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Arens products

Let A be a Banach algebra.

I Back in 1951, Arens proved that the multiplication of A can be extended to its

bidual A∗∗ (so that the embedding ε : A→ A∗∗ is an algebra homomorphism).

There are actually two symmetric, canonical ways of doing it:

• The first multiplication, say �, is defined in such a way that whenever p = limα aα,

q = limβ bβ (these are σ(A∗∗,A∗)-limits):

p�q = lim
α

lim
β

(aα · bβ).

• The second one, ♦, would yield:

p♦q = lim
β

lim
α

(aα · bβ) (1)

I (A∗∗,�) and (A∗∗,♦) are Banach algebras.

I For each p ∈ A∗∗, the maps q 7→ q�p and q 7→ p♦q are weak∗-continuous.
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L1(G )

I Let G be a locally compact metric group (nondiscrete). If φ ∈ L∞(G) is not continuous at

1, we can find bounded approximate identities {eα,1 : α ∈ Λ} and {eα,2 : α ∈ Λ} such that

lim
α
〈φ, eα,1〉 6= lim

n
〈φ, eα,2〉.

I Let ei ∈ L1(G)∗∗, i = 1, 2, be, respectively, weak∗-accumulation points of {eα,i : α ∈ Λ}.
Then:

〈e1, φ〉 6= 〈e2, φ〉 =⇒ e1 6= e2,

p�ei = p, ei♦p = p, for each p ∈ L1(G)∗∗ and i = 1, 2

(e1 and e2 are �-right and ♦-left identities). Hence

(e1 − e2)�e1 = e1 − e2, e1�(e1 − e2) = 0,

e1♦(e1 − e2) = e1 − e2 (e1 − e2)♦e1 = 0.

And the maps q 7→ (e1 − e2)�q and q 7→ p♦(e1 − e2) are not weak∗-continuous.

In addition:
(e1 − e2)�e1 6= (e1 − e2)♦e2 and

(e1 − e2)�e1 6= e1�(e1 − e2).
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Arens regularity and the center

Definition

We say that A is Arens regular if for every p, q ∈ A∗∗, p�q = p♦q.

Definition

We define:

Z(l)
t (A∗∗) = {p ∈ A∗∗ : q 7→ p�q is continuous} (left topological center)

Z(r)
t (A∗∗) = {p ∈ A∗∗ : q 7→ q♦p is continuous} (right topological center)

Za (A∗∗) = {p ∈ A∗∗ : p�q = q�p for every q ∈ A∗∗} (algebraic center)

A ⊆ Z(l)
t (A∗∗). If A is commutative Za (A∗∗) = Z(l)

t (A∗∗) = Z(r)
t (A∗∗).

Definition

We say that A is strongly Arens irregular (SAI) if A = Z(l)
t (A∗∗) = Z(r)

t (A∗∗)
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L1(G ) is (left) strongly Arens irregular

Theorem (Işik, Pym, Ülger, 1987)

Let G be a compact group and let e be a right identity of L1(G)∗∗. For m ∈ L1(G)∗∗

m = C∗∗µ (e) + r where µ ∈ M(G) and r ∈ C(G)⊥.

Cµ : L1(G)→ L1(G) is the convolution operator and p�r = 0, for every p ∈ L1(G)∗∗, i.e., r is a

right annihilator.

Theorem

L1(G) is always SAI .

Proof, compact commutative case.

Hands on G : If µ ∈ M(G) \ L1(G), there is φ ∈ L∞(G) such that µ ∗ φ is not continuous.

Let m ∈ Z(A∗∗). Then m = C∗∗µ (e) + r .

If µ /∈ L1(G), pick φ ∈ L∞(G) and s ∈ C(G)⊥ with 0 6= 〈 s, µ̌ ∗ φ 〉 . But

〈 s, µ̌ ∗ φ 〉 =
〈
s, (C∗∗µ (e) + r).φ

〉
= 〈 s�m, φ 〉

= 〈m�s, φ 〉 = 0.

