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Notation for rooted labelled trees: T

> Root / Leaves
> Children / Degree deg(-)

> Depth ht7(-) / Height /T ’ .
> Edges directed towards root gi

> Vertices are labeled with

[n] ={1,...,n}
deg(6) = 0,ht7(6) = 1
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Weighted random recursive trees

Tree growth process (T,, n € N):
> Weights (W,)n>1 i.i.d.

> Ti is a single-vertex tree.

t ,
> For n > 1, build T, from T,_; adding: {ver e
edge n — j

. W,
IP’(n _>./|Tn71): 5 Jl, Sn_]_:ZVV’-.
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Weighted random recursive trees

Tree growth process (T,, n € N):
> Weights (W,)n>1 i.i.d.

> Ti is a single-vertex tree.

t ,
> For n > 1, build T, from T,_; adding: {ver e
edge n — j

. W,
IP’(n —)_j|Tn,1): 5 Jl, Sn_lzz‘/\/’-.

Inhomogeneous probabilities,
independent from the current tree structure.

Laura Eslava (IIMAS-UNAM) High degree vertices of RRT 4/20



Random Recursive Trees (RRTs): W; =1 as.

At any step, a new vertex n attaches
to a uniformly chosen vertex.

P(n_)J‘Tn—l): n—].
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Random Recursive Trees (RRTs): W; =1 as.

At any step, a new vertex n attaches
to a uniformly chosen vertex.

1
. 1 / \
P(n —>J|Tn_1): m 2 3
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Random Recursive Trees (RRTs): W; =1 as.

At any step, a new vertex n attaches
to a uniformly chosen vertex.

]P’(n —>j|Tn_1): E—— ) 3

n—1 /
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Random Recursive Trees (RRTs): W; =1 as.

At any step, a new vertex n attaches
to a uniformly chosen vertex.

P(n— j|Th-1) = 1 2 3
/1
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Random Recursive Trees (RRTs): W; =1 as.

At any step, a new vertex n attaches
to a uniformly chosen vertex.

]P’(n —>j|Tn_1): E—— ) 3

n—1 /T
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Random Recursive Trees (RRTs): W; =1 a.s.

At any step, a new vertex n attaches

to a uniformly chosen vertex.
.;,:,...-.‘. e

.-c { . e f..:o ..D
‘0,0 @ o o . g. o °

. 1 EE O T

e e S R
..A.... .....'.. ..°

R - ] - o

New edge-connection uniform,
independent from evolution of the process.
5/20
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Renewal theory for insertion depth

Theorem. (Devroye, 1988, Mahmoud 1991) For RRTs, as n — oo,

h _
htr(m=Inn £,y 1),
Inn

Idea: For (Uf)iZO i.i.d. Unif(O,l)

Vo = N, Viy1 = [(V,‘ — ].)U,:I,

htr,(n) = min{k : vy =1}
Vi &2 neZi<k|“(Ui)
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Difference equations for degree sequence

Degree sequence: Z(S”) = #{i € [n] : degt (i) = d}.

Theorem. [Na, Rapoport 1970] For RRTs, for each d > 0, as n — oo
nIE[ZIM] — 27+,

Idea. For d > 1,

(n) _ 5(n-1)
Zq =2y 7+ L, ()=d—1] ~ Lidegy  ()=dl"
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Pdélya urn theory for degree sequence

Theorem [Janson 2005] Jointly for all d > 0, as n — oo

n12(Z0) — o) gy By

where V, are gaussian r.v. with explicit covariance matrix.

Idea.

> Vertex color is given by its degree.
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Pdélya urn theory for degree sequence

Theorem [Janson 2005] Jointly for all d >0, as n — oo

n_l/z(Z(sn) - 2_(d+1)n) dist, Vy;

where V, are gaussian r.v. with explicit covariance matrix.

Idea.

> Vertex color is given by its degree.

> Requires finite number of colors.

