The Affine Group of the plane and a new Continuous Wavelet Transform

Raja Milad
joint work with Keith Taylor

Dalhousie University

Canadian Abstract Harmonic Analysis Symposium

June, 2022

Special properties of square-integrable representations of locally compact groups result in transformations that are useful in signal and image processing.

Special properties of square-integrable representations of locally compact groups result in transformations that are useful in signal and image processing.

Square-integrability

Let G be a locally compact group with left Haar measure μ_{G}.

Let G be a locally compact group with left Haar measure μ_{G}.
Let π be an irreducible unitary representation of G on a Hilbert space \mathcal{H}_{π}.

Let G be a locally compact group with left Haar measure μ_{G}.
Let π be an irreducible unitary representation of G on a Hilbert space \mathcal{H}_{π}. We say π is square-integrable if there exist
$\xi, \eta \in \mathcal{H}_{\pi} \backslash\{0\}$ such that

$$
\int_{G}\left|\langle\xi, \pi(x) \eta\rangle_{\mathcal{H} \pi}\right|^{2} d \mu_{G}(x)<\infty .
$$

Let G be a locally compact group with left Haar measure μ_{G}.
Let π be an irreducible unitary representation of G on a Hilbert space \mathcal{H}_{π}. We say π is square-integrable if there exist
$\xi, \eta \in \mathcal{H}_{\pi} \backslash\{0\}$ such that

$$
\int_{G}\left|\langle\xi, \pi(x) \eta\rangle_{\mathcal{H}_{\pi}}\right|^{2} d \mu_{G}(x)<\infty .
$$

Let $V_{\eta} \xi(x)=\langle\xi, \pi(x) \eta\rangle_{\mathcal{H} \pi}$, for $x \in G, \xi, \eta \in \mathcal{H}_{\pi}$.

Let G be a locally compact group with left Haar measure μ_{G}.
Let π be an irreducible unitary representation of G on a Hilbert space \mathcal{H}_{π}. We say π is square-integrable if there exist $\xi, \eta \in \mathcal{H}_{\pi} \backslash\{0\}$ such that

$$
\int_{G}\left|\langle\xi, \pi(x) \eta\rangle_{\mathcal{H} \pi}\right|^{2} d \mu_{G}(x)<\infty .
$$

Let $V_{\eta} \xi(x)=\langle\xi, \pi(x) \eta\rangle_{\mathcal{H} \pi}$, for $x \in G, \xi, \eta \in \mathcal{H}_{\pi}$.

Duflo-Moore Theorem

Let π be a square-integrable rep. of G.

Let G be a locally compact group with left Haar measure μ_{G}.
Let π be an irreducible unitary representation of G on a Hilbert space \mathcal{H}_{π}. We say π is square-integrable if there exist $\xi, \eta \in \mathcal{H}_{\pi} \backslash\{0\}$ such that

$$
\int_{G}\left|\langle\xi, \pi(x) \eta\rangle_{\mathcal{H} \pi}\right|^{2} d \mu_{G}(x)<\infty .
$$

Let $V_{\eta} \xi(x)=\langle\xi, \pi(x) \eta\rangle_{\mathcal{H} \pi}$, for $x \in G, \xi, \eta \in \mathcal{H}_{\pi}$.

Duflo-Moore Theorem

Let π be a square-integrable rep. of G.

Let G be a locally compact group with left Haar measure μ_{G}.
Let π be an irreducible unitary representation of G on a Hilbert space \mathcal{H}_{π}. We say π is square-integrable if there exist $\xi, \eta \in \mathcal{H}_{\pi} \backslash\{0\}$ such that

$$
\int_{G}\left|\langle\xi, \pi(x) \eta\rangle_{\mathcal{H} \pi}\right|^{2} d \mu_{G}(x)<\infty .
$$

Let $V_{\eta} \xi(x)=\langle\xi, \pi(x) \eta\rangle_{\mathcal{H} \pi}$, for $x \in G, \xi, \eta \in \mathcal{H}_{\pi}$.

Duflo-Moore Theorem

Let π be a square-integrable rep. of G. Then, there exists a dense subspace \mathcal{D}_{π} of \mathcal{H}_{π} and a positive self-adjoint operator C_{π} on \mathcal{H}_{π} with domain \mathcal{D}_{π} such that, for $\xi_{1}, \xi_{2} \in \mathcal{H}_{\pi}$ and $\eta_{1}, \eta_{2} \in \mathcal{D}_{\pi}$,

Square-integrability

Let G be a locally compact group with left Haar measure μ_{G}.
Let π be an irreducible unitary representation of G on a Hilbert space \mathcal{H}_{π}. We say π is square-integrable if there exist $\xi, \eta \in \mathcal{H}_{\pi} \backslash\{0\}$ such that

$$
\int_{G}\left|\langle\xi, \pi(x) \eta\rangle_{\mathcal{H} \pi}\right|^{2} d \mu_{G}(x)<\infty .
$$

Let $V_{\eta} \xi(x)=\langle\xi, \pi(x) \eta\rangle_{\mathcal{H} \pi}$, for $x \in G, \xi, \eta \in \mathcal{H}_{\pi}$.

Duflo-Moore Theorem

Let π be a square-integrable rep. of G. Then, there exists a dense subspace \mathcal{D}_{π} of \mathcal{H}_{π} and a positive self-adjoint operator C_{π} on \mathcal{H}_{π} with domain \mathcal{D}_{π} such that, for $\xi_{1}, \xi_{2} \in \mathcal{H}_{\pi}$ and $\eta_{1}, \eta_{2} \in \mathcal{D}_{\pi}$,

$$
\int_{G} V_{\eta_{1},} \xi_{1}(x) \overline{V_{\eta_{2}} \xi_{2}(x)} d \mu_{G}(x)=\left\langle\xi_{1}, \xi_{2}\right\rangle_{\mathcal{H}_{\pi}}\left\langle C_{\pi} \eta_{2}, C_{\pi} \eta_{1}\right\rangle_{\mathcal{H}_{\pi}} .
$$

π square-integrable, $\xi_{1}, \xi_{2} \in \mathcal{H}_{\pi}$ and $\eta_{1}, \eta_{2} \in \mathcal{D}_{\pi}$.
$\int_{G} V_{\eta_{1}} \xi_{1}(x) \overline{V_{\eta_{2}} \xi_{2}(x)} d \mu_{G}(x)=\left\langle\xi_{1}, \xi_{2}\right\rangle_{\mathcal{H}_{\pi}}\left\langle C_{\pi} \eta_{2}, C_{\pi} \eta_{1}\right\rangle_{\mathcal{H}_{\pi}}$.
π square-integrable, $\xi_{1}, \xi_{2} \in \mathcal{H}_{\pi}$ and $\eta_{1}, \eta_{2} \in \mathcal{D}_{\pi}$.
$\int_{G} V_{\eta_{1}} \xi_{1}(x) \overline{V_{\eta_{2}} \xi_{2}(x)} d \mu_{G}(x)=\left\langle\xi_{1}, \xi_{2}\right\rangle_{\mathcal{H}_{\pi}}\left\langle C_{\pi} \eta_{2}, C_{\pi} \eta_{1}\right\rangle_{\mathcal{H}_{\pi}}$.
Select $\eta \in \mathcal{D}_{\pi}$ with $\left\|C_{\pi} \eta\right\|_{\mathcal{H} \pi}=1$. Let $\eta_{1}=\eta_{2}=\eta$.
π square-integrable, $\xi_{1}, \xi_{2} \in \mathcal{H}_{\pi}$ and $\eta_{1}, \eta_{2} \in \mathcal{D}_{\pi}$.
$\int_{G} V_{\eta_{1}} \xi_{1}(x) \overline{V_{\eta_{2}} \xi_{2}(x)} d \mu_{G}(x)=\left\langle\xi_{1}, \xi_{2}\right\rangle_{\mathcal{H} \pi}\left\langle C_{\pi} \eta_{2}, C_{\pi} \eta_{1}\right\rangle_{\mathcal{H}_{\pi}}$.
Select $\eta \in \mathcal{D}_{\pi}$ with $\left\|C_{\pi} \eta\right\|_{\mathcal{H} \pi}=1$. Let $\eta_{1}=\eta_{2}=\eta$. Then (1) says

$$
\langle\xi, \nu\rangle_{\mathcal{H} \pi}=\int_{G} V_{\eta} \xi(x)\langle\pi(x) \eta, \nu\rangle_{\mathcal{H}_{\pi}} d \mu_{G}(x) \text { for all } \xi, \nu \in \mathcal{H}_{\pi} . \text { (2) }
$$

π square-integrable, $\xi_{1}, \xi_{2} \in \mathcal{H}_{\pi}$ and $\eta_{1}, \eta_{2} \in \mathcal{D}_{\pi}$.
$\int_{G} V_{\eta_{1}} \xi_{1}(x) \overline{V_{\eta_{2}} \xi_{2}(x)} d \mu_{G}(x)=\left\langle\xi_{1}, \xi_{2}\right\rangle_{\mathcal{H}_{\pi}}\left\langle C_{\pi} \eta_{2}, C_{\pi} \eta_{1}\right\rangle_{\mathcal{H}_{\pi}}$.
Select $\eta \in \mathcal{D}_{\pi}$ with $\left\|C_{\pi} \eta\right\|_{\mathcal{H} \pi}=1$. Let $\eta_{1}=\eta_{2}=\eta$. Then (1) says

$$
\langle\xi, \nu\rangle_{\mathcal{H} \pi}=\int_{G} V_{\eta} \xi(x)\langle\pi(x) \eta, \nu\rangle_{\mathcal{H} \pi} d \mu_{G}(x) \text { for all } \xi, \nu \in \mathcal{H}_{\pi} . \text { (2) }
$$

