High degree vertices of (weighted) random recursive trees

Laura Eslava

IIMAS-UNAM

Analytic and Probabilistic Combinatorics November 2022

Joint work with: Louigi Addario-Berry; Bas Lodewijks and Marcel Ortgiese

Laura Eslava (IIMAS-UNAM)

Contents

Some Classical methods on Recursive trees

- Renewal theory
- Polya urns
- Generating functions

High degree vertices for RRT

- A Poisson point process
- Kingman's coalescent
- The key observation

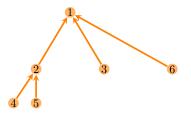
8 Recent advances

- Weighted random recursive trees
- Labels of high-degree vertices

Notation for rooted labelled trees: T

- \triangleright Root / Leaves
- ▷ Children / Degree deg_T(·)
- ▷ Depth $ht_{T}(\cdot)$ / Height
- Edges directed towards root
- Vertices are labeled with

 $[n] = \{1, \ldots, n\}$



 $\deg_{\mathcal{T}}(6)=0, \operatorname{ht}_{\mathcal{T}}(6)=1$

Weighted random recursive trees

- Tree growth process $(T_n, n \in \mathbb{N})$:
 - ▷ Weights $(W_n)_{n\geq 1}$ i.i.d.
 - \triangleright T_1 is a single-vertex tree.

 $\triangleright \text{ For } n > 1 \text{, build } T_n \text{ from } T_{n-1} \text{ adding: } \begin{cases} \text{vertex } n, \\ \text{edge } n \rightarrow j \end{cases}$

$$\mathbb{P}(n \to j | T_{n-1}) = \frac{W_j}{S_{n-1}}, \qquad S_{n-1} = \sum_{i=1}^{n-1} W_i.$$

Weighted random recursive trees

Tree growth process $(T_n, n \in \mathbb{N})$:

- ▷ Weights $(W_n)_{n\geq 1}$ i.i.d.
- \triangleright T_1 is a single-vertex tree.

 $\triangleright \text{ For } n > 1 \text{, build } T_n \text{ from } T_{n-1} \text{ adding: } \begin{cases} \text{vertex } n, \\ \text{edge } n \to j \end{cases}$

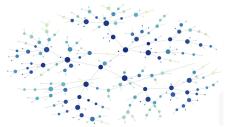
$$\mathbb{P}(n \to j | T_{n-1}) = \frac{W_j}{S_{n-1}}, \qquad S_{n-1} = \sum_{i=1}^{n-1} W_i.$$

Inhomogeneous probabilities, independent from the current tree structure.

$$\mathbb{P}(n \to j | T_{n-1}) = \frac{1}{n-1}$$

At any step, a new vertex *n* attaches to a uniformly chosen vertex.

$$\mathbb{P}(n \to j | T_{n-1}) = \frac{1}{n-1}$$



New edge-connection uniform,

independent from evolution of the process.

Renewal theory for insertion depth

Theorem. (Devroye, 1988, Mahmoud 1991) For RRTs, as $n \to \infty$,

$$\frac{\operatorname{ht}_{\mathcal{T}_n}(n)-\ln n}{\sqrt{\ln n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1).$$

Idea: For $(U_i)_{i\geq 0}$ i.i.d. Unif(0,1)

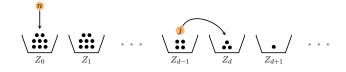
$$v_0 = n, v_{i+1} = \lceil (v_i - 1)U_i \rceil,$$

$$\operatorname{ht}_{\mathcal{T}_n}(n) = \min\{k : v_k = 1\}$$
$$v_k \approx n e^{\sum_{i < k} \ln(U_i)}$$

v_0		

Difference equations for degree sequence

Degree sequence: $Z_d^{(n)} = \#\{i \in [n] : \deg_{T_n}(i) = d\}.$



Theorem. [Na, Rapoport 1970] For RRTs, for each $d \ge 0$, as $n \to \infty$

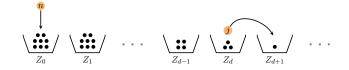
$$n^{-1}\mathbb{E}[Z_d^{(n)}] \to 2^{-(d+1)}.$$

