Bilinear multipliers in Orlicz spaces on Locally Compact Groups

Serap Öztop

İstanbul University oztops@istanbul.edu.tr

Joint work with Alen Osançliol

CAHAS, Banff, June 2022

Definition (Young Function)

A nonzero function $\Phi : [0, \infty) \to [0, \infty]$ is called a Young function if Φ is convex, $\Phi(0) = 0$, and $\lim_{x\to\infty} \Phi(x) = \infty$.

Definition (Complementary Young Function)

For a Young function $\Phi,$ the complementary (Young) function Ψ of Φ is

$$\Psi(y) = \sup\{xy - \Phi(x) : x \ge 0\} \quad (y \ge 0).$$

- (Φ, Ψ) is called a complementary pair.
- We have the Young inequality

$$xy \leq \Phi(x) + \Psi(y) \quad (x, y \geq 0).$$

Let G be a locally compact abelian group with a fixed Haar measure ds.

Definition (Orlicz Space)

Given a Young function Φ , the **Orlicz Space** $L^{\Phi}(G)$ is defined to be

$$L^{\Phi}(G) = \left\{ f: G \to \mathbb{C} : \int_{G} \phi(lpha |f|) ds < \infty \text{ for some } lpha > 0
ight\}.$$

The Orlicz space $L^{\Phi}(G)$ is a Banach space under the following norms:

- Orlicz norm: $||f||_{\Phi} = \sup \left\{ \int_{G} |f(s)v(s)| ds : ||\Psi(|v|)||_{1} \le 1 \right\}$
- Luxemburg norm: $N_{\Phi}(f) = \inf \left\{ k > 0 : \int_{G} \Phi\left(\frac{|f(s)|}{k}\right) ds \leq 1 \right\}$.

It is known that these two norms are equivalent with

$$N_{\Phi}(\cdot) \leq \|\cdot\|_{\Phi} \leq 2N_{\Phi}(\cdot)$$

A Young function Φ satisfies the Δ_2 condition (writing $\Phi \in \Delta_2$) if there exist K > 0 and $x_0 \ge 0$ such that $\Phi(2x) \le K\Phi(x)$ for all $x \ge x_0$. If $\Phi \in \Delta_2$, then:

(i) Both the step functions and $C_c(G)$ are dense in $L^{\Phi}(G)$;

(ii)
$$L^{\Phi}(G)^* = L^{\Psi}(G)$$
.

If, in addition, $\Psi \in \Delta_2$, then the Orlicz space $L^{\Phi}(G)$ is a reflexive Banach space.

(Generalized) Hölder's Inequality for Orlicz Spaces

For all $f \in L^{\Phi}(G)$ and $g \in L^{\Psi}(G)$, we have

$$|fg||_1 := \int_G |f(s)g(s)|ds$$

$$\leq \min\{N_{\Phi}(f)||g||_{\Psi}, ||f||_{\Phi}N_{\Psi}(g)\}$$

Example

For $1 \le p < \infty$ and the Young function $\Phi(x) = \frac{x^p}{p}$, the space $L^{\Phi}(G)$ becomes the Lebesgue space $L^p(G)$ and the norm $\|\cdot\|_{\Phi}$ is equivalent to the classical norm $\|\cdot\|_p$.

If p = 1, then the complementary Young function of $\Phi(x) = x$ is

$$\Psi(y) = \left\{egin{array}{cc} 0 & ext{if } 0 \leq y \leq 1, \ \infty & ext{otherwise.} \end{array}
ight.$$

If $1 , then the complementary Young function of <math>\Phi(x) = \frac{x^p}{p}$ is $\Psi(y) = \frac{y^q}{q}$, where q is the conjugate of p, i.e. $\frac{1}{p} + \frac{1}{q} = 1$.

Motivation

For a pair of functions $f, g : \mathbb{R} \to \mathbb{C}$ such that \hat{f} and \hat{g} are compactly supported and for any locally integrable function $m(\xi, \eta)$ defined on $\mathbb{R} \times \mathbb{R}$, one can consider the mapping

$$B_m(f,g)(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} \hat{f}(\xi) \hat{g}(\eta) m(\xi,\eta) e^{2\pi i (\xi+\eta) x} d\xi d\eta$$

and ask about its boundedness on certain function spaces.

Definition (**O.Blasco**, **2009**)

Let $1 \le p_1, p_2 \le \infty$ and $0 < p_3 \le \infty$ and let locally integrable function $m(\xi, \eta)$ defined on $\mathbb{R} \times \mathbb{R}$. The function *m* is said to be a bilinear multiplier of type (p_1, p_2, p_3) if there exists C > 0 such that

 $||B_m(f,g)||_{p_3} \leq ||f||_{p_1} ||g||_{p_2}$

for any $f,g \in S(\mathbb{R})$, which stands for the Schwartz class on \mathbb{R} .