Fix a $\xi \in \mathcal{H}_{\pi}$ and consider $\nu \in \mathcal{H}_{\pi}$ as arbitrary. Then (2) means, for all $\xi \in \mathcal{H}_{\pi}$,
π square-integrable, $\xi_{1}, \xi_{2} \in \mathcal{H}_{\pi}$ and $\eta_{1}, \eta_{2} \in \mathcal{D}_{\pi}$.
$\int_{G} V_{\eta_{1}} \xi_{1}(x) \overline{V_{\eta_{2}} \xi_{2}(x)} d \mu_{G}(x)=\left\langle\xi_{1}, \xi_{2}\right\rangle_{\mathcal{H}_{\pi}}\left\langle C_{\pi} \eta_{2}, C_{\pi} \eta_{1}\right\rangle_{\mathcal{H}_{\pi}}$.
Select $\eta \in \mathcal{D}_{\pi}$ with $\left\|C_{\pi} \eta\right\|_{\mathcal{H} \pi}=1$. Let $\eta_{1}=\eta_{2}=\eta$. Then (1) says

$$
\langle\xi, \nu\rangle_{\mathcal{H} \pi}=\int_{G} V_{\eta} \xi(x)\langle\pi(x) \eta, \nu\rangle_{\mathcal{H} \pi} d \mu_{G}(x) \text { for all } \xi, \nu \in \mathcal{H}_{\pi} . \text { (2) }
$$

Fix a $\xi \in \mathcal{H}_{\pi}$ and consider $\nu \in \mathcal{H}_{\pi}$ as arbitrary. Then (2) means, for all $\xi \in \mathcal{H}_{\pi}$,

$$
\begin{equation*}
\xi=\int_{G} V_{\eta} \xi(x) \pi(x) \eta d \mu_{G}(x), \text { weakly in } \mathcal{H}_{\pi} \tag{3}
\end{equation*}
$$

π square-integrable, $\xi_{1}, \xi_{2} \in \mathcal{H}_{\pi}$ and $\eta_{1}, \eta_{2} \in \mathcal{D}_{\pi}$.

$$
\begin{equation*}
\int_{G} V_{\eta_{1}} \xi_{1}(x) \overline{V_{\eta_{2}} \xi_{2}(x)} d \mu_{G}(x)=\left\langle\xi_{1}, \xi_{2}\right\rangle_{\mathcal{H}_{\pi}}\left\langle C_{\pi} \eta_{2}, C_{\pi} \eta_{1}\right\rangle_{\mathcal{H}_{\pi}} \tag{1}
\end{equation*}
$$

Select $\eta \in \mathcal{D}_{\pi}$ with $\left\|C_{\pi} \eta\right\|_{\mathcal{H} \pi}=1$. Let $\eta_{1}=\eta_{2}=\eta$. Then (1) says

$$
\langle\xi, \nu\rangle_{\mathcal{H} \pi}=\int_{G} V_{\eta} \xi(x)\langle\pi(x) \eta, \nu\rangle_{\mathcal{H} \pi} d \mu_{G}(x) \text { for all } \xi, \nu \in \mathcal{H}_{\pi} . \text { (2) }
$$

Fix a $\xi \in \mathcal{H}_{\pi}$ and consider $\nu \in \mathcal{H}_{\pi}$ as arbitrary. Then (2) means, for all $\xi \in \mathcal{H}_{\pi}$,

$$
\begin{equation*}
\xi=\int_{G} V_{\eta} \xi(x) \pi(x) \eta d \mu_{G}(x), \text { weakly in } \mathcal{H}_{\pi} \tag{3}
\end{equation*}
$$

The map $V_{\eta}: \mathcal{H}_{\pi} \rightarrow L^{2}(G)$ is an isometry called the continuous wavelet transform associated to π and Equation (3) is the reconstruction formula.

The affine group of the line is

$$
G_{1}=\mathbb{R} \rtimes \mathbb{R}^{*}=\{[x, a] \mid x, a \in \mathbb{R}, a \neq 0\}
$$

with group product $[x, a][y, b]=[x+a y, a b]$.

The affine group of the line is

$$
G_{1}=\mathbb{R} \rtimes \mathbb{R}^{*}=\{[x, a] \mid x, a \in \mathbb{R}, a \neq 0\}
$$

with group product $[x, a][y, b]=[x+a y, a b]$.
G_{1} has a square-integrable irreducible representation ρ that acts on $L^{2}(\mathbb{R})$ by $\quad \rho[x, a] f(t)=|a|^{-1 / 2} f\left(\frac{t-x}{a}\right)$, for all $t \in \mathbb{R}, f \in L^{2}(\mathbb{R})$, and $[x, a] \in G_{1}$.

The affine group of the line is

$$
G_{1}=\mathbb{R} \rtimes \mathbb{R}^{*}=\{[x, a] \mid x, a \in \mathbb{R}, a \neq 0\}
$$

with group product $[x, a][y, b]=[x+a y, a b]$.
G_{1} has a square-integrable irreducible representation ρ that acts on $L^{2}(\mathbb{R})$ by $\quad \rho[x, a] f(t)=|a|^{-1 / 2} f\left(\frac{t-x}{a}\right)$, for all $t \in \mathbb{R}, f \in L^{2}(\mathbb{R})$, and $[x, a] \in G_{1}$.

The classic continuous wavelet transform in one dimension arises from the fact that ρ is square-integrable.

Affine groups in two dimensions

Let H be a closed subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ and form

$$
G=\mathbb{R}^{2} \rtimes H=\left\{[\underline{x}, A]: \underline{x} \in \mathbb{R}^{2}, A \in H\right\} .
$$

Affine groups in two dimensions

Let H be a closed subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ and form

$$
G=\mathbb{R}^{2} \rtimes H=\left\{[\underline{x}, A]: \underline{x} \in \mathbb{R}^{2}, A \in H\right\} .
$$

The natural representation of G acts on $L^{2}\left(\mathbb{R}^{2}\right)$.

Affine groups in two dimensions

Let H be a closed subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ and form

$$
G=\mathbb{R}^{2} \rtimes H=\left\{[\underline{x}, A]: \underline{x} \in \mathbb{R}^{2}, A \in H\right\} .
$$

The natural representation of G acts on $L^{2}\left(\mathbb{R}^{2}\right)$. For $[\underline{x}, A] \in \mathbb{R}^{2} \rtimes H$ and $f \in L^{2}\left(\mathbb{R}^{2}\right)$,

$$
\rho[\underline{x}, A] f(\underline{z})=|\operatorname{det}(A)|^{-1 / 2} f\left(A^{-1}(\underline{z}-\underline{x})\right) \text {, for ae } \underline{z} \in \mathbb{R}^{2} .
$$

Affine groups in two dimensions

Let H be a closed subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ and form

$$
G=\mathbb{R}^{2} \rtimes H=\left\{[\underline{x}, A]: \underline{x} \in \mathbb{R}^{2}, A \in H\right\}
$$

The natural representation of G acts on $L^{2}\left(\mathbb{R}^{2}\right)$. For $[\underline{x}, A] \in \mathbb{R}^{2} \rtimes H$ and $f \in L^{2}\left(\mathbb{R}^{2}\right)$,

$$
\rho[\underline{x}, A] f(\underline{z})=|\operatorname{det}(A)|^{-1 / 2} f\left(A^{-1}(\underline{z}-\underline{x})\right) \text {, for ae } \underline{z} \in \mathbb{R}^{2} .
$$

Use row vectors for the "frequency" domain:

$$
\widehat{\mathbb{R}^{2}}=\left\{\underline{\omega}=\left(\omega_{1}, \omega_{2}\right): \omega_{1}, \omega_{2} \in \mathbb{R}\right\}
$$

Affine groups in two dimensions

Let H be a closed subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ and form

$$
G=\mathbb{R}^{2} \rtimes H=\left\{[\underline{x}, A]: \underline{x} \in \mathbb{R}^{2}, A \in H\right\} .
$$

The natural representation of G acts on $L^{2}\left(\mathbb{R}^{2}\right)$. For $[\underline{x}, A] \in \mathbb{R}^{2} \rtimes H$ and $f \in L^{2}\left(\mathbb{R}^{2}\right)$,

$$
\rho[\underline{x}, A] f(\underline{z})=|\operatorname{det}(A)|^{-1 / 2} f\left(A^{-1}(\underline{z}-\underline{x})\right), \text { for ae } \underline{z} \in \mathbb{R}^{2} .
$$

Use row vectors for the "frequency" domain:

$$
\widehat{\mathbb{R}^{2}}=\left\{\underline{\omega}=\left(\omega_{1}, \omega_{2}\right): \omega_{1}, \omega_{2} \in \mathbb{R}\right\}
$$

$\mathcal{F}: L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\widehat{\mathbb{R}^{2}}\right)$ is the unitary map such that,

$$
\mathcal{F} f(\underline{\omega})=\widehat{f}(\underline{\omega})=\int_{\mathbb{R}^{2}} f(\underline{x}) e^{2 \pi i \underline{\omega}} d \underline{x}, \text { for } \underline{\omega} \in \widehat{\mathbb{R}^{2}} \text { and }
$$

$$
f \in L^{1}\left(\mathbb{R}^{2}\right) \cap L^{2}\left(\mathbb{R}^{2}\right)
$$

Affine groups in two dimensions

Let H be a closed subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ and form

$$
G=\mathbb{R}^{2} \rtimes H=\left\{[\underline{x}, A]: \underline{x} \in \mathbb{R}^{2}, A \in H\right\} .
$$

The natural representation of G acts on $L^{2}\left(\mathbb{R}^{2}\right)$. For $[\underline{x}, A] \in \mathbb{R}^{2} \rtimes H$ and $f \in L^{2}\left(\mathbb{R}^{2}\right)$,

$$
\rho[\underline{x}, A] f(\underline{z})=|\operatorname{det}(A)|^{-1 / 2} f\left(A^{-1}(\underline{z}-\underline{x})\right), \text { for ae } \underline{z} \in \mathbb{R}^{2} .
$$

Use row vectors for the "frequency" domain:

$$
\widehat{\mathbb{R}^{2}}=\left\{\underline{\omega}=\left(\omega_{1}, \omega_{2}\right): \omega_{1}, \omega_{2} \in \mathbb{R}\right\} .
$$

$\mathcal{F}: L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\widehat{\mathbb{R}^{2}}\right)$ is the unitary map such that,

$$
\mathcal{F} f(\underline{\omega})=\widehat{f}(\underline{\omega})=\int_{\mathbb{R}^{2}} f(\underline{x}) e^{2 \pi i \underline{\omega} x} d \underline{x}, \text { for } \underline{\omega} \in \widehat{\mathbb{R}^{2}} \text { and }
$$

$$
f \in L^{1}\left(\mathbb{R}^{2}\right) \cap L^{2}\left(\mathbb{R}^{2}\right)
$$

Let $\widehat{\rho}[\underline{x}, A]=\mathcal{F} \rho[\underline{x}, A] \mathcal{F}^{-1}$, for all $[\underline{x}, A] \in \mathbb{R}^{2} \rtimes H$.