B\
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Degree and depth of a random vertex

Select a uniformly random vertex u in T,

> Classical methods:

htr,(u) —Inn

~ N(0,1)
Inn
2" e
P(degr,(u) = k|Tn) = —— = 2~ (kD)
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Degree and depth of a random vertex

Select a uniformly random vertex u in T,

> Classical methods:

htr,(u) —Inn

~ N(0,1)
Inn
Z/En) k+1
P(degr,(u) = k|Tn) = —— = 2~ (kD)

> Kingman's coalescent (spoiler):
ht7,(u) £ Bin(|S],1/2)
degy (u) £ min{Geo(1/2), S}

|S]| £ >, Ber(2/i), which is concentrated around 2In n.
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Maximum degree

A, = max{degr (i): i€ [n]}

Theorem [Devroye, Lu 1995] If T, is a recursive tree. As n — o0, a.s.

Ap

— 1.
log, n

Heuristic:
> Classical methods:

E[#{i € [n] : degr (i) =d}] =27 Dnx~1  if d = log,n.
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Maximum degree

A, = max{degr (i): i€ [n]}

Theorem [Devroye, Lu 1995] If T, is a recursive tree. As n — o0, a.s.

Ap

— 1.
log, n

Heuristic:
> Classical methods:

E[#{i € [n] : degr (i) =d}] =27 Dnx~1  if d = log,n.

> Kingman's coalescent (spoiler):
E[#{i € [n] : degr (i) > d}] =279n(1 + o(1)) ford < 2Inn.

Laura Eslava (IIMAS-UNAM) High degree vertices of RRT 10 /20



Generating Functions for tails of maximum degree

Theorem [Goh, Schmutz 2002] For i € N fixed, and n = 2™
P(A, — logy n < i) = exp{—27"} + o(1).

Idea.

Ynk = # increasing trees with A, < k 1

kZ]- A<k A<k A<k
k
(fk(z))'l dogTH(l)gk
fllz) = 3
P

> Deleting the root is equivalent to taking the derivative of f;(z).

Laura Eslava (IIMAS-UNAM) High degree vertices of RRT 11/20



High degree vertices: Motivation

Image from scalefreenetworks, Flickr
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High degree vertices [Addario-Berry, E. 2017, E. 2020, E. 2021]

> Poisson Point Process for near-maximum degree vertices:
Number and their depth
> Central Limit Theorems (critical value 1 < ¢ < loge):

Z(”)

>clnn

= {v e [n], degr,(v) > cInn}

> Gumbel Distribution:
Tighten tails for A,
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High degree vertices [Addario-Berry, E. 2017, E. 2020, E. 2021]

> Poisson Point Process for near-maximum degree vertices:

Number and their depth

> Central Limit Theorems (critical value 1 < ¢ < loge):

7"

>clnn

= {v e [n], degr,(v) > cInn}

> Gumbel Distribution:
Tighten tails for A,

Recent Advances: [E., Lodewijks, Ortgiese, 20227, Lodewijks 20227]
Same qualitative properties for WRRT with weight distribution
W € (0, 1] satisfying P(W =1) > 0.
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A Poisson point process

For each vertex in T, place a point on Z U {co}; n = 2.

°o— (deng(V)|°g2 m, (1—a/2)Inn

htr,(v) — (1 —a)ln n)

X4 = #{v € [n], degr,(v) = d + log, n}
> Good news:

- (X4)dez have independent Poisson distribution
- depth marks have Gaussian fluctuations,
- independent from (Xy)dez.

> Surprising: Never-ending race of vertices to become max-degree.
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Kingman's coalescent

y
¥
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Kingman's Coalescent or Union-Find tree

Fix n € N, for each 1 < t < n construct a forest of rooted labelled trees on

V(F:) ={1,...,n}.
Ft:{Tl(t) T(t t+1}

Given F;, construct Fyyq:

> Uniformly choose two B

trees in Fy,

> Add an edge labelled t o @ o @ 6 ©
between the roots:

directed to either tree
with equal probability.

