \mathcal{A} by
$A M(\mathcal{A})=\inf \left\{\sup \left\|\omega_{\alpha}\right\|:\left(\omega_{\alpha}\right)\right.$ is a bounded approximate diagonal for $\left.\mathcal{A}\right\}$ α

Theorem [Johnson]

The group algebra $L^{1}(G)$ is amenable if and only if G is an amenable group, in which case $A M\left(L^{1}(G)\right)=1$.

Amenability of the Fourier Algebra

Theorem [5, Johnson 1994]
Let G be a finite group, denote the irreducible characters on G by $\operatorname{Irr}(G)$, and let $A(G)$ be the Fourier algebra of G. Then

$$
A M(A(G))=\frac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^{3}
$$

Amenability of the Fourier Algebra

Theorem [5, Johnson 1994]

Let G be a finite group, denote the irreducible characters on G by $\operatorname{Irr}(G)$, and let $A(G)$ be the Fourier algebra of G. Then

$$
A M(A(G))=\frac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^{3}
$$

Theorem [4, Choi (Preprint)]

A locally compact group G is abelian if and only if $A M(A(G))<\frac{3}{2}$. In this case $A M(A(G))=1$.

Amenability of the Fourier Algebra

Theorem [5, Johnson 1994]

Let G be a finite group, denote the irreducible characters on G by $\operatorname{Irr}(G)$, and let $A(G)$ be the Fourier algebra of G. Then

$$
A M(A(G))=\frac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^{3}
$$

Theorem [4, Choi (Preprint)]

A locally compact group G is abelian if and only if $A M(A(G))<\frac{3}{2}$. In this case $A M(A(G))=1$.

This is what is known as a gap result, with the idea being that there is a "gap" between 1 and $\frac{3}{2}$ that $A M(A(G))$ can never achieve.

Amenability of the Fourier Algebra

Theorem [5, Johnson 1994]

Let G be a finite group, denote the irreducible characters on G by $\operatorname{Irr}(G)$, and let $A(G)$ be the Fourier algebra of G. Then

$$
A M(A(G))=\frac{1}{|G|} \sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^{3}
$$

Theorem [4, Choi (Preprint)]

A locally compact group G is abelian if and only if $A M(A(G))<\frac{3}{2}$. In this case $A M(A(G))=1$.

This is what is known as a gap result, with the idea being that there is a "gap" between 1 and $\frac{3}{2}$ that $A M(A(G))$ can never achieve.

This particular bound is sharp because $A M\left(A\left(D_{4}\right)\right)=\frac{3}{2}$.

The Center of the Group Algebra

Let G be a finite group. Then it is well-known that we can identify

$$
Z L^{1}(G)=\operatorname{span}^{L^{1}(G)} \operatorname{Irr}(G)
$$

The Center of the Group Algebra

Let G be a finite group. Then it is well-known that we can identify

$$
Z L^{1}(G)=\operatorname{span}^{L^{1}(G)} \operatorname{Irr}(G)
$$

Theorem [3, Choi, 2016]

A finite group G is abelian if and only if $A M\left(Z L^{1}(G)\right)<\frac{7}{4}$. In this case $A M\left(Z L^{1}(G)\right)=1$.

The Center of the Group Algebra

Let G be a finite group. Then it is well-known that we can identify

$$
Z L^{1}(G)=\operatorname{span}^{L^{1}(G)} \operatorname{Irr}(G)
$$

Theorem [3, Choi, 2016]

A finite group G is abelian if and only if $A M\left(Z L^{1}(G)\right)<\frac{7}{4}$. In this case $A M\left(Z L^{1}(G)\right)=1$.