Idea. For d > 1,

$$Z_d^{(n)} = Z_d^{(n-1)} + \mathbf{1}_{[\deg_{\tau_{n-1}}(j)=d-1]} - \mathbf{1}_{[\deg_{\tau_{n-1}}(j)=d]}.$$

Difference equations for degree sequence

Degree sequence: $Z_d^{(n)} = \#\{i \in [n] : \deg_{T_n}(i) = d\}.$



Theorem. [Na, Rapoport 1970] For RRTs, for each $d \ge 0$, as $n \to \infty$

$$n^{-1}\mathbb{E}[Z_d^{(n)}] \to 2^{-(d+1)}.$$

Idea. For d > 1,

$$Z_d^{(n)} = Z_d^{(n-1)} + \mathbf{1}_{[\deg_{T_{n-1}}(j)=d-1]} - \mathbf{1}_{[\deg_{T_{n-1}}(j)=d]}.$$

Pólya urn theory for degree sequence

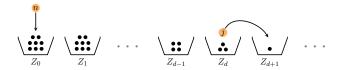
Theorem [Janson 2005] Jointly for all $d \ge 0$, as $n \to \infty$

$$n^{-1/2}(Z_d^{(n)}-2^{-(d+1)}n)\stackrel{\mathrm{dist}}{\longrightarrow} V_d;$$

where V_d are gaussian r.v. with explicit covariance matrix.

Idea.

▷ Vertex color is given by its degree.



Pólya urn theory for degree sequence

Theorem [Janson 2005] Jointly for all $d \ge 0$, as $n \to \infty$

$$n^{-1/2}(Z_d^{(n)}-2^{-(d+1)}n)\stackrel{\mathrm{dist}}{\longrightarrow} V_d;$$

where V_d are gaussian r.v. with explicit covariance matrix.

Idea.

- ▷ Vertex color is given by its degree.
- ▶ Requires finite number of colors.

$$\underbrace{\underbrace{\vdots}}_{Z_0} / \underbrace{\underbrace{\vdots}}_{Z_1} / \cdots \\ \underbrace{\vdots}_{Z_{d-1}} / \underbrace{\underbrace{\vdots}}_{Z_d} / \underbrace{\underbrace{i}}_{Z_{>d}} \cdots$$

Degree and depth of a random vertex

Select a uniformly random vertex *u* in *T_n*, ▷ Classical methods:

$$\frac{\operatorname{ht}_{T_n}(u) - \ln n}{\sqrt{\ln n}} \approx N(0, 1)$$
$$\mathbb{P}(\operatorname{deg}_{T_n}(u) = k | T_n) = \frac{Z_k^{(n)}}{n} \approx 2^{-(k+1)}$$

Degree and depth of a random vertex

Select a uniformly random vertex u in T_n , \triangleright Classical methods:

$$\frac{\operatorname{ht}_{T_n}(u) - \ln n}{\sqrt{\ln n}} \approx N(0, 1)$$
$$\mathbb{P}(\operatorname{deg}_{T_n}(u) = k | T_n) = \frac{Z_k^{(n)}}{n} \approx 2^{-(k+1)}$$

Kingman's coalescent (spoiler):

$$\operatorname{ht}_{\mathcal{T}_n}(u) \stackrel{\mathcal{L}}{=} \operatorname{Bin}(|\mathcal{S}|, 1/2)$$
$$\operatorname{deg}_{\mathcal{T}_n}(u) \stackrel{\mathcal{L}}{=} \min\{\operatorname{Geo}(1/2), |\mathcal{S}|\}$$

 $|\mathcal{S}| \stackrel{\mathcal{L}}{=} \sum_{i=2}^{n} \text{Ber}(2/i)$, which is concentrated around $2 \ln n$.