Then $\hat{\rho}[\underline{x}, A] \xi(\underline{\omega})=|\operatorname{det}(A)|^{1 / 2} e^{2 \pi i \underline{\omega} x} \xi(\underline{\omega} A)$, for $\underline{\omega} \in \widehat{\mathbb{R}^{2}}$ and for $\xi \in L^{2}\left(\widehat{\mathbb{R}^{2}}\right)$.

Affine groups in two dimensions

Then $\hat{\rho}[\underline{x}, A] \xi(\underline{\omega})=|\operatorname{det}(A)|^{1 / 2} e^{2 \pi i \omega x} \xi(\underline{\omega} A)$, for $\underline{\omega} \in \widehat{\mathbb{R}^{2}}$ and for $\xi \in L^{2}\left(\mathbb{R}^{2}\right)$. So $\widehat{\rho}$ is a unitary representation equivalent to the natural representation of $\mathbb{R}^{2} \rtimes \mathrm{H}$.

Affine groups in two dimensions

Then $\widehat{\rho}[\underline{x}, A] \xi(\underline{\omega})=|\operatorname{det}(A)|^{1 / 2} e^{2 \pi i} \underline{\omega} \underline{\xi}(\underline{\omega} A)$, for $\underline{\omega} \in \widehat{\mathbb{R}^{2}}$ and for $\xi \in L^{2}\left(\mathbb{R}^{2}\right)$. So $\widehat{\rho}$ is a unitary representation equivalent to the natural representation of $\mathbb{R}^{2} \rtimes \mathrm{H}$.
For $\underline{\omega} \in \widehat{\mathbb{R}^{2}}$, the H-orbit of $\underline{\omega}$ is $\underline{\omega} H=\{\underline{\omega} A: A \in H\}$.

Affine groups in two dimensions

Then $\widehat{\rho}[\underline{x}, A] \xi(\underline{\omega})=|\operatorname{det}(A)|^{1 / 2} e^{2 \pi i} \underline{\omega} \underline{\xi}(\underline{\omega} A)$, for $\underline{\omega} \in \widehat{\mathbb{R}^{2}}$ and for $\xi \in L^{2}\left(\mathbb{R}^{2}\right)$. So $\widehat{\rho}$ is a unitary representation equivalent to the natural representation of $\mathbb{R}^{2} \rtimes \mathrm{H}$.
For $\underline{\omega} \in \widehat{\mathbb{R}^{2}}$, the H-orbit of $\underline{\omega}$ is $\underline{\omega} H=\{\underline{\omega} A: A \in H\}$.
The stabilizer of $\underline{\omega}$ is $H_{\underline{\omega}}=\{A \in H: \underline{\omega} A=\underline{\omega}\}$, a closed subgroup of H.

Affine groups in two dimensions

Then $\widehat{\rho}[\underline{x}, A] \xi(\underline{\omega})=|\operatorname{det}(A)|^{1 / 2} e^{2 \pi i} \underline{\omega x} \xi(\underline{\omega} A)$, for $\underline{\omega} \in \widehat{\mathbb{R}^{2}}$ and for $\xi \in L^{2}\left(\mathbb{R}^{2}\right)$. So $\widehat{\rho}$ is a unitary representation equivalent to the natural representation of $\mathbb{R}^{2} \rtimes H$.
For $\underline{\omega} \in \widehat{\mathbb{R}^{2}}$, the H-orbit of $\underline{\omega}$ is $\underline{\omega} H=\{\underline{\omega} A: A \in H\}$.
The stabilizer of $\underline{\omega}$ is $H_{\underline{\omega}}=\{A \in H: \underline{\omega} A=\underline{\omega}\}$, a closed subgroup of H.

Theorem: (Bernier \& Taylor, Führ)

Let H be a closed subgroup of $\mathrm{GL}_{n}(\mathbb{R})$. The natural representation of $\mathbb{R}^{n} \rtimes H$ is square-integrable if and only if there exists an $\underline{\omega} \in \widehat{\mathbb{R}^{n}}$ such that $\underline{\omega} H$ is open and dense in $\widehat{\mathbb{R}^{n}}$ and the stabilizer $H_{\underline{\omega}}$ is compact.

Affine groups in two dimensions

Then $\widehat{\rho}[\underline{x}, A] \xi(\underline{\omega})=|\operatorname{det}(A)|^{1 / 2} e^{2 \pi i} \underline{\omega x} \xi(\underline{\omega} A)$, for $\underline{\omega} \in \widehat{\mathbb{R}^{2}}$ and for $\xi \in L^{2}\left(\mathbb{R}^{2}\right)$. So $\widehat{\rho}$ is a unitary representation equivalent to the natural representation of $\mathbb{R}^{2} \rtimes H$.
For $\underline{\omega} \in \widehat{\mathbb{R}^{2}}$, the H-orbit of $\underline{\omega}$ is $\underline{\omega} H=\{\underline{\omega} A: A \in H\}$.
The stabilizer of $\underline{\omega}$ is $H_{\underline{\omega}}=\{A \in H: \underline{\omega} A=\underline{\omega}\}$, a closed subgroup of H.

Theorem: (Bernier \& Taylor, Führ)

Let H be a closed subgroup of $\mathrm{GL}_{n}(\mathbb{R})$. The natural representation of $\mathbb{R}^{n} \rtimes H$ is square-integrable if and only if there exists an $\underline{\omega} \in \widehat{\mathbb{R}^{n}}$ such that $\underline{\omega} H$ is open and dense in $\widehat{\mathbb{R}^{n}}$ and the stabilizer $H_{\underline{\omega}}$ is compact.

Affine groups in two dimensions

Then $\widehat{\rho}[\underline{x}, A] \xi(\underline{\omega})=|\operatorname{det}(A)|^{1 / 2} e^{2 \pi i} \underline{\omega x} \xi(\underline{\omega} A)$, for $\underline{\omega} \in \widehat{\mathbb{R}^{2}}$ and for $\xi \in L^{2}\left(\mathbb{R}^{2}\right)$. So $\widehat{\rho}$ is a unitary representation equivalent to the natural representation of $\mathbb{R}^{2} \rtimes H$.
For $\underline{\omega} \in \widehat{\mathbb{R}^{2}}$, the H-orbit of $\underline{\omega}$ is $\underline{\omega} H=\{\underline{\omega} A: A \in H\}$.
The stabilizer of $\underline{\omega}$ is $H_{\underline{\omega}}=\{A \in H: \underline{\omega} A=\underline{\omega}\}$, a closed subgroup of H.

Theorem: (Bernier \& Taylor, Führ)

Let H be a closed subgroup of $\mathrm{GL}_{n}(\mathbb{R})$. The natural representation of $\mathbb{R}^{n} \rtimes H$ is square-integrable if and only if there exists an $\underline{\omega} \in \widehat{\mathbb{R}^{n}}$ such that $\underline{\omega} H$ is open and dense in $\widehat{\mathbb{R}^{n}}$ and the stabilizer $H_{\underline{\omega}}$ is compact.

When $n=2$ there are only a few examples where the conditions of this theorem apply.

Any closed subgroup H of $\mathrm{GL}_{2}(\mathbb{R})$ with a dense open orbit and compact stabilizer is conjugate to one of the following：

Affine groups in two dimensions

Any closed subgroup H of $\mathrm{GL}_{2}(\mathbb{R})$ with a dense open orbit and compact stabilizer is conjugate to one of the following:
(1) $H_{d}=\left\{\left(\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right): a_{1}, a_{2} \in \mathbb{R}, a_{1} \neq 0, a_{2} \neq 0\right\}$

Affine groups in two dimensions

Any closed subgroup H of $\mathrm{GL}_{2}(\mathbb{R})$ with a dense open orbit and compact stabilizer is conjugate to one of the following:
(1) $H_{d}=\left\{\left(\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right): a_{1}, a_{2} \in \mathbb{R}, a_{1} \neq 0, a_{2} \neq 0\right\}$
(2) $H_{r}=\left\{\left(\begin{array}{cc}s & -t \\ t & s\end{array}\right): s, t \in \mathbb{R}, s^{2}+t^{2}>0\right\}$

Affine groups in two dimensions

Any closed subgroup H of $\mathrm{GL}_{2}(\mathbb{R})$ with a dense open orbit and compact stabilizer is conjugate to one of the following:
(1) $H_{d}=\left\{\left(\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right): a_{1}, a_{2} \in \mathbb{R}, a_{1} \neq 0, a_{2} \neq 0\right\}$
(2) $H_{r}=\left\{\left(\begin{array}{cc}s & -t \\ t & s\end{array}\right): s, t \in \mathbb{R}, s^{2}+t^{2}>0\right\}$

Examples (1) and (2) Lead to common software for image processing.

Affine groups in two dimensions

Any closed subgroup H of $\mathrm{GL}_{2}(\mathbb{R})$ with a dense open orbit and compact stabilizer is conjugate to one of the following:
(1) $H_{d}=\left\{\left(\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right): a_{1}, a_{2} \in \mathbb{R}, a_{1} \neq 0, a_{2} \neq 0\right\}$
(2) $H_{r}=\left\{\left(\begin{array}{cc}s & -t \\ t & s\end{array}\right): s, t \in \mathbb{R}, s^{2}+t^{2}>0\right\}$

Examples (1) and (2) Lead to common software for image processing.
(3) $H_{s}^{\alpha}=\left\{\left(\begin{array}{cc}a & b \\ 0 & a^{\alpha}\end{array}\right): a, b \in \mathbb{R}, a>0\right\}, \alpha \in \mathbb{R}^{*}$.