All choices are independent.

Laura Eslava (IIMAS-UNAM) High degree vertices of RRT 16 / 20



Kingman's Coalescent or Union-Find tree

Fix n € N, for each 1 < t < n construct a forest of rooted labelled trees on

V(F:) ={1,...,n}.
Ft:{Tl(t) T(t t+1}

Given F;, construct Fyyq:
> Uniformly choose two
trees in Fy,
> Add an edge labelled ¢t ® & ® @ ® ®
between the roots:

directed to either tree
with equal probability.

All choices are independent.

Laura Eslava (IIMAS-UNAM) High degree vertices of RRT 16 / 20



Kingman's Coalescent or Union-Find tree
Fix n € N, for each 1 < t < n construct a forest of rooted labelled trees on

V(F:) ={1,...,n}.
Ft:{Tl(t) T(t t+1}

Given F;, construct Fyyq:

> Uniformly choose two P
trees in Fy,

> Add an edge labelled t @ ® @ ®
between the roots: 1

directed to either tree
with equal probability.

All choices are independent.

Laura Eslava (IIMAS-UNAM) High degree vertices of RRT 16 / 20



Kingman's Coalescent or Union-Find tree
Fix n € N, for each 1 < t < n construct a forest of rooted labelled trees on

V(F:) ={1,...,n}.
Ft:{Tl(t) T(t t+1}

Given F;, construct Fyyq:

> Uniformly choose two 2o
trees in F, e

> Add an edge labelled t @ ® @ W
between the roots: 1

directed to either tree
with equal probability.

All choices are independent.

Laura Eslava (IIMAS-UNAM) High degree vertices of RRT 16 / 20



Kingman's Coalescent or Union-Find tree
Fix n € N, for each 1 < t < n construct a forest of rooted labelled trees on

V(F:) ={1,...,n}.
Ft:{Tl(t) T(t t+1}

Given F;, construct Fyyq:

> Uniformly choose two F
trees in Fy,

> Add an edge labelled t © ® @
between the roots: 2 1
directed to either tree ©

with equal probability.

All choices are independent.

Laura Eslava (IIMAS-UNAM) High degree vertices of RRT 16 / 20



Kingman's Coalescent or Union-Find tree

Fix n € N, for each 1 < t < n construct a forest of rooted labelled trees on

V(F:) ={1,...,n}.
Ft:{Tl(t) T(t t+1}

Given F;, construct Fyyq:
> Uniformly choose two
trees in Fy,

> Add an edge labelled t
between the roots:

directed to either tree
with equal probability.

All choices are independent.

Laura Eslava (IIMAS-UNAM) High degree vertices of RRT 16 / 20



Kingman's Coalescent or Union-Find tree

Fix n € N, for each 1 < t < n construct a forest of rooted labelled trees on

V(F:) ={1,...,n}.
Ft:{Tl(t) T(t t+1}

Given F;, construct Fyyq:

> Uniformly choose two Fy

trees in Fy,

> Add an edge labelled t
between the roots:

directed to either tree
with equal probability.

All choices are independent.

Laura Eslava (IIMAS-UNAM) High degree vertices of RRT 16 / 20



Kingman's Coalescent or Union-Find tree

Fix n € N, for each 1 < t < n construct a forest of rooted labelled trees on

V(F:) ={1,...,n}.
Ft:{Tl(t) T(t t+1}

Given F;, construct Fyyq:
> Uniformly choose two Fy
trees in Fy, o )
> Add an edge labelled t

between the roots:

directed to either tree
with equal probability.

All choices are independent.

Laura Eslava (IIMAS-UNAM) High degree vertices of RRT 16 / 20



Kingman's Coalescent or Union-Find tree

Fix n € N, for each 1 < t < n construct a forest of rooted labelled trees on

V(F:) ={1,...,n}.
Ft:{Tl(t) T(t t+1}

Given F;, construct Fyyq:

> Uniformly choose two s

trees in F;, ®
> Add an edge labelled t 2 3 1 4
between the roots: %

directed to either tree
with equal probability.

All choices are independent.

Laura Eslava (IIMAS-UNAM) High degree vertices of RRT 16 / 20



Kingman's Coalescent or Union-Find tree

Fix n € N, for each 1 < t < n construct a forest of rooted labelled trees on

V(F:) ={1,...,n}.
Ft:{Tl(t) T(t t+1}

Given F;, construct Fyyq:

> Uniformly choose two
trees in Fy,

> Add an edge labelled t 2
between the roots:
directed to either tree
with equal probability.

All choices are independent.

Laura Eslava (IIMAS-UNAM) High degree vertices of RRT 16 / 20



Kingman's Coalescent or Union-Find tree

Fix n € N, for each 1 < t < n construct a forest of rooted labelled trees on

V(F:) ={1,...,n}.
Ft:{Tl(t) T(t t+1}

Given F;, construct Fyyq:
> Uniformly choose two
trees in Fy,

> Add an edge labelled t
between the roots:

directed to either tree
with equal probability. o
n

All choices are independent.
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Recursive trees: Via Kingman's Coalescent

Lemma. There is a mapping ¢ such that ¢(F,) £ Th:
furthermore, ¢ preserves the shape of F,,.

/\\—>/\\

/\

Proof’s idea.
- Vertex labels are exchangeable.
- Edge labels are decreasing along root-to-leaf paths.

- There are n!(n — 1)! possible outcomes for F,.
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Selection set S()

S =380 = {t < n—1: Tree containing 1 merges at time t}

At step t € S, two trees are selected: f

- One tree's root increases its
degree and

- all vertices in the other tree
increase their depth by 1.

- Vertex 1 starts as root.
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&——%
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Selection set S()

S =380 = {t < n—1: Tree containing 1 merges at time t}

&—¢

At step t € S, two trees are selected: f

- One tree's root increases its
degree and

- all vertices in the other tree
increase their depth by 1.

- Vertex 1 starts as root.
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Selection set S()

S =380 = {t < n—1: Tree containing 1 merges at time t}

A favourable merge for 1 is when its tree's root increases its degree.

@

At step t € S, two trees are selected: gg
- One tree's root increases its
degree and SN

- all vertices in the other tree
increase their depth by 1.

- Vertex 1 starts as root.
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Selection set S()

S =38 = {t < n—1: Tree containing 1 merges at time t}

A favourable merge for 1 is when its tree's root increases its degree.

At step t € S, two trees are selected: Q

- One tree's root increases its
degree and g

- all vertices in the other tree
increase their depth by 1.

- Vertex 1 starts as root.
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Degree and depth of vertex 1 in F,

S =380 = {t < n—1: Tree containing 1 merges at time t}

A favourable merge for 1 is when its tree's root increases its degree.

Proposition.

Total # non-favourable merges.
htr (1) £ Bin(|S|, 1/2).

First streak favourable merges.

degr (1) £ min{Geo(1/2),|S]}.
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Degree and depth of vertex 1 in F,

S =380 = {t < n—1: Tree containing 1 merges at time t}

A favourable merge for 1 is when its tree's root increases its degree.

Proposition.

Total # non-favourable merges.
htr (1) £ Bin(|S|, 1/2).

First streak favourable merges.

degr (1) £ min{Geo(1/2),|S]}.

Recent Advances: [Lodewijks 20227]
Analysis can include the label of vertex 1 (in the RRT mapping).
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Summary

> No persistency of vertex centrality
- Never-ending race of vertices to become max-degree

A el e

> Advantages of Kingman's coalescent

- Combinatorial foundation of known heuristics
- Degree and depth of uniformly random vertices in T,
- Degree and depth of high-degree vertices in T,

> Recent advances

- Labels of high-degree vertices in T,
- High-degree results for Weighted random recursive trees
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