Maximum degree

$$\Delta_n = \max\{ \deg_{\mathcal{T}_n}(i) : i \in [n] \}$$

Theorem [Devroye, Lu 1995] If T_n is a recursive tree. As $n \to \infty$, a.s.

$$\frac{\Delta_n}{\log_2 n} \to 1.$$

Heuristic:

▷ Classical methods:

$$\mathbb{E}[\#\{i\in[n]: \deg_{\mathcal{T}_n}(i)=d\}]\approx 2^{-(d+1)}n\approx 1 \qquad \text{if } d=\log_2 n.$$

Maximum degree

$$\Delta_n = \max\{ \deg_{\mathcal{T}_n}(i) : i \in [n] \}$$

Theorem [Devroye, Lu 1995] If T_n is a recursive tree. As $n \to \infty$, a.s.

$$\frac{\Delta_n}{\log_2 n} \to 1.$$

Heuristic:

▷ Classical methods:

 $\mathbb{E}[\#\{i\in[n]:\deg_{\mathcal{T}_n}(i)=d\}]\approx 2^{-(d+1)}n\approx 1 \quad \text{if } d=\log_2 n.$

Kingman's coalescent (spoiler):

 $\mathbb{E}[\#\{i \in [n] : \deg_{\mathcal{T}_n}(i) \ge d\}] = 2^{-d} n(1 + o(1)) \quad \text{for } d < 2 \ln n.$

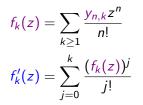
Generating Functions for tails of maximum degree

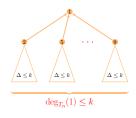
Theorem [Goh, Schmutz 2002] For $i \in \mathbb{N}$ fixed, and $n = 2^m$

$$\mathbb{P}(\Delta_n - \log_2 n < i) = \exp\{-2^{-i}\} + o(1).$$

Idea.

 $y_{n,k} = \#$ increasing trees with $\Delta_n \leq k$





 \triangleright Deleting the root is equivalent to taking the derivative of $f_k(z)$.

High degree vertices: Motivation

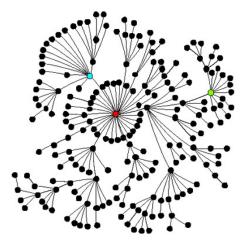


Image from scalefreenetworks, Flickr

High degree vertices [Addario-Berry, E. 2017, E. 2020, E. 2021]

Poisson Point Process for near-maximum degree vertices: Number and their depth

▷ Central Limit Theorems (critical value $1 < c < \log e$):

$$Z_{\geq c \ln n}^{(n)} = \{ v \in [n], \deg_{T_n}(v) \geq c \ln n \}$$

Gumbel Distribution:

Tighten tails for Δ_n

High degree vertices [Addario-Berry, E. 2017, E. 2020, E. 2021]

Poisson Point Process for near-maximum degree vertices: Number and their depth

▷ Central Limit Theorems (critical value $1 < c < \log e$):

$$Z_{\geq c \ln n}^{(n)} = \{ v \in [n], \deg_{T_n}(v) \geq c \ln n \}$$

Gumbel Distribution:

Tighten tails for Δ_n

Recent Advances: [E., Lodewijks, Ortgiese, 2022⁺, Lodewijks 2022⁺] Same qualitative properties for WRRT with weight distribution $W \in (0, 1]$ satisfying $\mathbb{P}(W = 1) > 0$.

A Poisson point process

For each vertex in T_n , place a point on $\mathbb{Z} \cup \{\infty\}$; $n = 2^m$.

$$\bullet = \left(\deg_{T_n}(v) - \log_2 n, \frac{\operatorname{ht}_{T_n}(v) - (1 - \alpha) \ln n}{\sqrt{(1 - \alpha/2) \ln n}} \right)$$
$$\cdots \underbrace{\underbrace{\bullet}_{-2}}_{-2} \underbrace{\underbrace{\bullet}_{-1}}_{-1} \underbrace{\underbrace{\bullet}_{0}}_{-1} \underbrace{\underbrace{\bullet}_{1}}_{-1} \underbrace{\underbrace{\bullet}_{2}}_{-1} \cdots \underbrace{\operatorname{ht}_{-2}}_{-1} \underbrace{\operatorname{ht}_{-1}}_{-1} \underbrace{\operatorname{ht}_{-$$

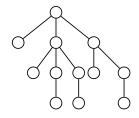
$$X_d = \#\{v \in [n], \deg_{T_n}(v) = d + \log_2 n\}$$

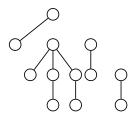
Good news:

- $(X_d)_{d \in \mathbb{Z}}$ have independent Poisson distribution
- depth marks have Gaussian fluctuations,
- independent from $(X_d)_{d\in\mathbb{Z}}$.