Affine groups in two dimensions

Any closed subgroup H of $\mathrm{GL}_{2}(\mathbb{R})$ with a dense open orbit and compact stabilizer is conjugate to one of the following:
(1) $H_{d}=\left\{\left(\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right): a_{1}, a_{2} \in \mathbb{R}, a_{1} \neq 0, a_{2} \neq 0\right\}$
(2) $H_{r}=\left\{\left(\begin{array}{cc}s & -t \\ t & s\end{array}\right): s, t \in \mathbb{R}, s^{2}+t^{2}>0\right\}$

Examples (1) and (2) Lead to common software for image processing.
(3) $H_{s}^{\alpha}=\left\{\left(\begin{array}{cc}a & b \\ 0 & a^{\alpha}\end{array}\right): a, b \in \mathbb{R}, a>0\right\}, \alpha \in \mathbb{R}^{*}$.

Example (3), with $\alpha=1 / 2$, leads to the Continuous Shearlet Transform, which is especially useful for detecting edge singularities in images.

Yes. It was known to some that $G_{2}=\mathbb{R}^{2} \rtimes \mathrm{GL}_{2}(\mathbb{R})$ must have a square integrable representation and this must lead to a generalization of the CWT.

Are there any other useful groups that leads to a CWT ?

Yes. It was known to some that $G_{2}=\mathbb{R}^{2} \rtimes \mathrm{GL}_{2}(\mathbb{R})$ must have a square integrable representation and this must lead to a generalization of the CWT.

My main project is to work out details of harmonic analysis of square-integrable functions on the group G_{2} of all invertible affine transformations of \mathbb{R}^{2}.

Research group $G_{2}=\mathbb{R}^{2} \rtimes G L_{2}(\mathbb{R})$

To do this, we had to re-parametrize the 2×2 invertible matrices and express left invariant integration on G_{2} in the new parameters. The results of our calculations,

Research group $G_{2}=\mathbb{R}^{2} \rtimes G L_{2}(\mathbb{R})$

To do this, we had to re-parametrize the 2×2 invertible matrices and express left invariant integration on G_{2} in the new parameters. The results of our calculations,

- An irreducible, square integrable representation of G_{2}. We call it σ_{1}.

Research group $G_{2}=\mathbb{R}^{2} \rtimes G L_{2}(\mathbb{R})$

To do this, we had to re-parametrize the 2×2 invertible matrices and express left invariant integration on G_{2} in the new parameters. The results of our calculations,

- An irreducible, square integrable representation of G_{2}. We call it σ_{1}.

Research group $G_{2}=\mathbb{R}^{2} \rtimes G L_{2}(\mathbb{R})$

To do this, we had to re-parametrize the 2×2 invertible matrices and express left invariant integration on G_{2} in the new parameters. The results of our calculations,

- An irreducible, square integrable representation of G_{2}. We call it σ_{1}.
- An analogue of Peter-Weyl results.

Research group $G_{2}=\mathbb{R}^{2} \rtimes G L_{2}(\mathbb{R})$

To do this, we had to re-parametrize the 2×2 invertible matrices and express left invariant integration on G_{2} in the new parameters. The results of our calculations,

- An irreducible, square integrable representation of G_{2}. We call it σ_{1}.
- An analogue of Peter-Weyl results.

To do this, we had to re-parametrize the 2×2 invertible matrices and express left invariant integration on G_{2} in the new parameters. The results of our calculations,

- An irreducible, square integrable representation of G_{2}. We call it σ_{1}.
- An analogue of Peter-Weyl results.
- A proof and conditions for finding a wavelet in $L^{2}\left(\mathbb{R}^{3}\right)$ associated with the representation of G_{2}.

To do this, we had to re-parametrize the 2×2 invertible matrices and express left invariant integration on G_{2} in the new parameters. The results of our calculations,

- An irreducible, square integrable representation of G_{2}. We call it σ_{1}.
- An analogue of Peter-Weyl results.
- A proof and conditions for finding a wavelet in $L^{2}\left(\mathbb{R}^{3}\right)$ associated with the representation of G_{2}.
- A novel wavelet transform.
$\mathrm{GL}_{2}(\mathbb{R})$ is a unimodular group and the Haar integral is given for $f \in C_{C}\left(\mathrm{GL}_{2}(\mathbb{R})\right)$,

$$
\int_{\mathrm{GL}_{2}(\mathbb{R})} f d \mu_{\mathrm{GL}_{2}(\mathbb{R})}=\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \frac{d a d b d c d d}{(a d-b c)^{2}}
$$

$\mathrm{GL}_{2}(\mathbb{R})$ is a unimodular group and the Haar integral is given for $f \in C_{c}\left(\mathrm{GL}_{2}(\mathbb{R})\right)$,

$$
\int_{\mathrm{GL}_{2}(\mathbb{R})} f d \mu_{\mathrm{GL}_{2}(\mathbb{R})}=\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \frac{d a d b d c d d}{(a d-b c)^{2}}
$$

This is well known, you can find it in the book by Hewitt and Ross, and easy to check. To make it short, we write
$\mathrm{GL}_{2}(\mathbb{R})$ is a unimodular group and the Haar integral is given for $f \in C_{c}\left(\mathrm{GL}_{2}(\mathbb{R})\right)$,

$$
\int_{\mathrm{GL}_{2}(\mathbb{R})} f d \mu_{\mathrm{GL}_{2}(\mathbb{R})}=\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \frac{d a d b d c d d}{(a d-b c)^{2}}
$$

This is well known, you can find it in the book by Hewitt and Ross, and easy to check. To make it short, we write

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \frac{d a d b d c d d}{(a d-b c)^{2}}=\int_{\mathrm{GL}_{2}(\mathbb{R})} f(B) d B .
$$

Left Haar measure of G_{2}

Left Haar measure on G_{2} is given by for $f \in C_{C}\left(G_{2}\right)$,

$$
\int_{G_{2}} f d \mu_{G_{2}}=\int_{\mathrm{GL}_{2}(\mathbb{R})} \int_{\mathbb{R}^{2}} f[\underline{y}, B] \frac{d \underline{y} d B}{|\operatorname{det}(B)|}
$$

Factorization of $\mathrm{GL}_{2}(\mathbb{R})$

We identify two useful closed subgroups of $\mathrm{GL}_{2}(\mathbb{R}), K_{0}$ and $H_{(1,0)}$ as follows:

Factorization of $\mathrm{GL}_{2}(\mathbb{R})$

We identify two useful closed subgroups of $\mathrm{GL}_{2}(\mathbb{R}), K_{0}$ and $H_{(1,0)}$ as follows:
The set K_{0} is a closed subgroup of $\mathrm{GL}_{2}(\mathbb{R})$

We identify two useful closed subgroups of $\mathrm{GL}_{2}(\mathbb{R}), K_{0}$ and $H_{(1,0)}$ as follows:
The set K_{0} is a closed subgroup of $\mathrm{GL}_{2}(\mathbb{R})$

$$
K_{0}=\left\{\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right): s, t \in \mathbb{R}, s^{2}+t^{2} \neq 0\right\}
$$

We identify two useful closed subgroups of $\mathrm{GL}_{2}(\mathbb{R}), K_{0}$ and $H_{(1,0)}$ as follows:
The set K_{0} is a closed subgroup of $\mathrm{GL}_{2}(\mathbb{R})$

$$
K_{0}=\left\{\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right): s, t \in \mathbb{R}, s^{2}+t^{2} \neq 0\right\}
$$

The map $s+i t \rightarrow\left(\begin{array}{cc}s & -t \\ t & s\end{array}\right)$ is a homeomorphism and topological group isomorphism of \mathbb{C}^{*} with K_{0}, where \mathbb{C}^{*} is the multiplicative group of nonzero complex numbers.

We identify two useful closed subgroups of $\mathrm{GL}_{2}(\mathbb{R}), K_{0}$ and $H_{(1,0)}$ as follows:
The set K_{0} is a closed subgroup of $\mathrm{GL}_{2}(\mathbb{R})$

$$
K_{0}=\left\{\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right): s, t \in \mathbb{R}, s^{2}+t^{2} \neq 0\right\}
$$

The map $s+i t \rightarrow\left(\begin{array}{cc}s & -t \\ t & s\end{array}\right)$ is a homeomorphism and topological group isomorphism of \mathbb{C}^{*} with K_{0}, where \mathbb{C}^{*} is the multiplicative group of nonzero complex numbers.

The left Haar measure on K_{0},

$$
\int_{K_{0}} f d \mu_{K_{0}}=\int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right) \frac{d s d t}{s^{2}+t^{2}}
$$

Factorization of $\mathrm{GL}_{2}(\mathbb{R})$

The set $H_{(1,0)}$ is a closed subgroup of $\left.\mathrm{GL}_{2}(\mathbb{R})\right)$

The set $H_{(1,0)}$ is a closed subgroup of $\left.\mathrm{GL}_{2}(\mathbb{R})\right)$

$$
H_{(1,0)}=\left\{\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right): u, v \in \mathbb{R}, v \neq 0\right\}
$$

The set $H_{(1,0)}$ is a closed subgroup of $\left.\mathrm{GL}_{2}(\mathbb{R})\right)$

$$
H_{(1,0)}=\left\{\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right): u, v \in \mathbb{R}, v \neq 0\right\}
$$

The map $\phi:[u, v] \rightarrow\left(\begin{array}{ll}1 & 0 \\ u & v\end{array}\right)$ is a topological group isomorphism of G_{1} with $H_{(1,0)}$.