The proof of the gap of $Z L^{1}(G)$ heavily relies on the fact that if $N \unlhd G$ then $A M\left(Z L^{1}(G / N)\right) \leq A M\left(Z L^{1}(G)\right)$

The Center of the Group Algebra

Let G be a finite group. Then it is well-known that we can identify

$$
Z L^{1}(G)=\operatorname{span}^{L^{1}(G)} \operatorname{Irr}(G)
$$

Theorem [3, Choi, 2016]

A finite group G is abelian if and only if $A M\left(Z L^{1}(G)\right)<\frac{7}{4}$. In this case $A M\left(Z L^{1}(G)\right)=1$.

The proof of the gap of $Z L^{1}(G)$ heavily relies on the fact that if $N \unlhd G$ then $A M\left(Z L^{1}(G / N)\right) \leq A M\left(Z L^{1}(G)\right)$

This bound is also sharp, because $A M\left(Z L^{1}\left(D_{4}\right)\right)=\frac{7}{4}$.

The Central Fourier Algebra

For a compact group G denote the central Fourier algebra of G by

$$
Z A(G)=A(G) \cap Z L^{1}(G)
$$

where the norm is the $A(G)$ norm. If we restrict to finite groups then $Z A(G)$ and $Z L^{1}(G)$ are both equal to the class functions on G, albeit with different norms and multiplication.

The Central Fourier Algebra

For a compact group G denote the central Fourier algebra of G by

$$
Z A(G)=A(G) \cap Z L^{1}(G)
$$

where the norm is the $A(G)$ norm. If we restrict to finite groups then $Z A(G)$ and $Z L^{1}(G)$ are both equal to the class functions on G, albeit with different norms and multiplication.

Theorem [2, Azimifard, Samei, Spronk, 2009]

A finite group G is abelian if and only if $A M(Z A(G))<\frac{2}{\sqrt{3}}$. In this case $A M\left(Z L^{1}(G)\right)=1$.

The Central Fourier Algebra

For a compact group G denote the central Fourier algebra of G by

$$
Z A(G)=A(G) \cap Z L^{1}(G)
$$

where the norm is the $A(G)$ norm. If we restrict to finite groups then $Z A(G)$ and $Z L^{1}(G)$ are both equal to the class functions on G, albeit with different norms and multiplication.

Theorem [2, Azimifard, Samei, Spronk, 2009]

A finite group G is abelian if and only if $A M(Z A(G))<\frac{2}{\sqrt{3}}$. In this case $A M\left(Z L^{1}(G)\right)=1$.

Importantly, the above gap is not necessarily sharp. The smallest known value for $A M(Z A(G))$ is $\frac{7}{4}$, and just like with $A M\left(Z L^{1}(G)\right)$ it is achieved at D_{4}.

$A M(Z A(G))$ and $A M\left(Z L^{1}(G)\right)$

Theorem [2] and [3]
Let G be a finite group. Then

$$
\begin{gathered}
A M\left(Z L^{1}(G)\right)=\frac{1}{|G|^{2}} \sum_{C, C^{\prime} \in \operatorname{Conj}(G)}|C|\left|C^{\prime}\right|\left|\sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^{2} \chi_{\pi}(C) \overline{\chi_{\pi}\left(C^{\prime}\right)}\right| \\
\text { and } \\
\left.A M(Z A(G))=\left.\frac{1}{|G|^{2}} \sum_{\chi, \chi^{\prime} \in \operatorname{Irr}(G)} d_{\chi} d_{\chi^{\prime}}\left|\sum_{C \in \operatorname{Conj}(G)}\right| C\right|^{2} \chi(C) \overline{\chi^{\prime}(C)} \right\rvert\, .
\end{gathered}
$$

$A M(Z A(G))$ and $A M\left(Z L^{1}(G)\right)$

Theorem [2] and [3]

Let G be a finite group. Then

$$
\begin{aligned}
& A M\left(Z L^{1}(G)\right)=\frac{1}{|G|^{2}} \sum_{C, C^{\prime} \in \operatorname{Conj}(G)}|C|\left|C^{\prime}\right|\left|\sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^{2} \chi_{\pi}(C) \overline{\chi_{\pi}\left(C^{\prime}\right)}\right| \\
& \text { and } \\
& \left.A M(Z A(G))=\left.\frac{1}{|G|^{2}} \sum_{\chi, \chi^{\prime} \in \operatorname{Irr}(G)} d_{\chi} d_{\chi^{\prime}}\left|\sum_{C \in \operatorname{Conj}(G)}\right| C\right|^{2} \chi(C) \overline{\chi^{\prime}(C)} \right\rvert\, .
\end{aligned}
$$

Calculations in GAP show that of the 851 non-abelian groups with order less than 100, there are 678 groups with $A M\left(Z L^{1}(G)\right)=A M(Z A(G))$. Interestingly, the first group of odd order that doesn't satisfy this has order 567.

Structure of Sum

What kind of values can $A M(Z A(G))$ achieve? Recall that

$$
\left.A M(Z A(G))=\left.\frac{1}{|G|^{2}} \sum_{\chi, \chi^{\prime} \in \operatorname{Irr}(G)} d_{\chi} d_{\chi^{\prime}}\left|\sum_{C \in \operatorname{Conj}(G)}\right| C\right|^{2} \chi(C) \overline{\chi^{\prime}(C)} \right\rvert\, .
$$

Structure of Sum

What kind of values can $A M(Z A(G))$ achieve? Recall that

$$
\left.A M(Z A(G))=\left.\frac{1}{|G|^{2}} \sum_{\chi, \chi^{\prime} \in \operatorname{Irr}(G)} d_{\chi} d_{\chi^{\prime}}\left|\sum_{C \in \operatorname{Conj}(G)}\right| C\right|^{2} \chi(C) \overline{\chi^{\prime}(C)} \right\rvert\, .
$$

Fact

Because irreducible characters have values in the algebraic integers, we know that $\left.\left|\sum_{C \in \operatorname{Conj}(G)}\right| C\right|^{2} \chi(C) \overline{\chi^{\prime}(C)} \mid \in \mathbb{Z}$

Structure of Sum

What kind of values can $A M(Z A(G))$ achieve? Recall that

$$
\left.A M(Z A(G))=\left.\frac{1}{|G|^{2}} \sum_{\chi, \chi^{\prime} \in \operatorname{Irr}(G)} d_{\chi} d_{\chi^{\prime}}\left|\sum_{C \in \operatorname{Conj}(G)}\right| C\right|^{2} \chi(C) \overline{\chi^{\prime}(C)} \right\rvert\,
$$

Fact

Because irreducible characters have values in the algebraic integers, we know that $\left.\left|\sum_{C \in \operatorname{Conj}(G)}\right| C\right|^{2} \chi(C) \overline{\chi^{\prime}(C)} \mid \in \mathbb{Z}$

However, it turns out that taking the complex multitude is unnecessary, as the inner quantity is always an integer.

Structure of Sum

Proposition [S.]
The value $\sum_{C \in C}|C|^{2} \chi(C) \overline{\chi^{\prime}(C)}$ is an integer divisible by $|Z(G)|$. $C \in \operatorname{Conj}(G)$

Structure of Sum

Proposition [S.]

The value $\sum_{C \in \operatorname{Conj}(G)}|C|^{2} \chi(C) \overline{\chi^{\prime}(C)}$ is an integer divisible by $|Z(G)|$.

Idea of Proof

- Use Clifford theory to create a partition of $\operatorname{Irr}(G)$ based on $\operatorname{Irr}(Z(G))$.
- Simplify the sum based on this partition.
- Use Galois theory to show that what remains is a rational algebraic integer, hence an integer.