▷ Surprising: Never-ending race of vertices to become max-degree.

Kingman's coalescent





Fix $n \in \mathbb{N}$, for each $1 \le t \le n$ construct a forest of rooted labelled trees on $V(F_t) = \{1, \ldots, n\}.$ $F_t = \{T_1^{(t)}, \dots, T_{n-t+1}^{(t)}\}$

Given F_t , construct F_{t+1} :

- F_1 Uniformly choose two trees in F_t , (1)(2)(3)
- \triangleright Add an edge labelled t between the roots:

directed to either tree with equal probability.

All choices are independent.

(4)

(5)

(6)

Fix $n \in \mathbb{N}$, for each $1 \le t \le n$ construct a forest of rooted labelled trees on $V(F_t) = \{1, \ldots, n\}$. $F_t = \{T_1^{(t)}, \ldots, T_{n-t+1}^{(t)}\}$

Given F_t , construct F_{t+1} :

- ▷ Uniformly choose two trees in F_t,
- Add an edge labelled t between the roots:

directed to either tree with equal probability.



Fix $n \in \mathbb{N}$, for each $1 \le t \le n$ construct a forest of rooted labelled trees on $V(F_t) = \{1, \ldots, n\}$. $F_t = \{T_1^{(t)}, \ldots, T_{n-t+1}^{(t)}\}$

Given F_t , construct F_{t+1} :

 ▷ Uniformly choose two F_2 trees in F_t ,
▷ Add an edge labelled t
① ② ③ ④ ⑥

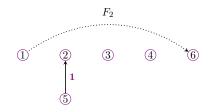
between the roots: directed to either tree with equal probability.

Fix $n \in \mathbb{N}$, for each $1 \le t \le n$ construct a forest of rooted labelled trees on $V(F_t) = \{1, \ldots, n\}$. $F_t = \{T_1^{(t)}, \ldots, T_{n-t+1}^{(t)}\}$

Given F_t , construct F_{t+1} :

- ▷ Uniformly choose two trees in F_t,
- Add an edge labelled t between the roots:

directed to either tree with equal probability.

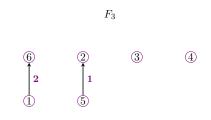


Fix $n \in \mathbb{N}$, for each $1 \le t \le n$ construct a forest of rooted labelled trees on $V(F_t) = \{1, \ldots, n\}$. $F_t = \{T_1^{(t)}, \ldots, T_{n-t+1}^{(t)}\}$

Given F_t , construct F_{t+1} :

- ▷ Uniformly choose two trees in F_t,
- Add an edge labelled t between the roots:

directed to either tree with equal probability.

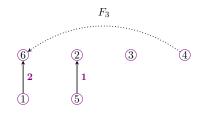


Fix $n \in \mathbb{N}$, for each $1 \le t \le n$ construct a forest of rooted labelled trees on $V(F_t) = \{1, \ldots, n\}$. $F_t = \{T_1^{(t)}, \ldots, T_{n-t+1}^{(t)}\}$

Given F_t , construct F_{t+1} :

- ▷ Uniformly choose two trees in F_t,
- Add an edge labelled t between the roots:

directed to either tree with equal probability.

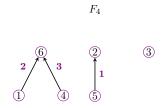


Fix $n \in \mathbb{N}$, for each $1 \le t \le n$ construct a forest of rooted labelled trees on $V(F_t) = \{1, \ldots, n\}$. $F_t = \{T_1^{(t)}, \ldots, T_{n-t+1}^{(t)}\}$

Given F_t , construct F_{t+1} :

- Uniformly choose two trees in F_t,
- Add an edge labelled t between the roots:

directed to either tree with equal probability.