That is, if B_m extends to a bounded bilinear operator from $L^{p_1}(\mathbb{R}) \times L^{p_2}(\mathbb{R})$ to $L^{p_3}(\mathbb{R})$. Denote by $BM_{(p_1,p_2,p_3)}(\mathbb{R})$ for the space of bilinear multipliers of type (p_1, p_2, p_3) and $||m||_{p_1,p_2,p_3} = ||B_m||$. Denote by $\tilde{\mathcal{M}}_{(p_1,p_2,p_3)}(\mathbb{R})$ the space of measurable functions $M : \mathbb{R} \to \mathbb{C}$ such that $m(\xi, \eta) = M(\xi - \eta)$ belongs to $BM_{(p_1,p_2,p_3)}(\mathbb{R})$, that is,

$$B_{M}(f,g)(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} \hat{f}(\xi) \hat{g}(\eta) M(\xi-\eta) e^{2\pi i \langle \xi+\eta, x \rangle} d\xi d\eta$$

extends to a bounded bilinear map from $L^{p_1}(\mathbb{R}) \times L^{p_2}(\mathbb{R})$ to $L^{p_3}(\mathbb{R})$. We keep the notation $\|M\|_{p_1,p_2,p_3} = \|B_M\|$.

 O. Blasco has produce a method to get multipliers in BM_(p1,p2,p3)(ℝ) from those in *M̃*_(p1,p2,p3)(ℝ) and investigated some properties of these multiplier spaces.

Bilinear multipliers acting on other groups such as the torus $\mathbb T$ or the integers $\mathbb Z$ in place of $\mathbb R$ have also been studied. More recently, several results on bilinear multipliers acting on Orlicz spaces have been obtained.

O.Blasco and A. Osançliol, 2019

Let Φ_1, Φ_2 and Φ_3 be Young functions and let $L^{\Phi_1}(\mathbb{R}), L^{\Phi_2}(\mathbb{R})$ and $L^{\Phi_3}(\mathbb{R})$ be the corresponding Orlicz spaces. A locally integrable function m defined on $\mathbb{R} \times \mathbb{R}$ is said to be a bilinear multiplier of type (Φ_1, Φ_2, Φ_3) if there exists C > 0 such that

$$B_m(f,g)(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} \hat{f}(\xi) \hat{g}(\eta) m(\xi,\eta) e^{2\pi i (\xi+\eta) x} d\xi d\eta$$

satisfies

$$N_{\Phi_3}(B_m(f,g)) \leq CN_{\Phi_1}(f)N_{\Phi_2}(g)$$

for any $f,g \in \mathcal{S}(\mathbb{R})$. They investigated some properties of the spaces $BM_{(\Phi_1,\Phi_2,\Phi_3)}(\mathbb{R})$ and $\tilde{\mathcal{M}}_{(\Phi_1,\Phi_2,\Phi_3)}(\mathbb{R})$.

Similar results hold also on \mathbb{R}^n .

Our Goal:

- Use general locally compact abelian groups instead of special groups like $\mathbb{R},$ etc.
- Use Orlicz spaces $L^{\Phi}(G)$ on locally compact abelian groups.
- Replace the the Schwartz space $S(\mathbb{R})$ by the Feichtinger algebra $S_0(G)$.
- Give some sufficient conditions to define a bilinear multiplier on Orlicz space.

Let G be a locally compact abelian group.

Definition

Let \mathbb{T} denote unit circle. A group homomorphism $\xi : G \to \mathbb{T}$ is called a character of G. The set \hat{G} of all continuous characters of G is called the dual group of G.

- \hat{G} is an abelian group under pointwise multiplication of functions.
- Under the compact-open topology \hat{G} is a topological group. In fact, \hat{G} becomes a locally compact abelian group.

Definition

Let $f \in L^1(G)$. The Fourier transform of $\mathcal{F}f$ of f is the function

$$\mathcal{F}f(\xi) = \hat{f}(\xi) = \int_{\mathcal{G}} f(x) \overline{\langle \xi, x \rangle} dx , \ \xi \in \hat{\mathcal{G}}.$$

Let $f \in L^1(G)$ with $\hat{f} \in L^1(\hat{G})$. The function f can be recovered from \hat{f} by the inverse Fourier transform

$$f(x) = \mathcal{F}^{-1}\hat{f}(x) = \int_{\widehat{G}} \hat{f}(\xi) \langle \xi, x \rangle d\xi,$$

a.e. $x \in G$. Next to the Fourier transform we need the following operators.