If µ ∈ L1(G), then r ∈ Z(A∗∗). But 0 = e�r = r�e = r and m ∈ L1(G).
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Strongly Arens irregular algebras

WaSaBI :=
{
A Banach algebra : A is WSC, has a BAI and A is an Ideal of A∗∗

}
.

The algebra L1(G) is in WaSaBI iff G is compact.

Theorem (Grosser 1979, Baker-Lau-Pym, 1998)

Let A ∈ WaSaBI and let e be a mixed identity of A∗∗ (p�e = e♦p = p for every p ∈ A∗∗). For

p ∈ A∗∗

p = e�q + r where q ∈ A
∗∗ and r ∈ WAP(A)⊥ is a right annihilator.

Theorem (Baker-Lau-Pym, 1998)

If A ∈ WaSaBI , then Z(A∗∗) = A, i.e., A is SAI.

Proof with sequential BAI (en)n.

Let m ∈ Z(l)
t (A∗∗). Then an accumulation point of (m�en)n will be of the form m�e with e an

accumulation point of (en)n. But, if m = limα aα, aα ∈ A,

m�e = limα limβ aαen(β) = limα aα = m.

Hence limn m�en = m and WSC implies m ∈ A.
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Ideals of algebras A ∈ WaSaBI

i : J → A will be the inclusion map, i∗ : A∗ → J∗, the restriction map. G will be a compact Abelian group and

Γ a discrete amenable group.

I Let J E A be a closed ideal.

Let w̃ be the topology that e�A∗∗ receives from σ
(
WAP(A)∗,WAP(A)

)
. Then

J∗∗ = J
w̃ ⊕ i∗

(
WAP(A)⊥

)
.

Elements of J
w̃

can always be identified with elements of M(A)

I (particular case) Let E ⊆ Ĝ , then

L1
E (G)∗∗ ∼= ME (G)⊕ i∗ (C(G)) ,

where ME (G) = {µ ∈ M(G) : µ̂(χ) = 0, for every χ /∈ E}.

Definition

A subset E ⊆ Ĝ is said to be a Riesz set if ME (G) = L1
E (G).

Theorem (Ülger 2011)

If E ⊆ Ĝ is a Riesz set, then L1
E (G) is Arens regular.

Aim

Classify ideals L1
E (G)E L1(G) (J E A ∈ WaSaBI ) in terms of their Arens regularity properties.
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L1
E (G)∗∗ ∼= ME (G)⊕ i∗ (C(G)) ,

where ME (G) = {µ ∈ M(G) : µ̂(χ) = 0, for every χ /∈ E}.

Definition
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Big and small subsets of Ĝ

I Riesz sets are usually found among sparse sets. . . but not always: the classical

thick example of a Riesz set is N, so L1
N(T) is Arens regular.

I In general, the smaller E ⊂ Ĝ is, the better Arens regularity properties are

expected.

I The extreme cases are clear:

• If E is finite, L1
E (G) = ME (G) is reflexive.

This can be extended: L1
E (G) is reflexive if

and only if E is a Λ(1)-set (Hare, 1988). Λ(1)-sets are Riesz sets. (E is a Λ(p) set if

there exist 0 < q < p and C such that for every f ∈ TrigE (G), ‖f ‖p ≤ C‖f ‖q).

• If Ĝ \ E is finite, then L1
E (G) ∈ WaSaBI and L1

E (G) is SAI. This can be extended:

L1
E (G) ∈ WaSaBI if and only if E is in the coset ring of Ĝ (Liu, van Rooij and Wang,

1973; a consequence of Cohen’s idempotent theorem).
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• If Ĝ \ E is finite, then L1
E (G) ∈ WaSaBI and L1

E (G) is SAI. This can be extended:

L1
E (G) ∈ WaSaBI if and only if E is in the coset ring of Ĝ (Liu, van Rooij and Wang,
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Characterizations

Theorem

Let G be a compact Abelian group and let E ⊆ Ĝ . Then, L1
E (G) is Arens regular if and only if

i∗
(
M−E (G) ∗ L∞(G)

)
⊆ i∗(C(G)).

