Cohomological obstructions to lifting properties for full group C*-algebras

Matthew Wiersma

University of Winnipeg

Based on joint work with A. Ioana and P. Spaas

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

A. Ioana, P. Spaas and M. Wiersma, Cohomological obstructions to lifting properties for full group C*-algebras. Geom. Funct. Anal. 30 (5) (2020), 1402–1438.

Lifting property

Conventions:

- C*-algebras are unital
- groups are discrete

Definition

A C*-algebra A has the *lifting property* (LP) if whenever $\varphi \colon A \to B/J$ is a ucp map where B is a C*-algebra and J is a closed two-sided ideal of B, there exists a ucp $\widetilde{\varphi} \colon A \to B$ so that the diagram

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

commutes.

Lifting property

Theorem (Choi-Effros 1976)

Nuclear C*-algebras have the LP.

Theorem (Kirchberg 1994)

 $C^*(\mathbb{F}_d)$ has the LP for $2 \leq d \leq \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Local lifting property

Definition (Kirchberg 1993)

A C*-algebra A has the *local lifting property* (LLP) if whenever $\varphi: A \rightarrow B/J$ is a ucp map where B is a C*-algebra and J is a closed two-sided ideal of B, and $E \subset A$ is a finite dimensional operator system, there exists a ucp map $\psi: E \rightarrow B$ so that

commutes.

Local lifting property

Theorem (Pisier 1996)

Full free products of C*-algebras with the LLP have the LLP.

Theorem (Pisier-Junge 1995)

 $B(\mathcal{H})$ does not have the LLP.

- Extremely involved proof using operator spaces
- Valette (1997): Shorter proof using Ramanujan graphs
- Pisier (2006): Shorter proof that uses free probability
- Ioana-Spaas-W. (2020): Shorter proof that uses 2-cohomology of Z² ⋊ SL(2,Z)

A tale of two C*-algebras

Two important C*-algebras:

- ▶ $C^*(\mathbb{F}_\infty)$: Every separable C*-algebra is a quotient of $C^*(\mathbb{F}_\infty)$
- ▶ B(H): Every separable C*-algebra embeds inside of B(H)

Theorem (Kirchberg 1993)

A C*-algebra A has the weak expectation property (WEP) if and only if

$$A \otimes_{\min} C^*(\mathbb{F}_{\infty}) = A \otimes_{\max} C^*(\mathbb{F}_{\infty}).$$

Theorem (Kirchberg 1993)

A C*-algebra A has the LLP if and only if

$$A \otimes_{\min} B(\mathcal{H}) = A \otimes_{\max} B(\mathcal{H}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Connes embedding conjecture

Theorem (Kirchberg 1993)

The Connes embedding conjecture (CEC) has a positive solution if and only if LLP implies WEP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Ji-Natarajan-Vidick-Wright-Yuen 2020)

The CEC is false.

Connes embedding conjecture

Theorem (Kirchberg 1993)

The Connes embedding conjecture (CEC) has a positive solution if and only if LLP implies WEP.

Theorem (Ji-Natarajan-Vidick-Wright-Yuen 2020)

The CEC is false.

Open Problem (Ozawa 2003)

Is the LLP equivalent to the LP for separable C*-algebras?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main Problem

Problem

Find groups whose full group C*-algebras do not have the (L)LP.

- Ozawa 2004: "Although it seems full group C*-algebras rarely have the LLP, there is no example of groups whose full C*-algebra is known to fail the LLP"
- Pisier 2016: "Problem: Find more examples of groups either with or without LLP"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples of groups with LLP

Example

If G is the subgroup of a free product of amenable groups, then $C^*(G)$ has the LLP.

No other examples of groups whose full C*-algebra has the LLP are known.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Examples of groups without the (L)LP

Theorem (Ozawa 2004)

There exists G such that $C^*(G)$ does not have the LP.

Theorem (Thom 2010)

There exists groups whose full group C*-algebra does not have the LLP.

Sneak peak of our results

Theorem (Ioana-Spaas-W. 2020)

 $C^*(\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}))$ does not have the LLP.

- ▶ Implies $SL(n, \mathbb{Z})$ does not have LLP for $n \ge 3$
- Fist example of residually finite G such that C*(G) does not have LLP

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

2-cohomology

Definition

A map $c \colon G \times G \to \mathbb{T}$ is a 2-cocycle if

```
c(g,h)c(gh,k) = c(g,hk)c(h,k)
```

for all $g, h, k \in G$.

Example

If $b \colon G \to \mathbb{T}$ is an arbitrary function, then $c \colon G \times G \to \mathbb{T}$ defined by

$$c(g,h) = b(g)b(h)\overline{b(gh)}$$

for $g, h \in G$ is a 2-cocycle. If a 2-cocyle can be written in this form, it is called a 2-coboundary.

Main Theorem: LLP

Theorem (Ioana-Spaas-W. 2020)

Suppose G is a countable group, $H \leq G$ has relative property (T) in G. If there exists 2-cocycles $c_n : G \times G \to \mathbb{T}$ so that

- 1. $c_n|_H$ is not a coboundary for H for each $n \in \mathbb{N}$,
- 2. $c_n(g,h) \rightarrow 1$ for all $g,h \in G$, and
- for every n ∈ N, there is a map π_n: G → U(H_n) into the unitary operator on some finite dimensional Hilbert space H_n so that π_n(g)π_n(h) = c_n(g, h)π_n(gh) for all g, h ∈ G.

Then $C^*(G)$ does not have the LLP.

Corollaries of Main Result: LLP

Corollary (Ioana-Spaas-W. 2020)

Suppose R is a finitely generated commutative ring with unity such that $\{2x : x \in R\}$ is infinite. Then $C^*(R^2 \rtimes SL(2, R))$ does not have the LLP.

Remark

This can be used to recover nearly all of Thom's examples of groups without the LLP.

Main Result: LP

Theorem (Ioana-Spaas-W. 2020)

Assume G is a countable group, $H \leq G$ has relative property (T) in G. Further suppose that there is a p.m.p. action $G \curvearrowright^{\sigma} (X, \mu)$ such that $\sigma|_{H}$ is ergodic, and 2-cocycles $c_n \in Z^2(G, L^0(X, \mathbb{T}))$ so that

- 1. $c_n|_H$ is not a coboundary for H for each $n \in \mathbb{N}$,
- 2. $\lim_{n\to\infty} \|c_n(g,h)-1\|_{\mathsf{L}^2} = 0, \text{ for every } g,h\in G.$

Then $C^*(G)$ does not have the LP.

Groups without the LP

Corollary (Ioana-Spaas-W. 2020)

Let G be a group with property (T). If either $H^2(G, \mathbb{R})$ or $H^2(G, \mathbb{Z}G)$ is nontrivial, then $C^*(G)$ does not have the LP.

Example

Let G be a simple Lie group with trivial centre, infinite cyclic fundamental group and property (T). If $\Gamma \leq G$ is a lattice inside of G, then C^{*}(Γ) does not have the LP.

• $C^*(Sp(2n,\mathbb{Z}))$ does not have the LP for $n \ge 2$.

Groups without the LP

Theorem (Ioana-Spaas-W. 2020; Pisier 2020)

If G is a non-finitely presentable group with property (T), then $C^*(G)$ does not have the LP.

Groups without the LP

Theorem (Ioana-Spaas-W. 2020; Pisier 2020)

If G is a non-finitely presentable group with property (T), then $C^*(G)$ does not have the LP.

Question

Does every infinite property (T) group fail to have the (L)LP?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thank you!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで