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General Relativity: Elements of the Lorentzian geometry

A spacetime is a time-oriented (3+1)-dimensional Lorentzian
manifold (M, g̃), g̃ is a Lorentzian metric with signature (-,+,+,+).

Rµ⌫ �
1

2
Rg̃µ⌫

| {z }
curvature�expression

= 8⇡Tµ⌫| {z }
energy�momentum�tensor

One seeks for solving the vanishing of the Ricci tensor

Rµ⌫(eg) = 0. (1)

I Minkowski’s spacetime, Hermann Minkowski 1908
I Schwarzschild’s spacetime, Black Holes, Karl Schwarzschild 1916
I Kerr’s spacetime, generalization to a rotating body of the

Schwarzschild metric, Roy Kerr 1963

Figure: Image credit: ©Johan Jarnestad/The Royal Swedish Academy of
Sciences.
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Mathematical general relativity

Previous result
I Well posed Cauchy problem, discovery by Choquet-Bruhat, 1952.
I The singularity theorems of Penrose and Hawking, 1965.
I Global aspects of the Cauchy problem, by Choquet-Bruhat and Geroch,

1969.
I Inverse scattering transform for the Einstein equation, by Belinski and

Zakharov, 1978.
I Static and stationary multiple soliton solutions to the Einstein

equations, P. Letelier, 1985.
I Soliton solutions to the vacuum Einstein equations obtained from a

nondiagonal seed solution, P. Letelier, 1986.
I Prove the stability of the Kerr solution, Bernard Whiting,1989.
I The global nonlinear stability of the Minkowski spacetime,

D. Christodoulou and S. Klainerman, 1993.
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Mathematical general relativity

Current results
I General definition of ”conserved quantities” in general relativity and

other theories of gravity, R. Wald, 2010.
I Global well-posedness for a model for Einstein equations with

additional compact dimensions, C. Huneau and A. Stingo, 2021.
I Impulsive gravitational wave interaction, J. Luk and M. Van de

Moortel, 2021.
I Kerr stability for small angular momentum, S. Klainerman and J.

Szeftel, 2021.
I The non-linear stability of the Schwarzschild family of black holes,

Gustav Holzegel , 2020.
I More recently, work by Mihalis Dafermos, Igor Rodnianski, and

collaborators considerably strengthened the results by Kay and Wald by
proving decay of solutions to the scalar wave equation for the more
general case of a Kerr black-hole background.
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Belinski-Zakharov spacetimes

The Setup

The metric tensor egµ⌫ depends on two variables only.

Spacetimes that admit two commuting Killing vector fields.

The spacetime metric in matrix form:

g̃µ⌫ =

0

BB@

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

1

CCA
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Belinski-Zakharov spacetimes

The Setup

The metric tensor egµ⌫ depends on two variables only.

Spacetimes that admit two commuting Killing vector fields.

The spacetime metric in matrix form:

g̃µ⌫ =

0

BB@
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g20 g21 g22 g23
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1
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e := ±1
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Then the spacetime interval2 is a simplified block diagonal form:

ds2 = f (t, x)(dx2 � dt2) + gab(t, x)dx
adxb, xa = {y , z}, e = 1 (2)

ds2 = f (⇢, z)(d⇢2 � dz2) + gab(⇢, z)dx
adxb, xa = {t,'}, e = �1

(3)
a, b = 1, 2. Actual assumptions:

g̃13 = g̃2,3 = 0

f = f (t, x)

g̃ab = gab(t, x)

Includes: Kasner metric, Kerr metric, Kerr-Nut metric, Einstein-Rosen

metric, Schwarzschild metric, Bianchi models, and others.

2Kompaneets
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Einstein’s Soliton solutions

Kasner metric:

ds2 = t(d
2
�1)/2(dz2 � dt2) + t1+ddx2 + t1�ddy2

Einstein Rosen metric

ds2 = f (t, r)(�dt2 + dr2) + e⇤(t,r)(rd�)2 + e�⇤(t,r)dz2

where xa = (�, z), x i = (t, r).
Schwarzschild metric: Kruskal-Szekeres coordinates

ds2 = �
4r2s
r

e�r/rs (dT 2
� dR2) + r2(d✓2 + sin2 ✓d�2).

with T 2
� R2 = (1� r/rs)er/rs .
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Rµ⌫(eg) = 0.