The set $H_{(1,0)}$ is a closed subgroup of $\left.\mathrm{GL}_{2}(\mathbb{R})\right)$

$$
H_{(1,0)}=\left\{\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right): u, v \in \mathbb{R}, v \neq 0\right\}
$$

The map $\phi:[u, v] \rightarrow\left(\begin{array}{ll}1 & 0 \\ u & v\end{array}\right)$ is a topological group isomorphism of G_{1} with $H_{(1,0)}$.
The left Haar measure on $H_{(1,0)}$,

$$
\int_{H_{(1,0)}} f d \mu_{H_{(1,0)}}=\int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right) \frac{d u d v}{v^{2}}
$$

We need to factorize $\mathrm{GL}_{2}(\mathbb{R})$ and we were not able to find a useful factorization in any paper or book. We get the idea of factorising $\mathrm{GL}_{2}(\mathbb{R})$ as $K_{0} H_{(1,0)}$. This factorization is what makes some complicated calculations easier to do.

We need to factorize $\mathrm{GL}_{2}(\mathbb{R})$ and we were not able to find a useful factorization in any paper or book. We get the idea of factorising $\mathrm{GL}_{2}(\mathbb{R})$ as $K_{0} H_{(1,0)}$. This factorization is what makes some complicated calculations easier to do.

Proposition

If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R})$, then A can be uniquely decomposed as $A=M_{A} C_{A}$, where

$$
M_{A}=\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right), \text { with } s=\frac{d(a d-b c)}{b^{2}+d^{2}}, t=\frac{-b(a d-b c)}{b^{2}+d^{2}} \text {, }
$$

and

$$
C_{A}=\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right), \text { with } u=\frac{c d+a b}{(a d-b c)}, v=\frac{b^{2}+d^{2}}{(a d-b c)} \text {. }
$$

The parametrization resulting from factoring $\mathrm{GL}_{2}(\mathbb{R})$ as $K_{0} H_{(1,0)}$ gives an alternate expression for the Haar integral. Haar integration on $\mathrm{GL}_{2}(\mathbb{R})$ is given by

$$
\int_{\mathrm{GL}_{2}(\mathbb{R})} f d \mu_{\mathrm{GL}_{2}(\mathbb{R})}=\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right)\right) \frac{d s d t d u d v}{|v|\left(s^{2}+t^{2}\right)}
$$

Factorization of $\left.\mathrm{GL}_{2}(\mathbb{R})\right)$

Theorem

The subgroups K_{0} and $H_{(1,0)}$ of $\mathrm{GL}_{2}(\mathbb{R})$ satisfy:

Factorization of $\left.\mathrm{GL}_{2}(\mathbb{R})\right)$

Theorem

The subgroups K_{0} and $H_{(1,0)}$ of $\mathrm{GL}_{2}(\mathbb{R})$ satisfy：
（1）$K_{0} \cap H_{(1,0)}=\{\mathrm{id}\}$

Factorization of $\left.\mathrm{GL}_{2}(\mathbb{R})\right)$

Theorem

The subgroups K_{0} and $H_{(1,0)}$ of $\mathrm{GL}_{2}(\mathbb{R})$ satisfy：
（1）$K_{0} \cap H_{(1,0)}=\{\mathrm{id}\}$
（2） $\mathrm{GL}_{2}(\mathbb{R})=K_{0} H_{(1,0)}=\left\{M C: M \in K_{0}, C \in H_{(1,0)}\right\}$ ．

Haar measure of G_{2} in the new parametrization

Note that we can now factor the group $G_{2}=K H$, where

$$
K=\left\{\left[\underline{0},\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right)\right]: s, t \in \mathbb{R}, s^{2}+t^{2} \neq 0\right\}
$$

Haar measure of G_{2} in the new parametrization

Note that we can now factor the group $G_{2}=K H$, where

$$
K=\left\{\left[\underline{0},\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right)\right]: s, t \in \mathbb{R}, s^{2}+t^{2} \neq 0\right\}
$$

and,

$$
H=\mathbb{R}^{2} \rtimes H_{(1,0)}=\left\{\left[\underline{x},\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right)\right]: \underline{x} \in \mathbb{R}^{2}, u, v \in \mathbb{R}, v \neq 0\right\}
$$

Haar measure of G_{2} in the new parametrization

Note that we can now factor the group $G_{2}=K H$, where

$$
K=\left\{\left[\underline{0},\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right)\right]: s, t \in \mathbb{R}, s^{2}+t^{2} \neq 0\right\}
$$

and,

$$
H=\mathbb{R}^{2} \rtimes H_{(1,0)}=\left\{\left[\underline{x},\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right)\right]: \underline{x} \in \mathbb{R}^{2}, u, v \in \mathbb{R}, v \neq 0\right\}
$$

Let $\mu_{G_{2}}, \mu_{K}$, and μ_{H} denote the left Haar measures on G_{2}, K, and H, respectively. Then,

$$
\int_{K_{0}} f d \mu_{K_{0}}=\int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right) \frac{d s d t}{s^{2}+t^{2}}
$$

Haar measure of G_{2} in the new parametrization

Note that we can now factor the group $G_{2}=K H$, where

$$
K=\left\{\left[\underline{0},\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right)\right]: s, t \in \mathbb{R}, s^{2}+t^{2} \neq 0\right\}
$$

and,

$$
H=\mathbb{R}^{2} \rtimes H_{(1,0)}=\left\{\left[\underline{x},\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right)\right]: \underline{x} \in \mathbb{R}^{2}, u, v \in \mathbb{R}, v \neq 0\right\}
$$

Let $\mu_{G_{2}}, \mu_{K}$, and μ_{H} denote the left Haar measures on G_{2}, K, and H, respectively. Then,

$$
\begin{gathered}
\int_{K_{0}} f d \mu_{K_{0}}=\int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right) \frac{d s d t}{s^{2}+t^{2}}, \\
\int_{K} f d \mu_{K}=\int_{K_{0}} f[0, M] d \mu_{K_{0}}(M)=\int_{\mathbb{R}} \int_{\mathbb{R}} f\left[\underline{0},\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right)\right] \frac{d s d t}{s^{2}+t^{2}},
\end{gathered}
$$

$$
\int_{H_{(1,0)}} f d \mu_{H_{(1,0)}}=\int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right) \frac{d u d v}{v^{2}}
$$

$$
\begin{gathered}
\int_{H_{(1,0)}} f d \mu_{H_{(1,0)}}=\int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right) \frac{d u d v}{v^{2}} \\
\int_{H} f d \mu_{H}=\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}} f\left[\underline{\underline{x}},\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right)\right] \frac{d \underline{x} d u d v}{|v|^{3}}
\end{gathered}
$$

Haar measure of G_{2} in the new parametrization

Recall,

$$
\int_{G L_{2}(\mathbb{R})} f d \mu_{G L_{2}(\mathbb{R})}=\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
u & v
\end{array}\right)\right) \frac{d s d t d u d v}{|v|\left(s^{2}+t^{2}\right)}
$$

Recall,
$\int_{\mathrm{GL}_{2}(\mathbb{R})} f d \mu_{G L_{2}(\mathbb{R})}=\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} f\left(\left(\begin{array}{cc}s & -t \\ t & s\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ u & v\end{array}\right)\right) \frac{d s d t d u d v}{|v|\left(s^{2}+t^{2}\right)}$
Thus, we can write

$$
\int_{\mathrm{GL}_{2}(\mathbb{R})} f d \mu_{\mathrm{GL}_{2}(\mathbb{R})}=\int_{K_{0}} \int_{H_{(1,0)}} f(M C)|\operatorname{det}(C)| d \mu_{H_{(1,0)}}(C) d \mu_{K_{0}}(M)
$$

Haar measure of G_{2} in the new parametrization

$$
\begin{aligned}
& G_{2}=\{ {\left[\underline{0},\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right)\right]\left[\underline{x},\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right)\right]: } \\
&\left.\underline{x} \in \mathbb{R}^{2}, s, t, u, v \in \mathbb{R}, v \neq 0, s^{2}+t^{2} \neq 0\right\} \\
&=\left\{\left[\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right) \underline{x},\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right)\right]:\right. \\
&\left.\underline{x} \in \mathbb{R}^{2}, s, t, u, v \in \mathbb{R}, v \neq 0, s^{2}+t^{2} \neq 0\right\}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \int_{G_{2}} f d \mu_{G_{2}}= \\
& \quad \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R}^{2}} f\left(\left[\underline{0},\left(\begin{array}{cc}
s & -t \\
t & s
\end{array}\right)\right]\left[\underline{x},\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right)\right]\right) \frac{d \underline{x} d s d t d u d v}{v^{2}\left(s^{2}+t^{2}\right)}
\end{aligned}
$$

π^{1} an irreducible representation of $H_{(1,0)}$

Recall, $H_{(1,0)}=\left\{\left(\begin{array}{ll}1 & 0 \\ u & v\end{array}\right): u, v \in \mathbb{R}, v \neq 0\right\}$.

π^{1} an irreducible representation of $H_{(1,0)}$

Recall, $H_{(1,0)}=\left\{\left(\begin{array}{ll}1 & 0 \\ u & v\end{array}\right): u, v \in \mathbb{R}, v \neq 0\right\}$.
Consider the Hilbert space $L^{2}\left(\mathbb{R}^{*}\right)=L^{2}\left(\mathbb{R}, \frac{d b}{|b|}\right)$.

Recall, $H_{(1,0)}=\left\{\left(\begin{array}{ll}1 & 0 \\ u & v\end{array}\right): u, v \in \mathbb{R}, v \neq 0\right\}$.
Consider the Hilbert space $L^{2}\left(\mathbb{R}^{*}\right)=L^{2}\left(\mathbb{R}, \frac{d b}{|b|}\right)$. There exists an irreducible representation π^{1} of $H_{(1,0)}$ that acts on $L^{2}\left(\mathbb{R}^{*}\right)$.