Two Character Degrees and Two Conjugacy Classes

Theorem [1, Alaghmandan, Choi, Samei, 2014]

Let G be a non-abelian finite group such that every non-linear irreducible character has degree m. Then

$$
A M\left(Z L^{1}(G)\right)=1+2\left(m^{2}-1\right)\left(1-\frac{1}{|G| \cdot\left|G^{\prime}\right|} \sum_{C \in \operatorname{Conj}(G)}|C|^{2}\right)
$$

Two Character Degrees and Two Conjugacy Classes

Theorem [1, Alaghmandan, Choi, Samei, 2014]

Let G be a non-abelian finite group such that every non-linear irreducible character has degree m. Then

$$
A M\left(Z L^{1}(G)\right)=1+2\left(m^{2}-1\right)\left(1-\frac{1}{|G| \cdot\left|G^{\prime}\right|} \sum_{C \in \operatorname{Conj}(G)}|C|^{2}\right)
$$

Theorem [S.]

Let G be a non-abelian finite group where all non-central conjugacy classes have size k. Then

$$
A M(Z A(G))=2 k-1+2(1-k) \cdot \frac{|Z(G)|}{|G|^{2}} \cdot\left(\sum_{\chi \in \operatorname{Irr}(G)} d_{\chi}^{4}\right)
$$

Two Character Degrees and Two Conjugacy Classes

Example

Let p be a prime. A finite group G is called p-extraspecial if

- $|Z(G)|=p$
- $G / Z(G)$ is non-trivial elementary abelian p-group

If the above is satisfied then $|G|=p^{2 n+1}$, and G has both two character degrees and two conjugacy class sizes. Both the formulas for $A M\left(Z L^{1}(G)\right)$ and $A M(Z A(G))$ apply and yield the same result, namely that

$$
A M\left(Z L^{1}(G)\right)=A M(Z A(G))=1+2\left(1-\frac{1}{p^{2 n}}\right)\left(1-\frac{1}{p}\right)
$$

Two Character Degrees and Two Conjugacy Classes

Example

Let p be a prime. A finite group G is called p-extraspecial if

- $|Z(G)|=p$
- $G / Z(G)$ is non-trivial elementary abelian p-group

If the above is satisfied then $|G|=p^{2 n+1}$, and G has both two character degrees and two conjugacy class sizes. Both the formulas for $A M\left(Z L^{1}(G)\right)$ and $A M(Z A(G))$ apply and yield the same result, namely that

$$
A M\left(Z L^{1}(G)\right)=A M(Z A(G))=1+2\left(1-\frac{1}{p^{2 n}}\right)\left(1-\frac{1}{p}\right)
$$

Question

Does $A M\left(Z L^{1}(G)\right)=A M(Z A(G))$ hold for all finite groups with two character degrees and two conjugacy class sizes?

Hereditary Properties

$A(G)$ and $Z L^{1}(G)$
Both $A M(A(G))$ and $A M\left(Z L^{1}(G)\right)$ possess nice hereditary properties:

- If H is a closed subgroup of G then $A M(A(H)) \leq A M(A(G))$
- If $N \unlhd G$ then $A M\left(Z L^{1}(G / N)\right) \leq A M\left(Z L^{1}(G)\right)$

Hereditary Properties

$A(G)$ and $Z L^{1}(G)$

Both $A M(A(G))$ and $A M\left(Z L^{1}(G)\right)$ possess nice hereditary properties:

- If H is a closed subgroup of G then $A M(A(H)) \leq A M(A(G))$
- If $N \unlhd G$ then $A M\left(Z L^{1}(G / N)\right) \leq A M\left(Z L^{1}(G)\right)$

Because $Z A(G)=Z L^{1}(G) \cap A(G)$, the hope would be that these hereditary properties would also hold for $A M(Z A(G))$.

Hereditary Properties

$A(G)$ and $Z L^{1}(G)$

Both $A M(A(G))$ and $A M\left(Z L^{1}(G)\right)$ possess nice hereditary properties:

- If H is a closed subgroup of G then $A M(A(H)) \leq A M(A(G))$
- If $N \unlhd G$ then $A M\left(Z L^{1}(G / N)\right) \leq A M\left(Z L^{1}(G)\right)$

Because $Z A(G)=Z L^{1}(G) \cap A(G)$, the hope would be that these hereditary properties would also hold for $A M(Z A(G))$.

