Bilinear multipliers in Orlicz spaces on Locally Compact Groups

Serap Öztop
İstanbul University
oztops@istanbul.edu.tr

Joint work with Alen Osançliol
CAHAS, Banff, June 2022

Orlicz Spaces

Definition (Young Function)

A nonzero function $\Phi:[0, \infty) \rightarrow[0, \infty]$ is called a Young function if Φ is convex, $\Phi(0)=0$, and $\lim _{x \rightarrow \infty} \Phi(x)=\infty$.

Definition (Complementary Young Function)

For a Young function Φ, the complementary (Young) function Ψ of Φ is

$$
\Psi(y)=\sup \{x y-\Phi(x): x \geq 0\} \quad(y \geq 0)
$$

- (Φ, Ψ) is called a complementary pair.
- We have the Young inequality

$$
x y \leq \Phi(x)+\Psi(y) \quad(x, y \geq 0)
$$

Let G be a locally compact abelian group with a fixed Haar measure $d s$.

Definition (Orlicz Space)

Given a Young function Φ, the Orlicz Space $L^{\Phi}(G)$ is defined to be

$$
L^{\Phi}(G)=\left\{f: G \rightarrow \mathbb{C}: \int_{G} \phi(\alpha|f|) d s<\infty \text { for some } \alpha>0\right\} .
$$

The Orlicz space $L^{\Phi}(G)$ is a Banach space under the following norms:

- Orlicz norm: $\|f\|_{\Phi}=\sup \left\{\int_{G}|f(s) v(s)| d s:\|\Psi(|v|)\|_{1} \leq 1\right\}$
- Luxemburg norm: $N_{\Phi}(f)=\inf \left\{k>0: \int_{G} \Phi\left(\frac{|f(s)|}{k}\right) d s \leq 1\right\}$.

It is known that these two norms are equivalent with

$$
N_{\Phi}(\cdot) \leq\|\cdot\|_{\Phi} \leq 2 N_{\Phi}(\cdot)
$$

A Young function Φ satisfies the Δ_{2} condition (writing $\Phi \in \Delta_{2}$) if there exist $K>0$ and $x_{0} \geq 0$ such that $\Phi(2 x) \leq K \Phi(x)$ for all $x \geq x_{0}$. If $\Phi \in \Delta_{2}$, then:
(i) Both the step functions and $C_{c}(G)$ are dense in $L^{\Phi}(G)$;
(ii) $L^{\phi}(G)^{*}=L^{\psi}(G)$.

If, in addition, $\Psi \in \Delta_{2}$, then the Orlicz space $L^{\Phi}(G)$ is a reflexive Banach space.

(Generalized) Hölder's Inequality for Orlicz Spaces

For all $f \in L^{\Phi}(G)$ and $g \in L^{\Psi}(G)$, we have

$$
\begin{aligned}
\|f g\|_{1}: & =\int_{G}|f(s) g(s)| d s \\
& \leq \min \left\{N_{\Phi}(f)\|g\|_{\Psi},\|f\|_{\Phi} N_{\Psi}(g)\right\} .
\end{aligned}
$$

Example

For $1 \leq p<\infty$ and the Young function $\Phi(x)=\frac{x^{p}}{p}$, the space $L^{\Phi}(G)$ becomes the Lebesgue space $L^{p}(G)$ and the norm $\|\cdot\|_{\Phi}$ is equivalent to the classical norm $\|\cdot\|_{p}$.
If $p=1$, then the complementary Young function of $\Phi(x)=x$ is

$$
\Psi(y)= \begin{cases}0 & \text { if } 0 \leq y \leq 1 \\ \infty & \text { otherwise }\end{cases}
$$

If $1<p<\infty$, then the complementary Young function of $\Phi(x)=\frac{x^{p}}{p}$ is $\Psi(y)=\frac{y^{q}}{q}$, where q is the conjugate of p, i.e. $\frac{1}{p}+\frac{1}{q}=1$.

Bilinear Multiplier

Motivation

For a pair of functions $f, g: \mathbb{R} \rightarrow \mathbb{C}$ such that \hat{f} and \hat{g} are compactly supported and for any locally integrable function $m(\xi, \eta)$ defined on $\mathbb{R} \times \mathbb{R}$, one can consider the mapping

$$
B_{m}(f, g)(x)=\int_{\mathbb{R}} \int_{\mathbb{R}} \hat{f}(\xi) \hat{g}(\eta) m(\xi, \eta) e^{2 \pi i(\xi+\eta) x} d \xi d \eta
$$

and ask about its boundedness on certain function spaces.

Definition (O.Blasco, 2009)

Let $1 \leq p_{1}, p_{2} \leq \infty$ and $0<p_{3} \leq \infty$ and let locally integrable function $m(\xi, \eta)$ defined on $\mathbb{R} \times \mathbb{R}$. The function m is said to be a bilinear multiplier of type (p_{1}, p_{2}, p_{3}) if there exists $C>0$ such that

$$
\left\|B_{m}(f, g)\right\|_{p_{3}} \leqslant\|f\|_{p_{1}}\|g\|_{p_{2}}
$$

for any $f, g \in S(\mathbb{R})$, which stands for the Schwartz class on \mathbb{R}.

That is, if B_{m} extends to a bounded bilinear operator from $L^{p_{1}}(\mathbb{R}) \times L^{p_{2}}(\mathbb{R})$ to $L^{p_{3}}(\mathbb{R})$.
Denote by $B M_{\left(p_{1}, p_{2}, p_{3}\right)}(\mathbb{R})$ for the space of bilinear multipliers of type (p_{1}, p_{2}, p_{3}) and $\|m\|_{p_{1}, p_{2}, p_{3}}=\left\|B_{m}\right\|$.
Denote by $\tilde{\mathcal{M}}_{\left(p_{1}, p_{2}, p_{3}\right)}(\mathbb{R})$ the space of measurable functions $M: \mathbb{R} \rightarrow \mathbb{C}$ such that $m(\xi, \eta)=M(\xi-\eta)$ belongs to $B M_{\left(p_{1}, p_{2}, p_{3}\right)}(\mathbb{R})$, that is,

$$
B_{M}(f, g)(x)=\int_{\mathbb{R}} \int_{\mathbb{R}} \hat{f}(\xi) \hat{g}(\eta) M(\xi-\eta) e^{2 \pi i<\xi+\eta, x>} d \xi d \eta
$$

extends to a bounded bilinear map from $L^{p_{1}}(\mathbb{R}) \times L^{p_{2}}(\mathbb{R})$ to $L^{p_{3}}(\mathbb{R})$. We keep the notation $\|M\|_{p_{1}, p_{2}, p_{3}}=\left\|B_{M}\right\|$.

- O. Blasco has produce a method to get multipliers in $B M_{\left(p_{1}, p_{2}, p_{3}\right)}(\mathbb{R})$ from those in $\tilde{\mathcal{M}}_{\left(p_{1}, p_{2}, p_{3}\right)}(\mathbb{R})$ and investigated some properties of these multiplier spaces.

Bilinear multipliers acting on other groups such as the torus \mathbb{T} or the integers \mathbb{Z} in place of \mathbb{R} have also been studied. More recently, several results on bilinear multipliers acting on Orlicz spaces have been obtained.

O.Blasco and A. Osançliol, 2019

Let Φ_{1}, Φ_{2} and Φ_{3} be Young functions and let $L^{\Phi_{1}}(\mathbb{R}), L^{\Phi_{2}}(\mathbb{R})$ and $L^{\Phi_{3}}(\mathbb{R})$ be the corresponding Orlicz spaces. A locally integrable function m defined on $\mathbb{R} \times \mathbb{R}$ is said to be a bilinear multiplier of type $\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)$ if there exists $C>0$ such that

$$
B_{m}(f, g)(x)=\int_{\mathbb{R}} \int_{\mathbb{R}} \hat{f}(\xi) \hat{g}(\eta) m(\xi, \eta) e^{2 \pi i(\xi+\eta) x} d \xi d \eta
$$

satisfies

$$
N_{\Phi_{3}}\left(B_{m}(f, g)\right) \leq C N_{\Phi_{1}}(f) N_{\Phi_{2}}(g)
$$

for any $f, g \in \mathcal{S}(\mathbb{R})$. They investigated some properties of the spaces $B M_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)}(\mathbb{R})$ and $\tilde{\mathcal{M}}_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)}(\mathbb{R})$.

Similar results hold also on \mathbb{R}^{n}.

Our Goal:

- Use general locally compact abelian groups instead of special groups like \mathbb{R}, etc.
- Use Orlicz spaces $L^{\Phi}(G)$ on locally compact abelian groups.
- Replace the the Schwartz space $S(\mathbb{R})$ by the Feichtinger algebra $S_{0}(G)$.
- Give some sufficient conditions to define a bilinear multiplier on Orlicz space.

Technical Notes on LCA Groups

Let G be a locally compact abelian group.

Definition

Let \mathbb{T} denote unit circle. A group homomorphism $\xi: G \rightarrow \mathbb{T}$ is called a character of G. The set \hat{G} of all continuous characters of G is called the dual group of G.

- \hat{G} is an abelian group under pointwise multiplication of functions.
- Under the compact-open topology \hat{G} is a topological group. In fact, \hat{G} becomes a locally compact abelian group.

Definition

Let $f \in L^{1}(G)$. The Fourier transform of $\mathcal{F} f$ of f is the function

$$
\mathcal{F} f(\xi)=\hat{f}(\xi)=\int_{G} f(x) \overline{\langle\xi, x\rangle} d x, \xi \in \hat{G}
$$

Let $f \in L^{1}(G)$ with $\hat{f} \in L^{1}(\hat{G})$. The function f can be recovered from \hat{f} by the inverse Fourier transform

$$
f(x)=\mathcal{F}^{-1} \hat{f}(x)=\int_{\widehat{G}} \hat{f}(\xi)\langle\xi, x\rangle d \xi,
$$

a.e. $x \in G$. Next to the Fourier transform we need the following operators.

- Translation by $y \in G: \tau_{y} f(x)=f(x-y), x \in G$.
- Modulation by $w \in \hat{G}: M_{w} f(x)=<w, x>f(x), x \in G$.

All of these operators are well-defined, linear and bounded operators on Orlicz spaces.

Feichtinger Algebra(H.G. Feichtinger, 1981)

Recall the properties of Feichtinger's remarkable Segal algebra $S_{0}(G)$, i.e., translation invariant dense subalgebra of $L^{1}(G)$ under convolution which furthermore is continuously embedded into $L^{1}(G)$.

- $S_{0}(G)$ is the smallest Segal algebra in $L^{1}(G)$ that is closed under pointwise multiplication by characters and on which multiplication by any character is an isometry.
- Fourier transform induces an isomorphism $S_{0}(G)=S_{0}(\hat{G})$, where \hat{G} is the dual group.
- $S_{0}(G)$ is the smallest Segal algebra in the Fourier algebra $A(G)$ that is translation invariant and on which translations are isometries.
- $S_{0}(G)$ is dense in $L^{p}(G)$ for $1 \leq p<\infty$.

Feichtinger Algebra in Orlicz Spaces

Let G be a locally compact abelian group. Denote $\Lambda_{K}(G)$ by

$$
\Lambda_{K}(G)=\left\{f \in L^{1}(G) \mid \operatorname{supp}(\hat{f}) \text { is compact }\right\} .
$$

Theorem (H. Reiter, 1968)

$\Lambda_{K}(G)$ is a dense subspace of $L^{1}(G)$.
Using the inclusions,

$$
\begin{equation*}
\Lambda_{K}(G) \subseteq S_{0}(G) \subseteq L^{1}(G) \cap L^{\Phi}(G) \subseteq L^{\Phi}(G) \tag{1}
\end{equation*}
$$

we obtain the following results.

Theorem

If $\Phi \in \Delta_{2}, \Lambda_{K}(G)$ is a dense subspace of $L^{\Phi}(G)$.

Theorem

If $\Phi \in \Delta_{2}, S_{0}(G)$ is a dense subspace of $L^{\Phi}(G)$.

Bilinear Multipliers on $L^{\Phi}(G)$

Definition

Given three Young functions Φ_{i} for $i=1,2,3$, a function $m \in L^{\infty}(\widehat{G} \times \widehat{G})$ is said to be a bilinear multiplier of type $\left(\Phi_{1}, \Phi_{2} ; \Phi_{3}\right)$ if there exists a constant $C>0$ such that

$$
B_{m}(f, g)(x)=\int_{\widehat{G}} \int_{\widehat{G}} \hat{f}(\xi) \hat{g}(\eta) m(\xi, \eta)\langle\xi+\eta, x\rangle d \xi d \eta
$$

satisfies

$$
N_{\Phi_{3}}\left(B_{m}(f, g)\right) \leq C N_{\Phi_{1}}(f) N_{\Phi_{2}}(g)
$$

for any $f, g \in \mathcal{S}_{0}(G)$.
We write $\mathcal{B} \mathcal{M}_{\left(\Phi_{1}, \Phi_{2} ; \Phi_{3}\right)}(G)$ for the space of bilinear multipliers of type $\left(\Phi_{1}, \Phi_{2} ; \Phi_{3}\right)$ with the norm $\|m\|_{\left(\Phi_{1}, \Phi_{2} ; \Phi_{3}\right)}=\left\|B_{m}\right\|$. We denote by $\tilde{\mathcal{M}}_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)}(G)$ the space of locally integrable functions M defined on \widehat{G} such that $m(\xi, \eta)=M(\xi-\eta) \in \mathcal{B} \mathcal{M}_{\left(\Phi_{1}, \Phi_{2} ; \Phi_{3}\right)}(G)$.
(1) Note that both spaces are invariant under translation and modulation.

Theorem

Let Φ_{1}, Φ_{2} and Φ_{3} be Young functions such that

$$
\Phi_{1}^{-1}(x) \Phi_{2}^{-1}(x) \leq \Phi_{3}^{-1}(x), x \in \mathbb{R} .
$$

If $m(\xi, \eta)=\hat{\mu}(\xi+\eta)$ a regular Borel measure μ on G, then $m \in \mathcal{B M}_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)}(G)$ and $\|m\|_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)} \leq 2\|\mu\|$, where $\hat{\mu}(\xi)=\int_{G} \overline{\langle\xi, x\rangle} d \mu, \xi \in \hat{G}$.

Corollary

Let (Φ, Ψ) be a complementary pair of Young functions. If $m(\xi, \eta)=\hat{\mu}(\xi+\eta)$ where μ is a regular Borel measure on G then $m \in \mathcal{B} \mathcal{M}_{(\Phi, \Psi, 1)}$ and $\|m\|_{(\Phi, \psi, 1)} \leq 4\|\mu\|_{1}$.

Corollary

If $\frac{1}{p}+\frac{1}{q}=1$ for $1<p, q<\infty$ and $m(\xi, \eta)=\hat{\mu}(\xi+\eta)$ for a regular Borel measure μ on G, then $m \in \mathcal{B} \mathcal{M}_{(p, q, 1)}$ and $\|m\|_{(p, q, 1)} \leq 4\|\mu\|_{1}$.

We can get a new bilinear multipliers from a given one.

Theorem

Let Φ_{i} for $i=1,2,3$ be Young functions.
(a) If $\varphi \in L^{1}(\hat{G} \times \hat{G})$ and $m \in \mathcal{B M}_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)}(G)$, then
$\varphi * m \in \mathcal{B M}{\underset{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)}{ }(G) \text { and }}$
$\|\varphi * m\|_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)} \leq\|\varphi\|_{1}\|m\|_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)}$.
(b) If $\varphi \in L^{1}(G \times G)$ and $m \in \mathcal{B} \mathcal{M}_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)}(G)$, then $\hat{\varphi} m \in \mathcal{B M}_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)}(G)$ and $\|\hat{\varphi} m\|_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)} \leq\|\varphi\|_{1}\|m\|_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)}$.

Bilinear multipliers when $m(\xi, \eta)=M(\xi-\eta)$

Theorem

Let Φ_{1}, Φ_{2} and Φ_{3} be Young functions such that

$$
\Phi_{1}^{-1}(x) \Phi_{2}^{-1}(x) \leq x \Phi_{3}^{-1}(x), x \in \mathbb{R}
$$

If $M \in L^{1}(\widehat{G})$ then, $M \in \tilde{\mathcal{M}}_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)}(G)$. Moreover

$$
\|M\|_{\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)} \leq 2\|M\|_{1}
$$

Corollary

Let (Φ, Ψ) be a complementary pair of Young functions. If $M \in L^{1}(\widehat{G})$, then $M \in \tilde{\mathcal{M}}_{(\Phi, \Psi, \infty)}(G)$. Moreover $\|M\|_{(\Phi, \Psi, \infty)} \leq 2\|M\|_{1}$.

Corollary

Let $p, q, r \in(1, \infty)$ such that $\frac{1}{p}+\frac{1}{q}-\frac{1}{r}=1$. If $M \in L^{1}(\widehat{G})$, then $M \in \tilde{\mathcal{M}}_{(p, q, r)}(G)$ and $\|M\|_{(p, q, r)} \leq 2\|M\|_{1}$.
(1) If $\Phi(x)=x \ln (1+x)$, then $\Psi(x) \approx \cosh x-1$.
(2) If $\Phi(x)=\cosh x-1$, then $\Psi(x) \approx x \ln (1+x)$.
(3) If $\Phi(x)=e^{x}-x-1$, then $\Psi(x)=(1+x) \ln (1+x)-x$.
(4) If $\Phi(x)=(1+x) \ln (1+x)-x$, then $\Psi(x)=e^{x}-x-1$.

Note: For two Young Functions Ψ_{1} and Ψ_{2} we say $\Psi_{1} \approx \Psi_{2}$ if $\exists 0<a \leq b<\infty$ such that

$$
\Psi_{1}(a x) \leq \Psi_{2}(x) \leq \Psi_{1}(b x) \quad(x \geq 0) .
$$

References

嗇 Blasco，O．Notes on the Spaces of Bilinear Multipliers．Rev．Unión Mat．Argentina 50 ［2009］，20－34．
－Blasco，O．，Osançlıol，A．Notes on Bilinear Multipliers on Orlicz Spaces．Math．Nachr． 292 ［2019］，2522－2536．

嗇 Feichtinger，H．G．，On a New Segal Algebra Monatsh．Math．92， ［1981］，269－289．

围 Jacobsen，M．S．，On a（No Longer）New Segal Algebra：A Review of the Feichtinger Algebra．J．Fourier Anal．Appl． 24 ［2018］，1579－1660．

Reiter，H．，Classical Harmonic Analysis and Locally Compact Groups．， Oxford University Press．［1968］．
（雷 Rao，M．M．，Ren，Z．D．，Theory of Orlicz spaces．CRM Press［1991］．