Recall, $H_{(1,0)}=\left\{\left(\begin{array}{ll}1 & 0 \\ u & v\end{array}\right): u, v \in \mathbb{R}, v \neq 0\right\}$.
Consider the Hilbert space $L^{2}\left(\mathbb{R}^{*}\right)=L^{2}\left(\mathbb{R}, \frac{d b}{|b|}\right)$. There exists an irreducible representation π^{1} of $H_{(1,0)}$ that acts on $L^{2}\left(\mathbb{R}^{*}\right)$.
For $\left(\begin{array}{ll}1 & 0 \\ u & v\end{array}\right) \in H_{(1,0)}$ and $f \in L^{2}\left(\mathbb{R}^{*}\right)$,

$$
\pi^{1}\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right) f(b)=e^{2 \pi i b^{-1} u} f\left(v^{-1} b\right) .
$$

Recall, $H_{(1,0)}=\left\{\left(\begin{array}{ll}1 & 0 \\ u & v\end{array}\right): u, v \in \mathbb{R}, v \neq 0\right\}$.
Consider the Hilbert space $L^{2}\left(\mathbb{R}^{*}\right)=L^{2}\left(\mathbb{R}, \frac{d b}{|b|}\right)$. There exists an irreducible representation π^{1} of $H_{(1,0)}$ that acts on $L^{2}\left(\mathbb{R}^{*}\right)$.
For $\left(\begin{array}{ll}1 & 0 \\ u & v\end{array}\right) \in H_{(1,0)}$ and $f \in L^{2}\left(\mathbb{R}^{*}\right)$,

$$
\pi^{1}\left(\begin{array}{ll}
1 & 0 \\
u & v
\end{array}\right) f(b)=e^{2 \pi i b^{-1} u} f\left(v^{-1} b\right) .
$$

Well-known theorem

The left regular representation, $\lambda_{H_{(1,0)}}$, of $H_{(1,0)}$ is equivalent to a direct sum of infinitely many copies of π^{1}.

$\chi_{(1,0)} \otimes \pi^{1}$ an irreducible representation of H

Because $\chi_{(1,0)}$ is left fixed by $H_{(1,0)}$, we can combine $\chi_{(1,0)}$ with π^{1} to make a representation of $H=\mathbb{R}^{2} \rtimes H_{(1,0)}$.

Because $\chi_{(1,0)}$ is left fixed by $H_{(1,0)}$, we can combine $\chi_{(1,0)}$ with π^{1} to make a representation of $H=\mathbb{R}^{2} \rtimes H_{(1,0)}$.

The representation $\chi_{(1,0)} \otimes \pi^{1}$ of H given by

$$
\left(\chi_{(1,0)} \otimes \pi^{1}\right)[\underline{x}, B]=\chi_{(1,0)}(\underline{x}) \pi^{1}(B), \quad \text { for }[\underline{x}, B] \in H
$$

is an irreducible representation of H on $L^{2}\left(\mathbb{R}^{*}\right)$.

Because $\chi_{(1,0)}$ is left fixed by $H_{(1,0)}$, we can combine $\chi_{(1,0)}$ with π^{1} to make a representation of $H=\mathbb{R}^{2} \rtimes H_{(1,0)}$.

The representation $\chi_{(1,0)} \otimes \pi^{1}$ of H given by

$$
\left(\chi_{(1,0)} \otimes \pi^{1}\right)[\underline{x}, B]=\chi_{(1,0)}(\underline{x}) \pi^{1}(B), \quad \text { for }[\underline{x}, B] \in H
$$

is an irreducible representation of H on $L^{2}\left(\mathbb{R}^{*}\right)$.
This representation of H is induced up to a representation of G_{2}.

Because $\chi_{(1,0)}$ is left fixed by $H_{(1,0)}$, we can combine $\chi_{(1,0)}$ with π^{1} to make a representation of $H=\mathbb{R}^{2} \rtimes H_{(1,0)}$.

The representation $\chi_{(1,0)} \otimes \pi^{1}$ of H given by

$$
\left(\chi_{(1,0)} \otimes \pi^{1}\right)[\underline{x}, B]=\chi_{(1,0)}(\underline{x}) \pi^{1}(B), \quad \text { for }[\underline{x}, B] \in H,
$$

is an irreducible representation of H on $L^{2}\left(\mathbb{R}^{*}\right)$.
This representation of H is induced up to a representation of G_{2}. Because G_{2} factors as $G_{2}=K H$, the induced representation can be defined on the Hilbert space $L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right)$.

Because $\chi_{(1,0)}$ is left fixed by $H_{(1,0)}$, we can combine $\chi_{(1,0)}$ with π^{1} to make a representation of $H=\mathbb{R}^{2} \rtimes H_{(1,0)}$.

The representation $\chi_{(1,0)} \otimes \pi^{1}$ of H given by

$$
\left(\chi_{(1,0)} \otimes \pi^{1}\right)[\underline{x}, B]=\chi_{(1,0)}(\underline{x}) \pi^{1}(B), \quad \text { for }[\underline{x}, B] \in H,
$$

is an irreducible representation of H on $L^{2}\left(\mathbb{R}^{*}\right)$.
This representation of H is induced up to a representation of G_{2}. Because G_{2} factors as $G_{2}=K H$, the induced representation can be defined on the Hilbert space $L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right)$.

$$
L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right)=\left\{F: K \rightarrow L^{2}\left(\mathbb{R}^{*}\right): \int_{K}\|F[\underline{0}, L]\|_{L^{2}\left(\mathbb{R}^{*}\right)}^{2} d \mu_{K}[\underline{0}, L]<\infty\right\} .
$$

Representation $\sigma \sim \operatorname{ind}_{H}^{G_{2}}\left(\chi_{(1,0)} \otimes \pi^{1}\right)$

For $F \in L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right),[\underline{x}, A] \in G_{2}$, and $[0, L] \in K$,

Representation $\sigma \sim \operatorname{ind}_{H}^{G_{2}}\left(\chi_{(1,0)} \otimes \pi^{1}\right)$

For $F \in L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right),[\underline{x}, A] \in G_{2}$, and $[\underline{0}, L] \in K$, $\sigma[\underline{x}, A] F[\underline{0}, L]=$

For $F \in L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right),[\underline{x}, A] \in G_{2}$, and $[0, L] \in K$, $\sigma[\underline{X}, A] F[\underline{0}, L]=$

$$
\left|\operatorname{det}\left(C_{A^{-1} L}\right)\right|^{-1 / 2}\left(\chi_{(1,0)} \otimes \pi^{1}\right)\left[L^{-1} \underline{x}, C_{A^{-1} L}^{-1}\right] F\left[\underline{0}, M_{A^{-1} L}\right]
$$

For $F \in L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right),[\underline{x}, A] \in G_{2}$, and $[0, L] \in K$, $\sigma[\underline{X}, A] F[\underline{0}, L]=$

$$
\begin{aligned}
& \left|\operatorname{det}\left(C_{A^{-1} L}\right)\right|^{-1 / 2}\left(\chi_{(1,0)} \otimes \pi^{1}\right)\left[L^{-1} \underline{X}, C_{A^{-1} L}^{-1}\right] F\left[\underline{0}, M_{A^{-1} L}\right] \\
& =\left|\operatorname{det}\left(C_{A^{-1} L}\right)\right|^{-1 / 2} e^{2 \pi(1,0) L^{-1} \underline{x}} \pi^{1}\left(C_{A^{-1} L}^{-1}\right) F\left[\underline{0}, M_{A^{-1} L}\right]
\end{aligned}
$$

For $F \in L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right),[\underline{x}, A] \in G_{2}$, and $[\underline{0}, L] \in K$, $\sigma[\underline{X}, A] F[\underline{0}, L]=$

$$
\begin{aligned}
& \left|\operatorname{det}\left(C_{A^{-1} L}\right)\right|^{-1 / 2}\left(\chi_{(1,0)} \otimes \pi^{1}\right)\left[L^{-1} \underline{X}, C_{A^{-1} L}^{-1}\right] F\left[\underline{0}, M_{A^{-1} L}\right] \\
& =\left|\operatorname{det}\left(C_{A^{-1} L}\right)\right|^{-1 / 2} e^{2 \pi(1,0) L^{-1} \underline{x}} \pi^{1}\left(C_{A^{-1} L}^{-1}\right) F\left[\underline{0}, M_{A^{-1} L}\right]
\end{aligned}
$$

We found a way to clarify the meaning of this formula.

Define a map $\gamma: \mathcal{O}=\widehat{\mathbb{R}^{2}} \backslash\{\underline{\}}\} \rightarrow K_{0}$ by

$$
\gamma\left(\omega_{1}, \omega_{2}\right)=\frac{1}{\omega_{1}^{2}+\omega_{2}^{2}}\left(\begin{array}{cc}
\omega_{1} & -\omega_{2} \\
\omega_{2} & \omega_{1}
\end{array}\right) \text {, for }\left(\omega_{1}, \omega_{2}\right) \in \mathcal{O} .
$$

We can use γ to move σ to an equivalent representation acting on

$$
L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right) .
$$

An important homeomorphism

Define a map $\gamma: \mathcal{O}=\widehat{\mathbb{R}^{2}} \backslash\{\underline{0}\} \rightarrow K_{0}$ by

$$
\gamma\left(\omega_{1}, \omega_{2}\right)=\frac{1}{\omega_{1}^{2}+\omega_{2}^{2}}\left(\begin{array}{cc}
\omega_{1} & -\omega_{2} \\
\omega_{2} & \omega_{1}
\end{array}\right) \text {, for }\left(\omega_{1}, \omega_{2}\right) \in \mathcal{O} \text {. }
$$

We can use γ to move σ to an equivalent representation acting on

$$
L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right) .
$$

Note that $L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ is really just $L^{2}\left(\mathbb{R}^{3}\right)$, written in a convenient way.

$u_{\underline{\omega}, A}$ and $v_{\underline{\omega}, A}$

To clarify the formulas, we introduce two new functions.

$u_{\underline{\omega}, A}$ and $v_{\underline{\omega}, A}$

To clarify the formulas, we introduce two new functions. For $A \in \mathrm{GL}_{2}(\mathbb{R})$ and $\underline{\omega} \in \mathcal{O}, C_{A^{-1} \gamma(\underline{\omega})}^{-1} \in H_{(1,0)}$.