Example

If $G=C_{8} \rtimes\left(C_{2} \times C_{2}\right)$ and $N=D_{8}$ is identified as a normal subgroup of G, then $A M(Z A(G))=2.59375$ and $A M Z A(N)=2.6875$, so $A M(Z A(G))<A M Z A(N)$.

Property Q Groups

Definition

We will say that a group has property Q if $A M(Z A(G)) \geq A M Z A(G / N)$ for all $N \unlhd G$.

Property Q Groups

Definition

We will say that a group has property Q if $A M(Z A(G)) \geq A M Z A(G / N)$ for all $N \unlhd G$.

Theorem [S.]

Let G be a finite group with property Q. Then G is abelian if and only if $A M(Z A(G))<\frac{7}{4}$, in which case $A M(Z A(G))=1$.

Property Q Groups

Definition

We will say that a group has property Q if $A M(Z A(G)) \geq A M Z A(G / N)$ for all $N \unlhd G$.

Theorem [S.]

Let G be a finite group with property Q. Then G is abelian if and only if $A M(Z A(G))<\frac{7}{4}$, in which case $A M(Z A(G))=1$.

Just like with $Z L^{1}(G)$ this bound is sharp, because $A M\left(Z A\left(D_{4}\right)\right)=\frac{7}{4}$.

Property Q Groups

Definition

We will say that a group has property Q if $A M(Z A(G)) \geq A M Z A(G / N)$ for all $N \unlhd G$.

Theorem [S.]

Let G be a finite group with property Q. Then G is abelian if and only if $A M(Z A(G))<\frac{7}{4}$, in which case $A M(Z A(G))=1$.

Just like with $Z L^{1}(G)$ this bound is sharp, because $A M\left(Z A\left(D_{4}\right)\right)=\frac{7}{4}$.

Example

There is a group of order $192 N \cong C_{2}$ in G such that $G / N \cong \operatorname{SmallGroup}(96,204)$, then $A M(Z A(G))=13.4921875$ and $A M Z A(G / N)=15.53125$, so G does not have property Q.

AM(ZA(G)) Gap Bound

Question

Is it true that a finite group G is abelian if and only if $A M(Z A(G))<\frac{7}{4}$?

AM(ZA(G)) Gap Bound

Question

Is it true that a finite group G is abelian if and only if $A M(Z A(G))<\frac{7}{4}$?

Examples

The $\frac{7}{4}$ gap holds for the following classes of groups:

- All groups with order less than 384 (via GAP computations)
- Frobenius Groups with abelian factor and kernel
- Extraspecial p-groups
- Groups with property Q
- Any group G with $A M(Z A(G))=A M\left(Z L^{1}(G)\right)$

That's it, folks!

Thank you for attending my talk :)

References I

(Rahmood Alaghmandan, Yemon Choi, and Ebrahim Samei, ZL-amenability constants of finite groups with two character degrees, Canad. Math. Bull. 57 (2014), no. 3, 449-462. MR 3239107

Ahmadreza Azimifard, Ebrahim Samei, and Nico Spronk, Amenability properties of the centres of group algebras, J. Funct. Anal. 256 (2009), no. 5, 1544-1564. MR 2490229
T) Yemon Choi, A gap theorem for the ZL-amenability constant of a finite group, Int. J. Group Theory 5 (2016), no. 4, 27-46. MR 3490226
\qquad , An explicit minorant for the amenability constant of the fourier algebra, 2020, arXiv:1410.5093.
國 Barry Edward Johnson, Non-amenability of the Fourier algebra of a compact group, J. London Math. Soc. (2) 50 (1994), no. 2, 361-374. MR 1291743