- Translation by $y \in G$: $\tau_y f(x) = f(x y)$, $x \in G$.
- Modulation by $w \in \hat{\mathcal{G}}$: $M_w f(x) = \langle w, x > f(x) |$, $x \in \mathcal{G}$.

All of these operators are well-defined, linear and bounded operators on Orlicz spaces.

Feichtinger Algebra(H.G. Feichtinger, 1981)

Recall the properties of Feichtinger's remarkable Segal algebra $S_0(G)$, i.e., translation invariant dense subalgebra of $L^1(G)$ under convolution which furthermore is continuously embedded into $L^1(G)$.

- $S_0(G)$ is the smallest Segal algebra in $L^1(G)$ that is closed under pointwise multiplication by characters and on which multiplication by any character is an isometry.
- Fourier transform induces an isomorphism $S_0(G) = S_0(\hat{G})$, where \hat{G} is the dual group.
- S₀(G) is the smallest Segal algebra in the Fourier algebra A(G) that is translation invariant and on which translations are isometries.

• $S_0(G)$ is dense in $L^p(G)$ for $1 \le p < \infty$.

Feichtinger Algebra in Orlicz Spaces

Let G be a locally compact abelian group. Denote $\Lambda_K(G)$ by $\Lambda_K(G) = \{ f \in L^1(G) \mid supp(\hat{f}) \text{ is compact } \}.$

Theorem (H. Reiter, 1968)

 $\Lambda_{\mathcal{K}}(G)$ is a dense subspace of $L^1(G)$.

Using the inclusions,

$$\Lambda_{\mathcal{K}}(G) \subseteq S_0(G) \subseteq L^1(G) \cap L^{\Phi}(G) \subseteq L^{\Phi}(G).$$
(1)

we obtain the following results.

Theorem

If
$$\Phi \in \Delta_2$$
, $\Lambda_K(G)$ is a dense subspace of $L^{\Phi}(G)$.

Theorem

If $\Phi \in \Delta_2$, $S_0(G)$ is a dense subspace of $L^{\Phi}(G)$.

Bilinear Multipliers on $L^{\Phi}(G)$

Definition

Given three Young functions Φ_i for i = 1, 2, 3, a function $m \in L^{\infty}(\widehat{G} \times \widehat{G})$ is said to be a *bilinear multiplier* of type $(\Phi_1, \Phi_2; \Phi_3)$ if there exists a constant C > 0 such that

$$B_m(f,g)(x) = \int_{\widehat{G}} \int_{\widehat{G}} \widehat{f}(\xi) \widehat{g}(\eta) m(\xi,\eta) \langle \xi + \eta, x \rangle d\xi d\eta$$

satisfies

$$N_{\Phi_3}(B_m(f,g)) \leq CN_{\Phi_1}(f)N_{\Phi_2}(g)$$

for any $f, g \in S_0(G)$.

We write $\mathcal{BM}_{(\Phi_1,\Phi_2;\Phi_3)}(G)$ for the space of bilinear multipliers of type $(\Phi_1, \Phi_2; \Phi_3)$ with the norm $||m||_{(\Phi_1,\Phi_2;\Phi_3)} = ||B_m||$. We denote by $\tilde{\mathcal{M}}_{(\Phi_1,\Phi_2,\Phi_3)}(G)$ the space of locally integrable functions M defined on \hat{G} such that $m(\xi,\eta) = M(\xi-\eta) \in \mathcal{BM}_{(\Phi_1,\Phi_2;\Phi_3)}(G)$.

Note that both spaces are invariant under translation and modulation.

Theorem

Let Φ_1 , Φ_2 and Φ_3 be Young functions such that

$$\Phi_1^{-1}(x)\Phi_2^{-1}(x) \le \Phi_3^{-1}(x), x \in \mathbb{R}.$$

If $m(\xi,\eta) = \hat{\mu}(\xi + \eta)$ a regular Borel measure μ on G, then $m \in \mathcal{BM}_{(\Phi_1,\Phi_2,\Phi_3)}(G)$ and $||m||_{(\Phi_1,\Phi_2,\Phi_3)} \leq 2||\mu||$, where $\hat{\mu}(\xi) = \int_G \overline{\langle \xi, x \rangle} d\mu$, $\xi \in \hat{G}$.

Corollary

Let (Φ, Ψ) be a complementary pair of Young functions. If $m(\xi, \eta) = \hat{\mu}(\xi + \eta)$ where μ is a regular Borel measure on G then $m \in \mathcal{BM}_{(\Phi,\Psi,1)}$ and $\|m\|_{(\Phi,\Psi,1)} \leq 4\|\mu\|_1$.