$u_{\underline{\omega}, A}$ and $v_{\underline{\omega}, A}$

To clarify the formulas, we introduce two new functions. For $A \in \mathrm{GL}_{2}(\mathbb{R})$ and $\underline{\omega} \in \mathcal{O}, C_{A^{-1} \gamma(\underline{\omega})}^{-1} \in H_{(1,0)}$. So

$$
C_{A^{-1} \gamma(\underline{\omega})}^{-1}=\left(\begin{array}{cc}
1 & 0 \\
u_{\underline{\omega}, A} & v_{\underline{\omega}, A}
\end{array}\right),
$$

For some $u_{\underline{\omega}, A}, v_{\underline{\omega}, A} \in \mathbb{R}$.

$u_{\omega, A}$ and $v_{\underline{\omega}, A}$

To clarify the formulas, we introduce two new functions. For $A \in \mathrm{GL}_{2}(\mathbb{R})$ and $\underline{\omega} \in \mathcal{O}, C_{A^{-1} \gamma(\underline{\omega})}^{-1} \in H_{(1,0)}$. So

$$
C_{A^{-1} \gamma(\underline{\omega})}^{-1}=\left(\begin{array}{cc}
1 & 0 \\
u_{\underline{\omega}, A} & v_{\underline{\omega}, A}
\end{array}\right),
$$

For some $u_{\underline{\omega}, A}, v_{\underline{\omega}, A} \in \mathbb{R}$.
Calculations give

$$
u_{\underline{\omega}, A}=\frac{(a c+b d)\left(\omega_{1}^{2}-\omega_{2}^{2}\right)-\left(a^{2}+b^{2}-c^{2}-d^{2}\right) \omega_{1} \omega_{2}}{\left(a \omega_{1}+c \omega_{2}\right)^{2}+\left(b \omega_{1}+d \omega_{2}\right)^{2}}
$$

$u_{\omega, A}$ and $v_{\underline{\omega}, A}$

To clarify the formulas, we introduce two new functions. For $A \in \mathrm{GL}_{2}(\mathbb{R})$ and $\underline{\omega} \in \mathcal{O}, C_{A^{-1} \gamma(\underline{\omega})}^{-1} \in H_{(1,0)}$. So

$$
C_{A^{-1} \gamma(\underline{\omega})}^{-1}=\left(\begin{array}{cc}
1 & 0 \\
u_{\underline{\omega}, A} & v_{\underline{\omega}, A}
\end{array}\right),
$$

For some $u_{\underline{\omega}, A}, v_{\underline{\omega}, A} \in \mathbb{R}$.
Calculations give

$$
u_{\underline{\omega}, A}=\frac{(a c+b d)\left(\omega_{1}^{2}-\omega_{2}^{2}\right)-\left(a^{2}+b^{2}-c^{2}-d^{2}\right) \omega_{1} \omega_{2}}{\left(a \omega_{1}+c \omega_{2}\right)^{2}+\left(b \omega_{1}+d \omega_{2}\right)^{2}}
$$

$u_{\omega, A}$ and $v_{\omega, A}$

To clarify the formulas, we introduce two new functions. For $A \in \mathrm{GL}_{2}(\mathbb{R})$ and $\underline{\omega} \in \mathcal{O}, C_{A^{-1} \gamma(\underline{\omega})}^{-1} \in H_{(1,0)}$. So

$$
C_{A^{-1} \gamma(\underline{\omega})}^{-1}=\left(\begin{array}{cc}
1 & 0 \\
u_{\underline{\omega}, A} & v_{\underline{\omega}, A}
\end{array}\right),
$$

For some $u_{\underline{\omega}, A}, v_{\underline{\omega}, A} \in \mathbb{R}$.
Calculations give

$$
\begin{aligned}
& u_{\underline{\omega}, A}=\frac{(a c+b d)\left(\omega_{1}^{2}-\omega_{2}^{2}\right)-\left(a^{2}+b^{2}-c^{2}-d^{2}\right) \omega_{1} \omega_{2}}{\left(a \omega_{1}+c \omega_{2}\right)^{2}+\left(b \omega_{1}+d \omega_{2}\right)^{2}} \\
& v_{\underline{\omega}, A}=\frac{(a d-b c)\left(\omega_{1}^{2}+\omega_{2}^{2}\right)}{\left(a \omega_{1}+c \omega_{2}\right)^{2}+\left(b \omega_{1}+d \omega_{2}\right)^{2}} .
\end{aligned}
$$

Define $U: L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right) \rightarrow L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ by, for $F \in L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right)$ and $\left(\underline{\omega}, \omega_{3}\right) \in \widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}$,

$$
(U F)\left(\underline{\omega}, \omega_{3}\right)= \begin{cases}\frac{(F[\underline{0}, \gamma(\underline{\omega})])\left(\omega_{3}^{-1}\right)}{\left.\|\omega\||\cdot| \omega_{3}\right|^{1 / 2}} & \text { for } \underline{\omega} \in \mathcal{O}, \omega_{3} \neq 0 \\ 0 & \text { otherwise } .\end{cases}
$$

Define $U: L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right) \rightarrow L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ by, for $F \in L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right)$ and $\left(\underline{\omega}, \omega_{3}\right) \in \widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}$,

$$
(U F)\left(\underline{\omega}, \omega_{3}\right)= \begin{cases}\frac{(F[\underline{0}, \gamma(\underline{\omega})])\left(\omega_{3}^{-1}\right)}{\|\omega\| \| \cdot\left|\omega_{3}\right|^{1 / 2}} & \text { for } \underline{\omega} \in \mathcal{O}, \omega_{3} \neq 0 \\ 0 & \text { otherwise } .\end{cases}
$$

Then U is a unitary map.

Define $U: L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right) \rightarrow L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ by, for $F \in L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right)$ and $\left(\underline{\omega}, \omega_{3}\right) \in \widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}$,

$$
(U F)\left(\underline{\omega}, \omega_{3}\right)= \begin{cases}\left.\frac{(F[\underline{0}, \gamma(\underline{\omega})])\left(\omega_{3}^{-1}\right)}{\| \omega}\right)^{\| \cdot\left|\omega_{3}\right|^{1 / 2}} & \text { for } \underline{\omega} \in \mathcal{O}, \omega_{3} \neq 0 \\ 0 & \text { otherwise. }\end{cases}
$$

Then U is a unitary map. Let $\sigma_{1}[\underline{x}, A]=U \sigma[\underline{x}, A] U^{-1}$, for all $[\underline{X}, A] \in G_{2}$. Then

Representation σ_{1}

Define $U: L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right) \rightarrow L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ by, for $F \in L^{2}\left(K, L^{2}\left(\mathbb{R}^{*}\right)\right)$ and $\left(\underline{\omega}, \omega_{3}\right) \in \widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}$,

$$
(U F)\left(\underline{\omega}, \omega_{3}\right)= \begin{cases}\left.\frac{(F[\underline{0}, \gamma(\underline{\omega})])\left(\omega_{3}^{-1}\right)}{\| \omega}|\cdot| \omega_{3}\right|^{1 / 2} & \text { for } \underline{\omega} \in \mathcal{O}, \omega_{3} \neq 0 \\ 0 & \text { otherwise } .\end{cases}
$$

Then U is a unitary map. Let $\sigma_{1}[\underline{x}, A]=U \sigma[\underline{x}, A] U^{-1}$, for all $[\underline{X}, A] \in G_{2}$. Then

$\sigma_{1} \sim \sigma$ and

$$
\left(\sigma_{1}[\underline{x}, A] \xi\right)\left(\underline{\omega}, \omega_{3}\right)=\frac{|\operatorname{det}(A)| \cdot\|\underline{\omega}\|}{\|\underline{\omega} A\|} e^{2 \pi i\left(\underline{\omega x}+\omega_{3} u_{\underline{\omega}, A}\right)} \xi\left(\underline{\omega} A, \omega_{3} v_{\underline{\omega}, A}\right),
$$

for a.e. $\left(\underline{\omega}, \omega_{3}\right) \in \widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}$ and all $\xi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$.

Main Theorems

$$
\left(\sigma_{1}[\underline{X}, A] \xi\right)\left(\underline{\omega}, \omega_{3}\right)=\frac{|\operatorname{det}(A)| \cdot\|\omega\|}{\|\omega A\|} e^{2 \pi i\left(\omega \underline{\omega}+\omega_{3} \underline{u_{\underline{w}}, A}\right)} \xi\left(\underline{\omega} A, \omega_{3} v_{\underline{\omega}, A}\right),
$$

Main Theorems

$$
\left(\sigma_{1}[\underline{x}, A] \xi\right)\left(\underline{\omega}, \omega_{3}\right)=\frac{|\operatorname{det}(A)| \cdot\|\underline{\omega}\|}{\|\underline{\omega} A\|} e^{2 \pi i\left(\underline{\omega x}+\omega_{3} u_{\underline{\omega}}, A\right)} \xi\left(\underline{\omega} A, \omega_{3} v_{\underline{\omega}, A}\right)
$$

Theorem A:

As defined above, σ_{1} is an irreducible representation of G_{2}.

Main Theorems

$$
\left(\sigma_{1}[\underline{x}, A] \xi\right)\left(\underline{\omega}, \omega_{3}\right)=\frac{|\operatorname{det}(A)| \cdot\|\underline{\omega}\|}{\|\underline{\omega} A\|} e^{2 \pi i\left(\underline{\omega x}+\omega_{3} u_{\underline{\omega}}, A\right)} \xi\left(\underline{\omega} A, \omega_{3} v_{\underline{\omega}, A}\right)
$$

Theorem A:

As defined above, σ_{1} is an irreducible representation of G_{2}.

