HyperBit

A Memory-Efficient Alternative to HyperLogLog

[work in progress]

Robert Sedgewick
 Princeton University

Philippe Flajolet, mathematician and computer scientist extraordinaire

Philippe Flajolet 1948-2011

Algorithm science (Knuth, 1960s-present; Sedgewick, 1980s-present)

A scientific basis for studying algorithms

- Implement and run on realistic inputs [Is the algorithm effective in the real world?].
- Develop a mathematical model
- Use model to formulate hypotheses on performance
- Test hypotheses with real-world experiments
- Iterate

BENEFIT: Enabled creation of our software infrastructure.

DRAWBACKS: Model can be unavailable, unrealistic, or excessively detailed and complicated. Mathematical analysis can be prohibitively challenging.

Theory of Algorithms (AHU, 1970s; CLRS, 1980s-present)

A mathematical basis for studying algorithms

- Analyze worst-case cost [takes model out of the picture].

- Use O-notation for upper bounds [takes detail out of analysis].
- Classify algorithms by these costs.

BENEFIT: Enabled a new Age of (Theoretical) Algorithm Design.

DRAWBACKS: Analysis is typically unsuitable for scientific studies.
Algorithms are often not useful in the real world.
(Elementary facts that are often overlooked!)

Analytic combinatorics context

Drawbacks of AHU/CLRS approach:

- Worst-case performance may not be relevant.
- Cannot use O- upper bounds to predict or compare.

Drawbacks of Knuth/Sedgewick approach:

- Model may be unrealistic.
- Analysis may be detailed and difficult.

Analytic combinatorics can provide a basis for scientific studies.

- A calculus for developing models.
- Universal laws that encompass the detail in the analysis.
- Applies to many sciences, not just algorithm science.

Hyperbit: A Memory-Efficient Alternative to HyperLogLog

- The problem

- A solution
- Another approach
- Fínal frontier

Cardinality counting

Q. In a given stream of data values, how many different values are present?

Reference application. How many unique visitors in a web log?

```
log.07.f3.txt
    117.222.48.163
    poo1-71-104-94-246.1sanca.ds1-w.verizon.net
    1.23.193.58
    188.134.45.71
    1.23.193.58
    gsearch.CS.Princeton.EDU
    poo1-71-104-94-246.1sanca.ds1-w.verizon.net
    81.95.186.98.freenet.com.ua
    81.95.186.98.freenet.com.ua
    81.95.186.98.freenet.com.ua
    CPE-121-218-151-176.1nse3.cht.bigpond.net.au
    117.211.88.36
```

6 million strings
UNIX (1970s-present)

SQL (1970s-present)

```
SELECT
DATE_TRUNC('day',event_time),
COUNT(DISTINCT user_id),
COUNT(DISTINCT ur1)
FROM weblog
```

State of the art in the wild for decades. Sort, then count.
"Optimal" solution. Use a hash table. \longleftarrow order of magnitude faster than sort-based solution
Q. I can't use a hash table. The stream is much too big to fit all values in memory. Now what?

Cardinality estimation

A. Look for a way to estimate the value of \boldsymbol{N}, the number of distinct values in the stream.

Practical cardinality estimation problem

- Make one pass through the stream.
- Use as few operations per value as possible
- Use as little memory as possible.
- Produce as accurate an estimate as possible.

```
typical applications
where exact count is
not really necessary
```

How many unique visitors to my website?

How many different IP addresses hit this node?

How many different cars passed here this year?

How many different values for a database join?

To fix ideas on scope (202x): Think of billions of streams each having trillions of values.
This talk. Estimate \mathbf{N} to within 10% accuracy 99% of the time using thousands of bits of memory.

Posted on Facebook, 2018

facebook

"Computing the count of distinct elements in massive data sets is often necessary but computationally intensive.
Say you need to determine the number of distinct people visiting Facebook in the past week using a single machine.
With a traditional SQL query on the Facebook data sets this would take days and terabytes of memory. "

Hyperbit: A Memory-Efficient Alternative to HyperLogLog

- The problem
- A solution
- Another approach
- Final frontier

Probabilistic counting with stochastic averaging (PCSA)

Flajolet and Martin, Probabilistic Counting Algorithms for Data Base Applications FOCS 1983, JCSS 1985.