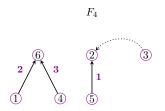


Fix $n \in \mathbb{N}$, for each $1 \le t \le n$ construct a forest of rooted labelled trees on $V(F_t) = \{1, \ldots, n\}$. $F_t = \{T_1^{(t)}, \ldots, T_{n-t+1}^{(t)}\}$

Given F_t , construct F_{t+1} :

- Uniformly choose two trees in F_t,
- Add an edge labelled t between the roots:

directed to either tree with equal probability.

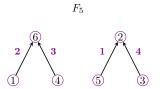


Fix $n \in \mathbb{N}$, for each $1 \le t \le n$ construct a forest of rooted labelled trees on $V(F_t) = \{1, \ldots, n\}$. $F_t = \{T_1^{(t)}, \ldots, T_{n-t+1}^{(t)}\}$

Given F_t , construct F_{t+1} :

- ▷ Uniformly choose two trees in F_t,
- Add an edge labelled t between the roots:

directed to either tree with equal probability.

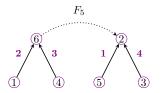


Fix $n \in \mathbb{N}$, for each $1 \le t \le n$ construct a forest of rooted labelled trees on $V(F_t) = \{1, \ldots, n\}$. $F_t = \{T_1^{(t)}, \ldots, T_{n-t+1}^{(t)}\}$

Given F_t , construct F_{t+1} :

- ▷ Uniformly choose two trees in F_t,
- Add an edge labelled t between the roots:

directed to either tree with equal probability.



Kingman's Coalescent or Union-Find tree

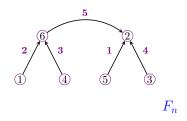
Fix $n \in \mathbb{N}$, for each $1 \le t \le n$ construct a forest of rooted labelled trees on $V(F_t) = \{1, \ldots, n\}$. $F_t = \{T_1^{(t)}, \ldots, T_{n-t+1}^{(t)}\}$

Given F_t , construct F_{t+1} :

- Uniformly choose two trees in F_t,
- Add an edge labelled t between the roots:

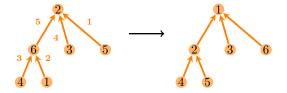
directed to either tree with equal probability.

All choices are independent.



Recursive trees: Via Kingman's Coalescent

Lemma. There is a mapping ϕ such that $\phi(F_n) \stackrel{\mathcal{L}}{=} T_n$; furthermore, ϕ preserves the shape of F_n .



Proof's idea.

- Vertex labels are exchangeable.
- Edge labels are decreasing along root-to-leaf paths.
- There are n!(n-1)! possible outcomes for F_n .

 $S = S^{(n)} = \{t \le n - 1 : \text{Tree containing 1 merges at time } t\}$

(1)

- One tree's root increases its degree and
- all vertices in the other tree increase their depth by 1.
- Vertex 1 starts as root.

 $S = S^{(n)} = \{t \le n - 1 : \text{Tree containing 1 merges at time } t\}$

- One tree's root increases its degree and
- all vertices in the other tree increase their depth by 1.
- Vertex 1 starts as root.

 $S = S^{(n)} = \{t \le n - 1 : \text{Tree containing 1 merges at time } t\}$

- One tree's root increases its degree and
- all vertices in the other tree increase their depth by 1.
- Vertex 1 starts as root.

 $S = S^{(n)} = \{t \le n - 1 : \text{Tree containing 1 merges at time } t\}$

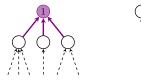
A favourable merge for 1 is when its tree's root increases its degree.

- One tree's root increases its degree and
- all vertices in the other tree increase their depth by 1.
- Vertex 1 starts as root.

 $\mathcal{S} = \mathcal{S}^{(n)} = \{t \le n-1: \text{ Tree containing } 1 \text{ merges at time } t\}$

A favourable merge for 1 is when its tree's root increases its degree.

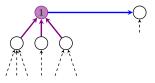
- One tree's root increases its degree and
- all vertices in the other tree increase their depth by 1.
- Vertex 1 starts as root.



 $S = S^{(n)} = \{t \le n-1 : \text{Tree containing 1 merges at time } t\}$

A favourable merge for 1 is when its tree's root increases its degree.

