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Rooted labelled trees

In a rooted labelled tree, all vertices have a unique label in
{1, 2, . . . , n}.
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Rooted labelled trees

▶ Rooted labelled trees form a simply generated family of trees.

▶ Uniformly random rooted labelled trees are a special case of
conditioned Galton–Watson trees.

▶ The number of rooted labelled trees with n vertices is nn−1,
and many other combinatorial formulas are known.

▶ The height and the average distance from the root are of
order

√
n.
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Recursive trees

Recursive trees can be obtained by adding vertices step by step.
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Recursive trees

▶ Recursive trees are special case of a family of increasing trees.

▶ The number of recursive trees with n vertices is (n − 1)!, and
there are indeed many nice combinatorial connections to
permutations.

▶ The height and the average distance from the root are of
order log n.
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Motivation

We would like a model of random trees that interpolates between
uniformly random rooted labelled trees and recursive trees.

This is achieved by defining a weight based on descents.
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Descents in rooted labelled trees

A descent is a pair of adjacent vertices labelled i (parent) and j
(child) respectively such that j < i .
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The example has four descents: (5, 1), (9, 2), (6, 3) and (10, 6).
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The model

Let q be a positive real number. We consider random rooted
labelled trees with n vertices whose probabilities are proportional to
qnumber of descents. The parameter q is allowed to depend on n.

▶ The q-enumeration of labelled trees by descents goes back to
Eğecioğlu and Remmel (1986).

▶ Note that we obtain uniformly random rooted labelled trees
for q = 1, random recursive trees as q → 0 and random
recursive trees with labels reversed as q → ∞.

▶ Replacing q by 1/q amounts to reversing all labels. It is
therefore enough to consider q ≤ 1.
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Descents in permutations
As a related model, consider random permutations of {1, 2, . . . , n}
whose probabilities are proportional to qnumber of descents.

582469713

The example has three descents: 82, 97 and 71.

▶ Permutations of {1, 2, . . . , n} with k descents are counted by
the Eulerian numbers

〈n
k

〉
.

▶ The Eulerian polynomial is

n−1∑
k=0

〈
n

k

〉
qk = (1− q)n+1

∞∑
m=1

mnqm−1.

▶ This model is very similar to Mallows permutations (number
of inversions) and Ewens permutations (number of cycles).
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A connection between permutations and
trees

Consider the path from the root to vertex n. The labels of the
vertices on this path follow the descent-biased permutation model.

x1

x2

x3

n
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Permutations: phases and local limits

1. If q2n → 0, then the permutation is with high probability the
identity.

2. If log(1/q) ∼ cn as n → ∞, where 0 < c ≤ log 2 is constant,
then there exists a nonnegative integer kc such that, with high
probability, the number of descents is kc or kc + 1. The first r
elements (π1, . . . , πr ) converge in distribution to
(X1,X1 + X2, . . . ,X1 + · · ·+ Xr ), where the X1 are
geometrically distributed random variables.

3. If q → 0 and log(1/q) = o(n), then

log(1/q)

n
(π1, . . . , πr )

d→ (E1,E1 + E2, . . . ,E1 + · · ·+ Er ),

where the Ei are i.i.d. Exp(1)-variables.
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Permutations: phases and local limits

4. If q is constant, then define the following Markov process: X1

has density log(1/q)
1−q qx on [0, 1], and for all j ≥ 1, Xj+1 has

density

qx−Xj∫ Xj

0 qzdz +
∫ 1
Xj
qz+1dz

(
q + (1− q)1x≥Xj

)
,

also on [0, 1]. Then

1

n
(π1, . . . , πr )

d→ (X1,X2, . . . ,Xr ).
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Some proof ideas

In the degenerate case (log(1/q) ∼ cn), we can use direct
counting: the number of permutations of {1, 2, . . . , n} with k
descents is asymptotically equal to (k + 1)n, so the total weight of
∼ (k + 1)nqk is maximal for k maximizing log(k + 1)− ck .

In particular, if q2n → 0, then the weight of the identity
permutation is greater than that of all others combined.
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Some proof ideas

In the non-degenerate cases, we can make use of generating
functions and the method of moments.

If Pk
n (q) is the weighted number of permutations of {1, 2 . . . , n}

whose first element is k , and S(x , y) =
∑

n,k P
k
n (q)

xnyk

n! , then

∂

∂x
S(x , y) = (1−q)

y

1− y

(
1

e(q−1)x − q
− qy

e(q−1)xy − q
− S(x , y)

)
.

This can be used to analyze the moments of the first element.
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Trees: root degree and local limit

For constant q, the root degree has a discrete limit distribution (if
q → 0, it goes to infinity), with probabilities given by

pk =
q1/(1−q)

1− q

1− qk

k!

( log(1/q)
1− q

)k
.

Moreover, we have a local limit, i.e., the distribution of the
neighbourhood of radius r around the root converges for every
fixed r .
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Trees: root component

By root component, we mean the largest subtree containing the
root that forms an increasing tree. Let Rn(q) be the size of this
component.

▶ For fixed q, Rn(q) converges weakly to a geometric random
variable Geom(q1/(1−q)).

▶ If q → 0, but qn → ∞, scaling with q gives a limit:

qRn(q)
d→ Exp(1).
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Trees: distances

Recall that the average distance from the root in uniformly random
rooted labelled trees is of order Θ(

√
n), while it is Θ(log n) for

random recursive trees. Our model interpolates in the following
way:

If q is fixed (and probably if qn → ∞), the average distance of a
random vertex from the root is asymptotically equal to
log(1/q)
1−q

√
πqn/2.
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Some further directions

▶ “Mesoscopic” limit of permutations: if one considers
descent-weighted permutations in windows of size
Θ(log(1/qn)), the number of descents is of constant order,
and one observes a “diagonal pattern”.

▶ Scaling of random trees: for fixed q, descent-weighted trees
appear to converge to the continuum random tree after
suitable scaling. What happens as q → 0?

▶ Further properties and statistics of random trees: what can
one say about distributions? Are quantities such as the
average height or the average number of leaves generally
monotone in q?

▶ Changing the weight: instead of descents, one could also use
inversions in trees.
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