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Lifting property

Conventions:

▶ C*-algebras are unital

▶ groups are discrete

Definition

A C*-algebra A has the lifting property (LP) if whenever
φ : A → B/J is a ucp map where B is a C*-algebra and J is a
closed two-sided ideal of B, there exists a ucp φ̃ : A → B so that
the diagram

B

����

A

φ̃
==

φ
// B/J

commutes.



Lifting property

Theorem (Choi-Effros 1976)

Nuclear C*-algebras have the LP.

Theorem (Kirchberg 1994)

C∗(Fd) has the LP for 2 ≤ d ≤ ∞.



Local lifting property

Definition (Kirchberg 1993)

A C*-algebra A has the local lifting property (LLP) if whenever
φ : A → B/J is a ucp map where B is a C*-algebra and J is a
closed two-sided ideal of B, and E ⊂ A is a finite dimensional
operator system, there exists a ucp map ψ : E → B so that

B

����

E

ψ
==

φ|E
// B/J

commutes.



Local lifting property

Theorem (Pisier 1996)

Full free products of C*-algebras with the LLP have the LLP.

Theorem (Pisier-Junge 1995)

B(H) does not have the LLP.

▶ Extremely involved proof using operator spaces

▶ Valette (1997): Shorter proof using Ramanujan graphs

▶ Pisier (2006): Shorter proof that uses free probability

▶ Ioana-Spaas-W. (2020): Shorter proof that uses 2-cohomology
of Z2 ⋊ SL(2,Z)



A tale of two C*-algebras

Two important C*-algebras:

▶ C∗(F∞): Every separable C*-algebra is a quotient of C∗(F∞)

▶ B(H): Every separable C*-algebra embeds inside of B(H)

Theorem (Kirchberg 1993)

A C*-algebra A has the weak expectation property (WEP) if and
only if

A⊗min C
∗(F∞) = A⊗max C

∗(F∞).

Theorem (Kirchberg 1993)

A C*-algebra A has the LLP if and only if

A⊗min B(H) = A⊗max B(H).



Connes embedding conjecture

Theorem (Kirchberg 1993)

The Connes embedding conjecture (CEC) has a positive solution if
and only if LLP implies WEP.

Theorem (Ji-Natarajan-Vidick-Wright-Yuen 2020)

The CEC is false.

Open Problem (Ozawa 2003)

Is the LLP equivalent to the LP for separable C*-algebras?



Main Problem

Problem

Find groups whose full group C*-algebras do not have the (L)LP.

▶ Ozawa 2004: “Although it seems full group C*-algebras rarely
have the LLP, there is no example of groups whose full
C*-algebra is known to fail the LLP”

▶ Pisier 2016: “Problem: Find more examples of groups either
with or without LLP”



Examples of groups with LLP

Example

If G is the subgroup of a free product of amenable groups, then
C∗(G ) has the LLP.

No other examples of groups whose full C*-algebra has the LLP
are known.



Examples of groups without the (L)LP

Theorem (Ozawa 2004)

There exists G such that C∗(G ) does not have the LP.

Theorem (Thom 2010)

There exists groups whose full group C*-algebra does not have the
LLP.

▶ Two explicit families of groups are given



Sneak peak of our results

Theorem (Ioana-Spaas-W. 2020)

C∗(Z2 ⋊ SL(2,Z)) does not have the LLP.

▶ Implies SL(n,Z) does not have LLP for n ≥ 3

▶ Fist example of residually finite G such that C∗(G ) does not
have LLP



2-cohomology

Definition

A map c : G × G → T is a 2-cocycle if

c(g , h)c(gh, k) = c(g , hk)c(h, k)

for all g , h, k ∈ G .

Example

If b : G → T is an arbitrary function, then c : G × G → T defined
by

c(g , h) = b(g)b(h)b(gh)

for g , h ∈ G is a 2-cocycle. If a 2-cocyle can be written in this
form, it is called a 2-coboundary.



Main Theorem: LLP

Theorem (Ioana-Spaas-W. 2020)

Suppose G is a countable group, H ≤ G has relative property (T)
in G. If there exists 2-cocycles cn : G × G → T so that

1. cn|H is not a coboundary for H for each n ∈ N,
2. cn(g , h) → 1 for all g , h ∈ G, and

3. for every n ∈ N, there is a map πn : G → U(Hn) into the
unitary operator on some finite dimensional Hilbert space Hn

so that πn(g)πn(h) = cn(g , h)πn(gh) for all g , h ∈ G.

Then C∗(G ) does not have the LLP.



Corollaries of Main Result: LLP

Corollary (Ioana-Spaas-W. 2020)

Suppose R is a finitely generated commutative ring with unity such
that {2x : x ∈ R} is infinite. Then C∗(R2 ⋊ SL(2,R)) does not
have the LLP.

Remark

This can be used to recover nearly all of Thom’s examples of
groups without the LLP.



Main Result: LP

Theorem (Ioana-Spaas-W. 2020)

Assume G is a countable group, H ≤ G has relative property (T)
in G. Further suppose that there is a p.m.p. action G ↷σ (X , µ)
such that σ|H is ergodic, and 2-cocycles cn ∈ Z2(G , L0(X ,T)) so
that

1. cn|H is not a coboundary for H for each n ∈ N,
2. lim

n→∞
∥cn(g , h)− 1∥L2 = 0, for every g , h ∈ G.

Then C∗(G ) does not have the LP.



Groups without the LP

Corollary (Ioana-Spaas-W. 2020)

Let G be a group with property (T). If either H2(G ,R) or
H2(G ,ZG ) is nontrivial, then C∗(G ) does not have the LP.

Example

Let G be a simple Lie group with trivial centre, infinite cyclic
fundamental group and property (T). If Γ ≤ G is a lattice inside of
G , then C∗(Γ) does not have the LP.

▶ C∗(Sp(2n,Z)) does not have the LP for n ≥ 2.



Groups without the LP

Theorem (Ioana-Spaas-W. 2020; Pisier 2020)

If G is a non-finitely presentable group with property (T), then
C∗(G ) does not have the LP.

Question

Does every infinite property (T) group fail to have the (L)LP?



Thank you!