Theorem

Let G be a compact Abelian group and let E ⊆ Ĝ . Then, L1
E (G) is SAI if and only if

co

(
i∗ (M−E (G) ∗ L∞(G))

)
= L1

E (G)∗.

Theorem

Let A ∈ WaSaBI and let J E A. Then:

I J is Arens regular if and only if i∗
(
A
∗
.J∗∗ ∪ J∗∗.A∗

)
⊂ i∗(WAP(A)).

I J is SAI if and only if co

(
i∗ (J∗∗.A∗.J∗∗)

)
= J∗.

Corollary (sample)

Let G be a discrete amenable group and let E ⊂ G . Then AE (G) is SAI if and only if

co (i∗(BE (G).VN(G))) = AE (G)∗.

The same can be done with L1(G), G compact and E ⊂ Σ, the dual object of G or, more

generally with A ∈ WaSaBI and E ⊂ Σ a set of representations of A. . .
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E (G) is Arens regular if and only if

i∗
(
M−E (G) ∗ L∞(G)

)
⊆ i∗(C(G)).

Theorem

Let G be a compact Abelian group and let E ⊆ Ĝ . Then, L1
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Small sets

G will be a compact Abelian group and E ⊆ Ĝ .

Definition

A subset E ⊆ Ĝ is a small-1-1 set if µ1, µ2 ∈ ME (G) implies that µ1 ∗ µ2 ∈ L1(G).

I Examples of small-1-1 sets: Riesz sets are small-1-1 but . . . no more examples.

I Old problem: Are there any small-2 sets (µ ∗ µ ∈ L1(G) for all µ ∈ ME (G)) that

are not Riesz?

I Question: Is L1
E (G) Arens regular if and only if E is Riesz? We don’t know, but,

at least:

Theorem
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Definition
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Big sets

G will be a compact Abelian group and E ⊆ Ĝ

I If E is in the coset ring of Ĝ , (e.g., if Ĝ \ E is finite), Z
(
L1
E (G)∗∗

)
= L1

E (G).

Theorem

Let E ⊂ Ĝ be such that any χ · f (f ∈ L∞E and χ ∈ Ĝ) has just one invariant mean. Then L1
Ĝ\E

is not regular.

We call the sets Ĝ \ E with this property co-LP sets. If L∞
Ĝ\E ⊂ C(G), then we say that E is

co-Rosenthal.

Theorem

Let E1 ⊆ Ĝ be an element of the coset ring.

I If E2 is a Riesz set but is not a Λ(1)-set, then

L1
E1∪E2

(G) ( Z
(

(L1
E1∪E2

(G))∗∗
)

( (L1
E1∪E2

(G))∗∗.

I If E2 is a Sidon set, then

Z
(
L1
E1∪E2

(G)∗∗
)

= L1
E1∪E2

(G).

L1
E1∪E2

(G) is SAI while E1 ∪ E2 is not in the coset ring because E2 being Sidon set then

1E /∈ M(T).
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Ĝ\E ⊂ C(G), then we say that E is

co-Rosenthal.

Theorem
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We call the sets Ĝ \ E with this property co-LP sets. If L∞
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We call the sets Ĝ \ E with this property co-LP sets. If L∞
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I If E is in the coset ring of Ĝ , (e.g., if Ĝ \ E is finite), Z
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(
L1
E (G)∗∗

)
= L1

E (G).

Theorem
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Some special sets

I A subset E of Z that is a Sidon set: E = {2n : n ∈ N} (Sidon sets are Λ(p) for

every p, Sidon sets are Rosenthal sets and Rosenthal sets are Riesz),

I A subset E of Z that is a Riesz set but is not Λ(1) or Rosental: E = N, (of

course).