Philippe Flajolet 1948-2011
Contributions

- Introduced problem
- Idea of streaming algorithm
- Idea of "small" sketch of "big" data
- Detailed analysis that yields tight bounds on accuracy
- Full validation of mathematical results with experimentation
- Practical algorithm that has remained effective for decades

Probabilistic Counting Algorithms for Data Base Applications
hilpee flaole
INRIA, Rocupencourt, $781 / 35$ Le Chessay, Franee
and
G. Nigel Martin

1. Introouction

As data ases systems allow the user to specify more and more complex queries,
he need arises for efficient processing method. A complex query can however generally be evaluated in a number of dififerent manners, and the overall perfor-
mance of a data base system depends rather crucially on the selection of
 A and B lends isself to a number of difirerent treatments see, e.e, $[7]$:
${ }^{1} B^{\prime}$ 1. Sort A, search each element of B in A and retain it if it appears in A
2. sort A, sort B, then perform a merge-like operation to determine the inter-
3. eliminate duplicates in A and/or B using hashing or hash filters, then perForm Algorinhthe 1 op 2 .
Each of these evaluation
Each of these cevaluation strateg will
 and B, and for typical sorting methods, the costs are 0022.2000 1858.3 .00

Bottom line.

Quintessential example of the effectiveness of algorithm science and analytic combinatorics.

Starting point: three integer functions

Def. $r(\mathrm{x})$ is the number of trailing $\mathbf{1 s}$ in the binary representation of x.

Def. $R(x)=2^{r(x)}$

Bit-whacking magic:
$R(x)$ is easy to compute.

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | x |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | $\sim \mathrm{x}$ |
| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | $\mathrm{x}+1$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | $\sim \mathrm{x} \&(\mathrm{x}+1)$ |

Def. $p(\mathrm{x})$ is the number of $\mathbf{1 s}$ in the binary representation of x.

First step: Hash the values

Transform value to a "random" computer word.

- Compute a hash function that transforms data value into a 32 - or 64-bit value.

20th century: use 32 bits (millions of values)
21 st century: use 64 bits (quintillions of values)

- Cardinality count is unaffected (with high probability).
- Built-in capability in modern systems.
- Allows use of fast machine-code operations.

State-of-the-art-"Mersenne twister" uses only a few machine-code instruictions.
Bottom line: Do cardinality estimation on streams of (binary) integers, not arbitrary value types.

```
01111000100111110111000111001000
01111000100111110111000111001000
01110101010110110000000011011010
00110100010001111100010100111010
00010000111001101000111010010011
00001001011011100000010010010111
00001001011011100000010010010111
00111000101001001011010101001100
00111000101001001011010101001100
01101001001000011100110100110011
```


Initial hypothesis

Fact. Hash values are not random.
Hypothesis. Hash values are "sufficiently" random.
Implication. Need to run experiments to validate any hypotheses about performance.

No problem!

- We always validate hypotheses in algorithm science.
- End goal is development of algorithms that are useful in practice.
- It is the responsibility of the designer to validate utility before claiming it.
- After decades of experience, discovering a performance problem due to a bad hash function would be a significant research result.

Unspoken bedrock principle of algorithm science.
Experimenting to validate hypotheses is WHAT WE DO!

Probabilistic counting (Flajolet and Martin, 1983)

Maintain a single-word sketch that summarizes a data stream $x_{0}, x_{1}, \ldots, x_{i}, \ldots$

- For each x_{i} in the stream, update sketch by bitwise or with $\mathbf{R}\left(\mathbf{x}_{\mathbf{i}}\right)$ [$2^{r\left(x_{j}\right)}$].
- Use r(sketch) [number of trailing 1 s in the sketch] to estimate Ig N_{i}
- Equivalently, use R(sketch)[$2^{r(s k e t c h)}$] to estimate N_{i}
- Refine with a correction factor, informed by analysis

sketch

```
typical sketch
    Ni}~1\mp@subsup{0}{}{6
```

00000001101101111111111111111111111
$x_{i} \quad 0 \quad 01110110110111111111010010101010001111$

leading bits almost surely 0

Example Probablilistic Counting actions (32-bit values)

Probabilistic counting (Flajolet and Martin, 1983)

```
public long R(long x)
{ return ~x & (x+1); }
public long estimate(Iterable<String> stream)
{
    7ong sketch;
    for (s : stream)
        sketch = sketch | R(hash(s));
        return R(sketch) /.77351;
}
```

Early example of "a simple algorithm whose analysis isn't"
Q. (Martin) Estimate seems a bit low. How much?
A. (unsatisfying) Obtain correction factor empirically.

Maintain a sketch of the data

- A single word
- OR of all values of R(hash(s))
- Return smallest value not seen with correction for bias

A. (Flajolet) "Without the analysis, there is no algorithm!"

Theorem. The expected number of trailing $1 s$ in the PC sketch is

$$
\lg (\phi N)+P(\lg N)+o(1) \quad \text { where } \phi \doteq .77351
$$

Kirschenhofer, Prodinger, and Szpankowski
and P is an oscillating function of $\lg N$ of very small amplitude.

Proof (omitted).

1980s: Flajolet tour de force
1990s: trie parameter
21 st century: standard analytic combiantorics

Analysis of a splitting process arising in probabilistic counting and other related algorithms, ICALP 1992.
Jacquet and Szpankowski
Analytical depoissonization and its applications, TCS 1998.
In other words. In PC code, R(sketch)/. 77351 is an unbiased statistical estimator of N.

Validation of probabilistic counting

Hypothesis. Expected value returned is N for random values from a large range.

Quick experiment. 100,000 31-bit random values (20 trials)

Flajolet and Martin: Result is "typically one binary order of magnitude off."

Of course! (Always returns a power of 2 divided by .77351.)
$32768 / .77351=42362$
$65536 / .77351=84725$

Need to incorporate more experiments for more accuracy.

Stochastic splitting

Goal: Perform M independent PC experiments and average results.

Alternative 1: M independent hash functions? No, too expensive.
Alternative 2: M-way alternation? No, bad results for certain inputs.

Alternative 3: Stochastic splitting

- Use second hash to divide stream into $2 m$ independent streams
- Use PC on each stream, yielding 2^{m} sketches.
key point: equal values
- Compute mean = average number of trailing bits in the sketches.
- Return 2 mean/.77531.

Probabilistic counting with stochastic splitting in Java

```
public static long estimate(Iterable<Long> stream, int M)
{
long[] sketch = new 1ong[M];
for (long x : stream)
{
        int k = hash2(x, M);
        sketch[k] = sketch[k] | R(hash(x));
    }
    int sum = 0;
    for (int k = 0; k < M; k++)
        sum += r(sketch[k]);
    double mean = 1.0 * sum / M;
    return (int) (M * Math.pow(2, mean)/.77351);
}
```


Idea. Stochastic splitting

- Use second hash to split into $M=2^{m}$ independent streams
- Use PC on each stream, yielding 2^{m} sketches.
- Compute mean = average \# trailing 1 bits in the sketches.
- Return 2 mean $/ .77351$.
Q. Accuracy obviously improves as M increases, but by how much?

Theoretical analysis of PCSA

Definition．The relative accuracy is the standard deviation of the estimate divided by the actual value．

$$
\begin{array}{r}
\text { Lemma 4. Setting } \beta=2^{1 / q} \text {, with } q \geqslant 1 \text {, one has for fixed } q \\
\mathbf{E}\left[\beta^{R_{n}}\right]=n^{1 / q}\left(d_{q}+P_{q}\left(\log _{2} n\right)\right)+o\left(n^{1 / q}\right),
\end{array}
$$

where
Lemma 5．If n elements are distributed into m cells（ m fixed），where the probability that any element goes to a given cell has probability $1 / m$ ，then the probability that at least one of the cells has a number of elements N satisfying

Theorem（paraphrased to fit context of this talk）．
Under appropriate assumptions about the hash function，PCSA
－Uses 64M bits．
$|N-n / m|>\sqrt{n} \log n$
nt $h>0$ ．
$-1 / m$ ；let N_{1} be the number of elements that fall into istribution
－Produces estimate with a relative accuracy close to $0.78 / \sqrt{M}$ ．$⿰ ⿱ 乛 亅 r\left(N_{1}=k\right)=\binom{n}{k} p^{k} q^{n-k}$ ，
prooadily

Proof（another quintessential Flajolet tour de force，omitted）．

```
exact analysis via Mellin transform techniques
precise asymptotic estimates
uniform bounds computed with MACSYMA
```

$+\delta)=\exp \left(-\frac{\delta^{2}+O(\delta)}{2 n p q}+O\left(\frac{\delta^{3}}{n^{2}}\right)\right)$
ty（30）is exponentially small．We conclude the proof al distribution is unimodal and
$\sqrt{n} \log n]<m \operatorname{Pr}\left[\left|N_{1}-\frac{n}{m}\right|>\sqrt{n} \log n\right]$ ．
proof of the first part of Theorem 4．Let S denote the
sum $R^{\langle 1\rangle}+R^{\langle 2\rangle}+\cdots+R^{\langle m\rangle}$ ．We have
We now consider the error that comes from the replacement of the $p_{n, k}$ by their asymptotic equivalent for＂small＂k ．From the bounds of Theorem 2 ，one finds
$\operatorname{Pr}(S=k)=$

Preliminary validation of PCSA

Hypothesis. Accuracy is as specified for the hash functions we use and the data we have.

Validation (Flajolet and Martin, 1985). Extensive reproducible scientific experiments (!)

Validation (RS, this morning).

```
log.07.f3.txt
    109.108.229.102
    poo1-71-104-94-246.1sanca.ds1-w.verizon.net
    117.222.48.163
    poo1-71-104-94-246.1sanca.ds1-w.verizon.net
    1.23.193.58
    188.134.45.71
    1.23.193.58
    gsearch.CS.Princeton.EDU
    poo1-71-104-94-246.1sanca.ds1-w.verizon.net
    81.95.186.98.freenet.com.ua
    81.95.186.98.freenet.com.ua
    81.95.186.98.freenet.com.ua
    CPE-121-218-151-176.7nse3.cht.bigpond.net.au
```

Q. Is PCSA effective?
A. ABSOLUTELY!

Summary: PCSA (Flajolet-Martin, 1983)

is a demonstrably effective approach to cardinality estimation
Q. About how many different values are present in a given stream?

PCSA

- Makes one pass through the stream.
- Uses a few machine instructions per value
- Uses M words to achieve relative accuracy $0.78 / \sqrt{M}$

Results validated through extensive experimentation.

Probabilistic Counting Algorithms
for Data Base Applications
Patupe Flwour

- and
G. Nigh Martin

 ind B lends iseff to a number of dificeren treatments see, eq, [7]) Sor A, search each lelement of B in A and detain it iff appearas in $A ;$ sor A, sor B, hen perform a merge. like operation 1 o deternmine the inerer diminate dupicietes in A andor B using hastings or hash filtess, then per Each of thase ceratation strategy will have a cost csesmially decermined by the
 cor2.anosss.em

A poster child for AS/AC

Open questions

- Better space-accuracy tradeoffs?
- Support other operations?
"IT IS QUITE CLEAR that other observable regularities on hashed values of records could have been used... - Flajolet and Martin

For full details, see "The Story of HyperLogLog: How Flajolet Processed Streams with Coin Flips" J. Lumbroso, 2013.

Hyperbit: A Memory-Efficient Alternative to HyperLogLog

- The problem
- A solution
- A better solution
- Another approach
- Final frontier

We can do better (in theory)

Alon, Matias, and Szegedy

The Space Complexity of Approximating the Frequency Moments STOC 1996; JCSS 1999.

Contributions

- Studied problem of estimating higher moments
- Formalized idea of randomized streaming algorithms
- Won Gödel Prize in 2005 for "foundational contribution"

Theorem (paraphrased to fit context of this talk).

With strongly universal hashing, $P C$, for any $c>2$,

- Uses $O(\log N)$ bits.
- Is accurate to a factor of c, with probability at least $2 / c$.

Replaces "uniform hashing" assumption with "random bit existence" assumption

BUT, no impact on cardinality estimation in practice

- "Algorithm" just changes hash function for PC
- Accuracy estimate is too weak to be useful
- No validation

We can do better (in theory)

papers about cardinality estimation and other streaming algorithms

papers about streaming algorithms having validated implementations

We can do better (in theory)

Bar-Yossef, Jayram, Kumar, Sivakumar, and Trevisan

Counting Distinct Elements in a Data Stream
RANDOM 2002.
Contribution
Improves space-accuracy tradeoff at extra stream-processing expense.

Theorem (paraphrased to fit context of this talk).
With strongly universal hashing, there exists an algorithm that

- Uses $O(M \log \log N)$ bits. ఒ PCSA uses $M \lg N$ bits
- Achieves relative accuracy $O(1 / \sqrt{M})$.

STILL no impact on cardinality estimation in practice

- Infeasible because of high stream-processing expense.
- Big constants hidden in O-notation
- No validation

We can do better (in theory and in practice)

Flajolet, Fusy, Gandouet, and Meunier

HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm AofA 2007; DMTCS 2007.

Contributions

- Presents HyperLogLog algorithm
- Easy variant of PCSA that uses a much smaller sketch
- Idea: Harmonic mean of r() values
- Reduces memory used without extra expense
- Full analysis, fully validated with experimentation


```
PCSA saves sketches (Ig N bits each)
    000000000000000000000000001101111
HyperLogLog saves r() values (Iglg N bits each)
    00100 ( = 4)
```


We can do better (in theory and in practice): HyperLogLog algorithm (2007)

public static long estimate(Iterable<Long> stream, int M)
\{
int[] bytes = new int[M];
8 -bit bytes (code to pack into
M IglgN bits omitted)
for (long x : stream)
\{
int $k=$ hash2 (s, M);
int $x=$ hash(s);
if (bytes[k] < Bits.r(x)) bytes[k] = Bits.r(x);
doub7e sum = 0.0;
for (int $k=0 ; k<M ; k++$)
sum += Math.pow(2, -1.0 - bytes[k]); return (int) (bias * M * M / sum);

Idea. Harmonic mean of $r()$ values

- Use stochastic splitting
- Keep track of min(r $(x))$ for each stream
- Return harmonic mean.

Flajolet, Fusy, Gandouet, and Meunier HyperLogLog: the analysis of a nearoptimal cardinality estimation algorithm AofA 2007; DMTCS 2007.

Flajolet-Fusy-Gandouet-Meunier 2007
Theorem (paraphrased to fit context of this talk).
Under appropriate assumptions about the hash function, HyperLogLog

- Uses $M \lg \lg N$ bits (6 in the real world).
- Achieves relative accuracy close to $1.079 / \sqrt{M}$.

Memory use for cardinality estimation algorithms with M-way stochastic splitting

Probabilistic Counting
M 64-bit words

HyperLogLog
M 6-bit bytes

HyperLogLog accuracy hypothesis

Theorem (Flajolet, Fusy, Gandouet, and Meunier).
Let $H_{L L}(S, M)$ be the harmonic mean of the sketch computed by HyperLogLog for a stream S having N distinct values when using M substreams. Then the statistic

$$
c_{1} M H_{L L}(S, M) \text { where } c_{1}=\frac{1}{\ln 4} \doteq 0.721
$$

is approximately Gaussian with mean N and variance $\sigma^{2} \sim c_{2} / M$ where $c_{2}=3 \ln 2-1 \doteq 1.079$.

Hypothesis. The reported estimate will be within 3σ of the actual count 99% of the time.

Consequence. HLL can solve the practical cardinality count problem with 6144 bits.

$$
\begin{aligned}
& M=1024 \\
& \sigma=\sqrt{3 \ln 2-1} / 32 \doteq .032
\end{aligned}
$$

HyperLogLog validation I

Experiment. 100 trials for $x * 10000$ inputs for x from 1 to 100 (10000 trials)

HyperLogLog validation II

Experiment. 10000 trials for 1 million inputs

Histogram of number of estimates between $x * 2000$ and $(x+1) * 2000$

Posted on Facebook, 2018 (continued)

facebook

Computing the count of distinct elements in massive data sets is often necessary but computationally intensive.
Say you need to determine the number of distinct people visiting Facebook in the past week using a single machine.
With a traditional SQL query on the data sets we use at Facebook this would take days and terabytes of memory.
To speed up these queries, we implemented HyperLogLog (HLL) in Presto, a distributed SQL query engine.
HLL works by providing an approximate count of distinct elements.
With HLL, we can perform the same calculation in 12 hours with less than 1 MB of memory.
We have seen great improvements, with some queries being run within minutes.

Hyperloglog validation in the Real World

cradlepoint

Periscope

neustar

S. Heule, M. Nunkesser and A. Hall

3 Research at Google HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm. Extending Database Technology/International Conference on Database Theory 2013.

Philippe Flajolet, mathematician and algorithm scientistextraordinaire

Hyperbit: A Memory-Efficient Alternative to HyperLogLog

- The problém
- A solution
- A better solution
- Another approach
- Final frontier

We can do a bit better (in theory) but not much better

Indyk and Woodruff

Tight Lower Bounds for the Distinct Elements Problem, FOCS 2003.
Theorem (paraphrased to fit context of this talk).

Kane, Nelson, and Woodruff

Optimal Algorithm for the Distinct Elements Problem, PODS 2010.
Theorem (paraphrased to fit context of this talk).
With strongly universal hashing there exists an algorithm that

- Uses $\mathrm{O}(M+\log \log N)$ bits.

Not a practical algorithm (never implemented, no validation)

- Tough to beat HyperLogLog's low stream-processing expense.
- Constants hidden in O-notation not likely to be small (need to be <6)

Open: Does there exist an "optimal" algorithm for the practical cardinality estimation problem?

Can we beat HyperLogLog in practice?

Necessary characteristics of a better algorithm

- Makes one pass through the stream.
- Uses a few dozen machine instructions per value
- Uses a few hundred bits
- Achieves 10% relative accuracy or better

Practical computing

"I've long thought that there should be a simple algorithm that uses a small constant times M bits..."

	machine instructions per stream element	memory bound	memory bound when $N<264$	\# bits for 10% accuracy when $N<2^{64}$
HyperLogLog	$20-30$	M loglog N	$6 M$	6144

Also, results need to be validated through experimentation.

Krakow, 2016

27th AofA, July 3-8

Trip to Krakow

A proposal: HyperBitBit (Sedgewick, 2016)

```
    public static long estimate(Iterable<String> stream, int M)
```

 \{
 int T \(=0\);
 long sketch \(=0 ;\); \(\longleftarrow M=64\) likely to be value of choice
 Tong sketch = 0;
 for (String x : stream)
 \{
 long \(\mathrm{x}=\) hash (s);
 int \(k=h a s h 2(x, 64)\);
 | $i f(r(x)>T)$ | sketch $=$ sketch | $(1 L \ll k) ;$ |
| :--- | :--- | :--- |
| $i f(r(x)>T+1)$ | sketch 2 $=$ sketch | $(1 L \ll k) ;$ |

 if (p(sketch) >= 32)
 \{ sketch = sketch; T++; sketch = 0; \} ~
 \}
 return (int) (Math.pow(2, T + bias + p(sketch)/32.0));
 \}

if $(r(x)>T)$	sketch $=$ sketch	$(1 L \ll k) ;$
$i f(r(x)>T+1)$ sketch $=$ sketch	$(1 L \ll k) ;$	

bias factor (to be determined empirically)

A proposal: HyperBitBit (Sedgewick, 2016)

```
public static long estimate(Iterable<String> stream, int M)
{
    int T = 0;
    long sketch = 0;
    long sketch2 = 0;
    for (String x : stream)
    {
        long x = hash(s);
        int k = hash2(x, 64);
        if (r(x) > T) sketch = sketch | (1L << k);
        if (r(x) > T + 1) sketch2 = sketch2 | (1L << k);
        if (p(sketch) >= 32)
        { sketch = sketch2; T++; sketch2 = 0; }
    }
    return (int) (Math.pow(2, T + bias + p(sketch)/32.0));
}
```


Idea.

- T is estimate of $\lg N$
- sketch is 64 indicators whether to increment T
- sketch2 is is 64 indicators whether to increment T by 2
- Update when half the bits in sketch are 1
- correct with p(sketch) and bias factor
Q. What is the bias factor?
Q. Does this even work?

Return trip from Krakow

HyperBitBit preliminary validation
...after some hacking to settle on bias = 5.4...

Exact values for web log example

```
% java Hash 1000000 < 1og.07.f3.txt
242601
% java Hash 2000000 < 1og.07.f3.txt
483477
% java Hash 4000000 < 1og.07.f3.txt
883071
% java Hash 6000000 < 1og.07.f3.txt
1097944
```


HyperBitBit estimates

```
% java HyperBitBit 1000000 < log.07.f3.txt
234219
% java HyperBitBit 2000000 < log.07.f3.txt
4 9 9 8 8 9
% java HyperBitBit 4000000 < log.07.f3.txt
916801
% java HyperBitBit 6000000 < log.07.f3.txt
1044043
```

	$1,000,000$	$2,000,000$	$4,000,000$	$6,000,000$
Exact	242,601	483,477	883,071	$1,097,944$
HyperBitBit	234,219	499,889	916,801	$1,044,043$
ratio	1.05	1.03	0.96	1.03

It does seem to work!

Next challenge: analyze HyperBitBit

2016

2017

Knuth 80, January 8-10

ALGORITHMS COMBINATORICS

INFORMATION
COLLOQUIUM FOR DON KNUTH'S 80TH BIRTHDAY

29th AofA, June 25-29

UPPSALA UNIVERSITET

Key observation: the process obeys a Poisson distribution.

1010011110111011
0001111100000101
0110110110110011
0000000111011111 0101110001000100 0000101001010101 1010101111111100 0001011100110111 1110010000111111 1010110011111100 0110001001100011 0110011100100011 0001000100011100 0100010001110111 0110100000101100 0011011110110000 1111000100111110 0001111100010100 1010001000100011 0010101010111111

HyperBitBit analysis (continued)

Def. Let q_{T} be the expected proportion of 0 s in sketch, at the beginning of phase \boldsymbol{T}.
Def. Let $\boldsymbol{V}_{\boldsymbol{T}}$ be the expected number of values added to each stream during phase \boldsymbol{T}.

Lemma 1. As \boldsymbol{T} increases, proportion of 0 s in sketch approaches $\mathbf{2}^{-1 / 3}$ (solution of $q=1 / \sqrt{2 q}$).

Lemma 2. Expected number of values in phase \boldsymbol{T} is $\quad M v_{T} \sim 2 M \ln 2^{-1 / 3} 2^{T+1}=M \cdot(4 / 3) \ln 2 \cdot 2^{T}$

HyperBitBit analysis accounting summary

Lemma 2. Expected number of values in phase \boldsymbol{T} is $\sim M \frac{4 \ln 2}{3} 2^{T}$

Lemma 3. Expected number of values before phase \boldsymbol{T} is $\sim M \frac{4 \ln 2}{3} 2^{T} \quad M \frac{4 \ln 2}{3} \sum_{0 \leq i<T} 2^{i}$

Lemma 4. If there are $\beta M 0 \mathrm{~s}$ in the sketch on termination, then the
expected number of values in the last phase is $M\left(\ln 2^{-1 / 3}-\ln \beta\right) 2^{T+1}$

Mv where v satisfies
$q e^{-v / 2^{T+1}}=\beta$
and $q=2^{-1 / 3}$

Theorem. When HyperBitBit terminates with $\beta M 0 \mathrm{~s}$ in sketch in phase \boldsymbol{T}, then N / M is $\sim\left(\frac{2 \ln 2}{3}-2 \ln \beta\right) 2^{T}$

HyperBitBit validation (?)

OBVIOUSLY the estimate is too high because values with $>\mathbf{T + 1}$ zeros are recounted later on.
There are too many recounted values to ignore.
HyperBitBitBit? No. Would be better, but still a problem.

Next challenge: estimate the number of recounts in HyperBitBit

2019

 20212020

Hyperbit: A Memory-Efficient Alternative to HyperLogLog

- The problem
- A solution
- A better solution
- Another approach
- Final frontier

A simpler algorithm: HyperBit

Insight: We need to estimate all the forgotten values-why bother keeping track of them for $\boldsymbol{T}+\boldsymbol{1}$?

```
    public static long estimate(Iterable<String> stream, int M)
```

 \{
 int T = 0;
 7ong sketch \(=0\); \(\longleftarrow M=64\)
 for (String x : stream)
 \{
 long \(x=\) hash(s);
 int \(k=\operatorname{hash} 2(x, 64)\);
 if \((r(x)>T)\) sketch \(=\) sketch | (1L << k);
 if (p(sketch) >= 32)
 \{ T++; sketch \(=0\); \}
 \}
 return (int) (Math.pow (2, T)*M* ??);
 \}
bias factor (to be analyzed)
Preliminary experimental validation inconclusive—but maybe analyzing this will be informative.

Example Hyperbit actions ($M=8$)

Starting point is the same as for HyperBitBit, but simpler
1010011110111011
0001111100000101
0110110110110011
In a data stream with \boldsymbol{v} distinct values

- $\operatorname{Pr}\{$ a given item has more than \boldsymbol{T} trailing $1 s\}=1 / 2^{T+1}$
- $\operatorname{Pr}\left\{\right.$ no item has more than \boldsymbol{T}_{k} trailing $\left.1 s\right\} \sim e^{-v / 2^{T+1}} \quad\left(1-\frac{1}{2^{T+1}}\right)^{v}$
corresponding bit in sketch is 0
Each HyperBit phase begins when \boldsymbol{T} is incremented
- sketch is set to 0
- After $\mathbf{M v}_{\boldsymbol{t}}$ distinct values (approximately $\boldsymbol{V}_{\boldsymbol{t}}$ per stream) are added
- number of 0 s in sketch is binomially distributed
- expected number of 0 s in sketch is $\sim M e^{-v / 2^{T+1}}$
- phase ends when $e^{-v_{T} / 2^{T+1}}=1 / 2$, or $v_{T}=2^{T+1} \ln 2$

Lemma. Expected number of values in phase \boldsymbol{T} is $\sim M v_{T}=M \cdot \ln 4 \cdot 2^{T}$

0000000111011111 0101110001000100 0000101001010101 1010101111111100 0001011100110111 1110010000111111 1010110011111100 0110001001100011 0110011100100011 0001000100011100 0100010001110111 0110100000101100 0011011110110000 1111000100111110 0001111100010100 1010001000100011 0010101010111111 1110101110001000

HyperBit analysis (estimating the values that will be recounted)

Idea. Estimate the number of values accounted for in phase \boldsymbol{T} that will be recounted in phase $\mathbf{T + 1}$.
Q. How many such values? A. Half of them.
. $01111101111111111 \longleftarrow$ counted
. . $01111111111111111 \longleftarrow$ will be counted again in the next phase
If $\boldsymbol{M} \boldsymbol{y}_{\boldsymbol{T}}$ values will be recounted on average then $\boldsymbol{y}_{\boldsymbol{T}}$ satisfies $e^{-y_{T} / 2^{T+1}}=3 / 4$ and $y_{T}=2^{T+1} \ln 4 / 3$

Lemma 1. Expected number of values in phase \boldsymbol{T} that will be recounted is $M \cdot 2^{T+1} \cdot(\ln 4-\ln 3)$

Lemma 2. Expected number of values in phase \boldsymbol{T} that will not be recounted is $M \cdot 2^{T} \cdot(2 \ln 3-\ln 4)$

HyperBit analysis (last phase)

Q. How many values need to be accounted for in the last (unfinished) phase ?
A. It depends on $\boldsymbol{\beta}$ (proportion of 0 s in the sketch on termination).

Three observations complete the analysis

1. As usual, the algorithm accounts for $\boldsymbol{M} \boldsymbol{x}$ values, where $e^{-x / 2^{T+1}}=\beta$ so $x=2^{T+1} \ln (1 / \beta)$
2. Add back the recount estimate $M \cdot 2^{T} \cdot(\ln 4-\ln 3) \quad$ from phase $\boldsymbol{T}-\mathbf{1}$ (it is too high).
3. Replace that estimate with $\mathbf{M y}$ where $e^{-y / 2^{T}}=1-\left(\frac{1-\beta}{2}\right)$ so $y=2^{T} \ln \frac{1+\beta}{2}$ \# values that generate half the is

Lemma 2. Expected \# of values to count in the last phase is

$$
M \cdot 2^{T}\left(\ln 4-\ln 3-2 \ln \beta+\ln \frac{1+\beta}{2}\right)
$$

HyperBit analysis final accounting

Expected \# of values accounted for in phase \boldsymbol{T} is $\quad M \cdot 2^{T} \cdot(2 \ln 3-\ln 4)$

Expected \# of values accounted for before phase \boldsymbol{T} is $M \cdot 2^{T} \cdot(2 \ln 3-\ln 4) \quad M(2 \ln 3-\ln 4) \sum_{0 \leq i<T} 2^{i}$

Expected \# of values accounted for when T is the last (unfinished) phase is

$$
M \cdot 2^{T}\left(\ln 4-\ln 3-2 \ln \beta+\ln \frac{1+\beta}{2}\right)
$$

Theorem. The expected number of values seen when
HyperBit terminates after completing \boldsymbol{T} phases with $\beta M 0$ s in sketch is $\sim M \cdot 2^{T} \cdot(\ln 3-2 \ln \beta+\ln ((1+\beta) / 2))$

Memory use for cardinality estimation algorithms

Probabilistic Counting
M 64-bit words

HyperLogLog
M 6-bit bytes

HyperBit
$\lg \lg N+M$ bits
-•00••

HyperBit accuracy hypothesis

Theorem. The expected number of values seen when HyperBit terminates after completing \boldsymbol{T} phases with $\beta M 0$ s in sketch is $\sim M \cdot 2^{T} \cdot(\ln 3-2 \ln \beta+\ln ((1+\beta) / 2))$

Conjecture. The statistic is approximately Gaussian with variance $\sigma^{2} \sim c / M$ where $c \approx 1$.
suggested by experiments and history
Hypothesis. The reported estimate will be within 3σ of the actual count 99% of the time.

Consequence. HyperBit solves the practical cardinality estimation problem with 1030 bits.

HyperBit validation I

Experiment. 100 trials for $x^{*} 10000$ inputs for x from 1 to 100 (10000 trials)

HyperBit validation II

Experiment. 10000 trials for 1 million inputs

Histogram of number of estimates between $x * 2000$ and $(x+1) * 2000$

HyperBit vs. HyperLogLog

......

Bottom line. Comparable accuracy with one-sixth as much memory.

What's next?

Fully analyze relative accuracy of HyperBit

HyperBit vs HyperBitBit ?

Determine optimal values of parameters

Continue to validate results

Algorithm science for other streaming algorithms

HyperBit

A Memory-Efficient Alternative to HyperLogLog

Robert Sedgewick
 Princeton University