Corollary

If $\frac{1}{p} + \frac{1}{q} = 1$ for $1 < p, q < \infty$ and $m(\xi, \eta) = \hat{\mu}(\xi + \eta)$ for a regular Borel measure μ on G, then $m \in \mathcal{BM}_{(p,q,1)}$ and $\|m\|_{(p,q,1)} \le 4\|\mu\|_1$.

We can get a new bilinear multipliers from a given one.

Theorem

Let Φ_i for i = 1, 2, 3 be Young functions.

(a) If
$$\varphi \in L^1(\hat{G} \times \hat{G})$$
 and $m \in \mathcal{BM}_{(\Phi_1, \Phi_2, \Phi_3)}(G)$, then
 $\varphi * m \in \mathcal{BM}_{(\Phi_1, \Phi_2, \Phi_3)}(G)$ and
 $\|\varphi * m\|_{(\Phi_1, \Phi_2, \Phi_3)} \le \|\varphi\|_1 \|m\|_{(\Phi_1, \Phi_2, \Phi_3)}.$

(b) If
$$\varphi \in L^1(G \times G)$$
 and $m \in \mathcal{BM}_{(\Phi_1, \Phi_2, \Phi_3)}(G)$, then
 $\hat{\varphi}m \in \mathcal{BM}_{(\Phi_1, \Phi_2, \Phi_3)}(G)$ and $\|\hat{\varphi}m\|_{(\Phi_1, \Phi_2, \Phi_3)} \le \|\varphi\|_1 \|m\|_{(\Phi_1, \Phi_2, \Phi_3)}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bilinear multipliers when $m(\xi, \eta) = M(\xi - \eta)$

Theorem

Let Φ_1 , Φ_2 and Φ_3 be Young functions such that

 $\Phi_1^{-1}(x)\Phi_2^{-1}(x) \le x\Phi_3^{-1}(x), x \in \mathbb{R}.$

If $M\in L^1(\widehat{G})$ then, $M\in \mathcal{ ilde{M}}_{(\Phi_1,\Phi_2,\Phi_3)}(G).$ Moreover

 $\|M\|_{(\Phi_1,\Phi_2,\Phi_3)} \leq 2\|M\|_1.$

Corollary

Let (Φ, Ψ) be a complementary pair of Young functions. If $M \in L^1(\widehat{G})$, then $M \in \widetilde{\mathcal{M}}_{(\Phi, \Psi, \infty)}(G)$. Moreover $\|M\|_{(\Phi, \Psi, \infty)} \leq 2\|M\|_1$.

Corollary

Let
$$p, q, r \in (1, \infty)$$
 such that $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} = 1$. If $M \in L^1(\widehat{G})$, then $M \in \widetilde{\mathcal{M}}_{(p,q,r)}(G)$ and $\|M\|_{(p,q,r)} \leq 2\|M\|_1$.

(1) If
$$\Phi(x) = x \ln(1+x)$$
, then $\Psi(x) \approx \cosh x - 1$.
(2) If $\Phi(x) = \cosh x - 1$, then $\Psi(x) \approx x \ln(1+x)$.
(3) If $\Phi(x) = e^x - x - 1$, then $\Psi(x) = (1+x) \ln(1+x) - x$.
(4) If $\Phi(x) = (1+x) \ln(1+x) - x$, then $\Psi(x) = e^x - x - 1$.

Note: For two Young Functions Ψ_1 and Ψ_2 we say $\Psi_1 \approx \Psi_2$ if $\exists 0 < a \le b < \infty$ such that

$$\Psi_1(ax) \leq \Psi_2(x) \leq \Psi_1(bx) \qquad (x \geq 0).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

References

- Blasco,O. Notes on the Spaces of Bilinear Multipliers. Rev. Unión Mat. Argentina 50 [2009], 20-34.
- Blasco, O., Osançlıol, A. *Notes on Bilinear Multipliers on Orlicz Spaces.* Math. Nachr. **292** [2019], 2522-2536.
- Feichtinger, H.G., *On a New Segal Algebra* Monatsh. Math.**92**, [1981], 269-289.
- Jacobsen, M.S., On a (No Longer) New Segal Algebra: A Review of the Feichtinger Algebra. J. Fourier Anal. Appl. 24 [2018], 1579-1660.
- Reiter, H., *Classical Harmonic Analysis and Locally Compact Groups.*, Oxford University Press. [1968].

Rao, M. M., Ren, Z.D., Theory of Orlicz spaces. CRM Press [1991].