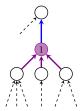
- One tree's root increases its degree and
- all vertices in the other tree increase their depth by 1.
- Vertex 1 starts as root.



 $S = S^{(n)} = \{t \le n-1 : \text{Tree containing 1 merges at time } t\}$

A favourable merge for 1 is when its tree's root increases its degree.

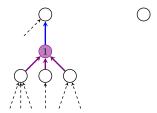
- One tree's root increases its degree and
- all vertices in the other tree increase their depth by 1.
- Vertex 1 starts as root.



 $S = S^{(n)} = \{t \le n-1 : \text{Tree containing 1 merges at time } t\}$

A favourable merge for 1 is when its tree's root increases its degree.

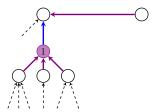
- One tree's root increases its degree and
- all vertices in the other tree increase their depth by 1.
- Vertex 1 starts as root.



 $S = S^{(n)} = \{t \le n - 1 : \text{ Tree containing } 1 \text{ merges at time } t\}$

A favourable merge for 1 is when its tree's root increases its degree.

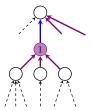
- One tree's root increases its degree and
- all vertices in the other tree increase their depth by 1.
- Vertex 1 starts as root.



 $S = S^{(n)} = \{t \le n-1 : \text{Tree containing 1 merges at time } t\}$

A favourable merge for 1 is when its tree's root increases its degree.

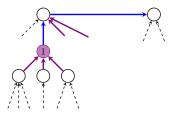
- One tree's root increases its degree and
- all vertices in the other tree increase their depth by 1.
- Vertex 1 starts as root.



 $S = S^{(n)} = \{t \le n - 1 : \text{ Tree containing } 1 \text{ merges at time } t\}$

A favourable merge for 1 is when its tree's root increases its degree.

- One tree's root increases its degree and
- all vertices in the other tree increase their depth by 1.
- Vertex 1 starts as root.



Degree and depth of vertex 1 in F_n

 $S = S^{(n)} = \{t \le n - 1 : \text{Tree containing 1 merges at time } t\}$

A favourable merge for 1 is when its tree's root increases its degree.

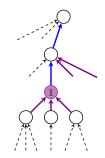
Proposition.

Total # non-favourable merges.

 $\operatorname{ht}_{F_n}(1) \stackrel{\mathcal{L}}{=} \operatorname{Bin}(|\mathcal{S}|, 1/2).$

First streak favourable merges.

 $\deg_{F_n}(1) \stackrel{\mathcal{L}}{=} \min\{Geo(1/2), |\mathcal{S}|\}.$



Degree and depth of vertex 1 in F_n

 $S = S^{(n)} = \{t \le n - 1 : \text{Tree containing 1 merges at time } t\}$

A favourable merge for 1 is when its tree's root increases its degree.

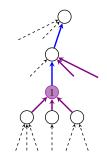
Proposition.

Total # non-favourable merges.

 $\operatorname{ht}_{F_n}(1) \stackrel{\mathcal{L}}{=} \operatorname{Bin}(|\mathcal{S}|, 1/2).$

First streak favourable merges.

 $\deg_{F_n}(1) \stackrel{\mathcal{L}}{=} \min\{Geo(1/2), |\mathcal{S}|\}.$



Recent Advances: [Lodewijks 2022⁺] Analysis can include the label of vertex 1 (in the RRT mapping).

Summary

▷ No persistency of vertex centrality

- Never-ending race of vertices to become max-degree

$$\cdots \underbrace{\underbrace{\bullet}}_{-2} / \underbrace{\underbrace{\bullet}}_{-1} / \underbrace{\underbrace{\bullet}}_{0} / \underbrace{\underbrace{\bullet}}_{1} / \underbrace{\underbrace{\bullet}}_{2} / \cdots$$

- > Advantages of Kingman's coalescent
 - Combinatorial foundation of known heuristics
 - Degree and depth of uniformly random vertices in T_n
 - Degree and depth of high-degree vertices in T_n
- Recent advances
 - Labels of high-degree vertices in T_n
 - High-degree results for Weighted random recursive trees