Main Theorems

$$
\left(\sigma_{1}[\underline{X}, A] \xi\right)\left(\underline{\omega}, \omega_{3}\right)=\frac{|\operatorname{det}(A)| \cdot\|\omega\|}{\|\omega A\|} e^{2 \pi i\left(\omega \underline{\omega}+\omega_{3} u_{\underline{\underline{\omega}}, A)}\right) \xi\left(\underline{\omega} A, \omega_{3} v_{\underline{\omega}, A}\right), .}
$$

Theorem A:

As defined above, σ_{1} is an irreducible representation of G_{2}. Let $\psi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ satisfy $\int_{\widehat{\mathbb{R}}} \int_{\widehat{\mathbb{R}^{2}}} \frac{\left|\psi\left(\omega, \omega_{3}\right)\right|^{2}}{\|\underline{\omega}\|^{2}\left|\omega_{3}\right|} d \underline{\omega} d \omega_{3}=1$.

Main Theorems

$$
\left(\sigma_{1}[\underline{x}, A] \xi\right)\left(\underline{\omega}, \omega_{3}\right)=\frac{|\operatorname{det}(A)| \cdot\|\omega\|}{\|\underline{\omega} A\|} e^{2 \pi i\left(\omega \underline{\omega}+\omega_{3} u_{\underline{\underline{\omega}}, A)}\right) \xi\left(\underline{\omega} A, \omega_{3} v_{\underline{\omega}, A}\right), .}
$$

Theorem A:

As defined above, σ_{1} is an irreducible representation of G_{2}. Let $\psi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ satisfy $\int_{\widehat{\mathbb{R}}} \int_{\widehat{\mathbb{R}^{2}}} \frac{\left|\psi\left(\omega, \omega_{3}\right)\right|^{2}}{\|\omega\|^{2}\left|\omega_{3}\right|} d \underline{\omega} d \omega_{3}=1$. With

$$
V_{\psi} \xi[\underline{X}, A]=\left\langle\xi, \sigma_{1}[\underline{x}, A] \psi\right\rangle_{L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)},
$$

for $[\underline{x}, A] \in G_{2}, \xi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right), V_{\psi}$ is an isometry of $L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ into $L^{2}\left(G_{2}\right)$.

Main Theorems

$$
\left(\sigma_{1}[\underline{x}, A] \xi\right)\left(\underline{\omega}, \omega_{3}\right)=\frac{|\operatorname{det}(A)| \cdot\|\omega\|}{\|\underline{\omega} A\|} e^{2 \pi i\left(\omega \underline{\omega}+\omega_{3} u_{\underline{\underline{\omega}}, A)}\right) \xi\left(\underline{\omega} A, \omega_{3} v_{\underline{\omega}, A}\right), .}
$$

Theorem A:

As defined above, σ_{1} is an irreducible representation of G_{2}. Let $\psi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ satisfy $\int_{\widehat{\mathbb{R}}} \int_{\mathbb{R}^{2}} \frac{\left|\psi\left(\omega, \omega_{3}\right)\right|^{2}}{\|\omega\|^{2}\left|\omega_{3}\right|} d \underline{\omega} d \omega_{3}=1$. With

$$
V_{\psi} \xi[\underline{X}, A]=\left\langle\xi, \sigma_{1}[\underline{x}, A] \psi\right\rangle_{L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)},
$$

for $[\underline{x}, A] \in G_{2}, \xi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right), V_{\psi}$ is an isometry of $L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ into $L^{2}\left(G_{2}\right)$. Moreover,

$$
V_{\psi} \sigma_{1}[\underline{x}, A]=\lambda_{G_{2}}[\underline{x}, A] V_{\psi} \text {, for }[\underline{x}, A] \in G_{2} .
$$

$$
\left(\sigma_{1}[\underline{x}, A] \xi\right)\left(\underline{\omega}, \omega_{3}\right)=\frac{|\operatorname{det}(A)| \cdot\|\omega\|}{\|\underline{\omega} A\|} e^{2 \pi i\left(\omega \underline{\omega}+\omega_{3} u_{\underline{\underline{\omega}}, A}\right)} \xi\left(\underline{\omega} A, \omega_{3} v_{\underline{\omega}, A}\right),
$$

Theorem A:

As defined above, σ_{1} is an irreducible representation of G_{2}. Let $\psi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ satisfy $\int_{\widehat{\mathbb{R}}} \int_{\widehat{\mathbb{R}}^{2}} \frac{\left|\psi\left(\omega, \omega_{3}\right)\right|^{2}}{\|\omega\|^{2}\left|\omega_{3}\right|} d \underline{\omega} d \omega_{3}=1$. With

$$
V_{\psi} \xi[\underline{x}, A]=\left\langle\xi, \sigma_{1}[\underline{x}, A] \psi\right\rangle_{L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)^{\prime}}
$$

for $[\underline{x}, A] \in G_{2}, \xi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right), V_{\psi}$ is an isometry of $L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ into $L^{2}\left(G_{2}\right)$. Moreover,

$$
V_{\psi} \sigma_{1}[\underline{x}, A]=\lambda_{G_{2}}[\underline{x}, A] V_{\psi}, \text { for }[\underline{x}, A] \in G_{2}
$$

This shows σ_{1} is equivalent to a subrepresentation of the left regular representation. Moreover, The left regular representation, $\lambda_{G_{2}}$, of G_{2} is equivalent to a direct sum of infinitely many copies of σ_{1}.

Main Theorems

A function $\psi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ is called a σ_{1}-wavelet if

$$
\int_{\widehat{\mathbb{R}}} \int_{\widehat{\mathbb{R}^{2}}} \frac{\left|\psi\left(\underline{\omega}, \omega_{3}\right)\right|^{2}}{\|\underline{\omega}\|^{2}\left|\omega_{3}\right|} d \underline{\omega} d \omega_{3}=1 .
$$

A function $\psi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ is called a σ_{1}-wavelet if

$$
\int_{\widehat{\mathbb{R}}} \int_{\mathbb{R}^{2}} \frac{\left|\psi\left(\underline{\omega}, \omega_{3}\right)\right|^{2}}{\|\underline{\omega}\|^{2}\left|\omega_{3}\right|} d \underline{\omega} d \omega_{3}=1 .
$$

For each $\underline{x} \in \mathbb{R}^{2}$ and $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(\mathbb{R})$, define $\psi_{\underline{x}, A}$ on $\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}$ by

$$
\psi_{\underline{x}, A}\left(\underline{\omega}, \omega_{3}\right)=\frac{|\operatorname{det}(A)| \cdot\|\omega\|}{\|\omega \underline{\omega}\|} e^{2 \pi i\left(\underline{\omega} x+\omega_{3} u_{\underline{\omega}}, A\right)} \psi\left(\underline{\omega} A, \omega_{3} v_{\underline{\omega}, A}\right),
$$

For a.e. $\left(\underline{\omega}, \omega_{3}\right) \in \widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}$. Then $\psi_{\underline{x}, A} \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$.

Main Theorems

For each $\xi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$, let

$$
V_{\psi} \xi[\underline{x}, A]=\left\langle\xi, \psi_{\underline{x}, A}\right\rangle_{L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)}, \text { for all } \underline{x} \in \mathbb{R}^{2}, A \in \mathrm{GL}_{2}(\mathbb{R}) .
$$

Then V_{ψ} is called the σ_{1}-wavelet transform with σ_{1}-wavelet ψ.

For each $\xi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$, let

$$
V_{\psi} \xi[\underline{x}, A]=\left\langle\xi, \psi_{\underline{x}, A}\right\rangle_{L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)}, \text { for all } \underline{x} \in \mathbb{R}^{2}, A \in \mathrm{GL}_{2}(\mathbb{R})
$$

Then V_{ψ} is called the σ_{1}-wavelet transform with σ_{1}-wavelet ψ.

Theorem B:

The Duflo-Moore operator $C_{\sigma_{1}}$ associated with σ_{1} is given by, for any $\xi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right), C_{\sigma_{1}} \xi\left(\underline{\omega}, \omega_{3}\right)=\|\underline{\omega}\|^{-1}\left|\omega_{3}\right|^{-1 / 2} \xi\left(\underline{\omega}, \omega_{3}\right)$, for a.e. $\left(\underline{\omega}, \omega_{3}\right) \in \widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}$.

Main Theorems

The reconstruction formula can now be stated for the σ_{1}-wavelet transform.

The reconstruction formula can now be stated for the σ_{1}-wavelet transform.

Theorem C:

Let $\psi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ be a σ_{1}-wavelet. Then, for any
$\xi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$,
$\xi=\int_{\mathrm{GL}_{2}(\mathbb{R})} \int_{\mathbb{R}^{2}} V_{\psi} \xi[\underline{x}, A] \psi_{\underline{x}, A} \frac{d \underline{x} d \mu_{\mathrm{GL}_{2}(\mathbb{R})}(A)}{|\operatorname{det}(A)|}$, weakly in $L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$.

The reconstruction formula can now be stated for the σ_{1}-wavelet transform.

Theorem C:

Let $\psi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ be a σ_{1}-wavelet. Then, for any
$\xi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$,
$\xi=\int_{\mathrm{GL}_{2}(\mathbb{R})} \int_{\mathbb{R}^{2}} V_{\psi} \xi[\underline{x}, A] \psi_{\underline{x}, A} \frac{d \underline{x} d \mu_{\mathrm{GL}_{2}(\mathbb{R})}(A)}{|\operatorname{det}(A)|}$, weakly in $L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$.

The reconstruction formula can now be stated for the σ_{1}-wavelet transform.

Theorem C:

Let $\psi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$ be a σ_{1}-wavelet. Then, for any
$\xi \in L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$,
$\xi=\int_{\mathrm{GL}_{2}(\mathbb{R})} \int_{\mathbb{R}^{2}} V_{\psi} \xi[\underline{x}, A] \psi_{\underline{x}, A} \frac{d \underline{x} d \mu_{\mathrm{GL}_{2}(\mathbb{R})}(A)}{|\operatorname{det}(A)|}$, weakly in $L^{2}\left(\widehat{\mathbb{R}^{2}} \times \widehat{\mathbb{R}}\right)$.

Thank you!