I There are subsets E of Z such that E is co-LP but is not co-Rosenthal (every

f ∈ L∞E (G) has a unique mean but some f ∈ L∞E (G) is discontinuous, i.e. Z \ E
is not a Rosenthal set): they are the complements of carefully constructed unions

of some finite (thin enough) set. These sets are not Λ(1) and are even dense in

the Bohr topology (Lefèvre and Rodŕıguez-Piazza, 2006).

I A subset E of Z such that E is co-Rosenthal but Z \ E is not Sidon:

E =
⋃∞

n=1 {(2n)!j : 1 ≤ j ≤ 2n} (Rosenthal, 1967).
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Ideals in other algebras

A is a Banach algebra in WaSaBI .

I Riesz ideals: we say that J is a Riesz ideal if J
w̃ ⊆ A . Riesz ideals are Arens

regulars.

I Small-1-1 ideals: we say that J is small-1-1 if p, q ∈ J
w̃

implies that p�q ∈ A. If

J is small-1-1 and J is not reflexive, then Z(J) 6= J∗∗. If J is not small-1-1, then
J∗

WAP(J)
contains a copy of J∗ (J is ENAR).

I Co-Rosenthal ideals: We say that J is co-Rosenthal, if J⊥ ⊆WAP(J). If J is

co-Rosenthal and is not Riesz, then J is not Arens regular. If J is co-Rosenthal

and M(A) = A⊕1 Ms , then J cannot be Riesz.
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Some questions Ĝ

I (Ülger 2011) If L1
E (T) is Arens regular, must E ⊆ Z be Riesz?

I If E ⊆ Z is small-1-1, must L1
E (T) be Arens regular?

I If E ⊆ Z is co-Rosenthal (or co-LP), must L1
E be SAI?

I Same questions for algebras in WaSaBI. Can any of the answers be different?

Special attention to L1
E (G), G compact not Abelian, and AE (G), G discrete and

amenable. Interesting: if G = SU(2), no infinite subset of Ĝ is a Λ(1)-set.
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I Same questions for algebras in WaSaBI. Can any of the answers be different?

Special attention to L1
E (G), G compact not Abelian, and AE (G), G discrete and

amenable. Interesting: if G = SU(2), no infinite subset of Ĝ is a Λ(1)-set.
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Some questions Ĝ

THANKS FOR YOUR ATTENTION
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Multipliers in the second dual Ĝ

RM(A) e�A∗∗

WAP(A)∗ M(A)

LM(A) A∗∗♦e

Le

Re

A∗∗ = e�A∗∗ ⊕WAP(A)⊥ = A∗∗♦e ⊕WAP(A)⊥

∼= M(A)⊕WAP(A)⊥ ∼= WAP(A)∗ ⊕
(

A∗

WAP(A)

)∗
.

Back

Jorge Galindo Ideals of group algebras and other strongly Arens irregular algebras classified by their Arens regularity properties



 

 

 

  

 

𝐸 finite 

𝐿𝐸
1 ሺ𝐺ሻ finite 

dimensional 

𝐸 ∈ Λሺ1ሻ ⊇ Λሺ𝑝) 

𝐿𝐸
1 ሺ𝐺ሻ reflexive 

𝐸 Riesz 

 
𝐿𝐸

1 ሺ𝐺ሻ  regular 

E small 1-1 

𝐿𝐸
1 ሺ𝐺ሻ  not  SAI 

E not small-1-1 
 

𝐿𝐸
1 ሺ𝐺ሻ ENAR 

 

E co-LP 

𝐿𝐸
1 ሺ𝐺ሻ not 

Arens regular 

𝐺\E finite 

𝐿𝐸
1 ሺ𝐺ሻ SAI 

Back
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