The first one follows from equations Rab = 0, this equation can be written
as single matrix equation

@t
�
↵@tgg

�1
�
� @x

�
↵@xgg

�1
�
= 0, det g = ↵2. (4)

We shall refer to this equation as the reduced Einstein equation.

The trace
of the equation (4) reads

@2
t ↵� @2

x↵ = 0. (5)

This is the so-called trace equation; the function ↵(t, x) satisfies the 1D
wave equation.
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Gravisolitons

Inverse Scattering Transfrom.

The term gravi-soliton refers to the explicit solutions generated by the
Belinski-Zakharov transform.

Gravitational solitons do not preserve their amplitude and shape in time.

There is no notion of energy (and consequently of its mass) for the
gravisoliton.

In 2016, the first detection of gravitational waves by the twin LIGO3

readers, produced by the merger of two black holes, was announced.

3Laser Interferometer Gravitational-Wave Observatory
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New Coodenates

One writes g = RDRT , where D is a diagonal matrix and R is a rotation
matrix, of the form4.

D =

✓
↵e⇤ 0
0 ↵e�⇤

◆
, R =

✓
cos� � sin�
sin� cos�

◆
. (6)

det g = ↵2.

g = ↵

✓
cosh⇤+ cos 2� sinh⇤ sin 2� sinh⇤

sin 2� sinh⇤ cosh⇤� cos 2� sinh⇤

◆
.

4Yaron Hadad-Carmeli
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Now, with this representation, the equation (1) read

8
>>>><

>>>>:

@t
�
↵@tgg

�1
�
� @x

�
↵@xgg

�1
�
= 0,

@t(↵@t⇤)� @x(↵@x⇤) = 2↵ sinh 2⇤((@t�)2 � (@x�)2),

@t(↵ sinh2 ⇤@t�)� @x(↵ sinh2 ⇤@x�) = 0,

@2
t ↵� @2

x↵ = 0,

(7)

and
@2
t (ln f )� @2

x (ln f ) = G , (8)

where G = G [⇤,�,↵] is given by

G := �
�
@2
t (ln↵)� @2

x (ln↵)
�
�

1

2↵2
((@t↵)

2
� (@x↵)

2)

�
1

2
((@t⇤)

2
� (@x⇤)

2)� 2 sinh2 ⇤((@t�)
2
� (@x�)

2).
(9)
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Principal Chiral Field Equation

@t
�
@tgg

�1
�
� @x

�
@xgg

�1
�
= 0, (t, x) 2 R⇥ R, (10)

valid for a 2⇥ 2 Riemannian metric g = gab.

(
@t(sinh

2 ⇤@t�)� @x(sinh
2 ⇤@x�) = 0,

@t(@t⇤)� @x(@x⇤) = 2 sinh 2⇤((@t�)2 � (@x�)2).
(11)

The symmetric space: the invariant manifold of symmetric matrices sitting
in the Lie group SL(2;R).

The system (11) is a Hamiltonian system, having the conserved energy

E [⇤,�](t) :=

Z ✓
1

2
((@x⇤)

2 + (@t⇤)
2) + 2 sinh2 ⇤((@x�)

2 + (@t�)
2)

◆
dx .

Y. Hadad, Integrable Nonlinear Relativistic Equations.

R. Wald and A. Zoupas, General definition of “conserved quantities” in general relativity and other theories of gravity.
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R. Wald and A. Zoupas, General definition of “conserved quantities” in general relativity and other theories of gravity.
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Classical Local Existence

Let us write the function ⇤(t, x) in the form

⇤(t, x) := �+ ⇤̃(t, x), � 6= 0.

With this choice, the system (10) can be written as follows:

8
><

>:

@2
t ⇤̃� @2

x ⇤̃ = �2 sinh(2�+ 2⇤̃)((@x�)2 � (@t�)2),

@2
t �� @2

x� = �
sinh(2�+ 2⇤̃)

sinh2(�+ ⇤̃)
(@t�@t ⇤̃� @x�@x ⇤̃).

(12)

8
>>>>>><

>>>>>>:

 = [⇤̃,�], @ = [@t ⇤̃, @x ⇤̃, @t�, @x�], F ( , @ ) = [F1,F2],

|@ |2 = |@t ⇤̃|2 + |@x ⇤̃|2 + |@t�|2 + |@x�|2,

F1( , @ ) := 2 sinh(2�+ 2⇤̃)((@x�)2 � (@t�)2),

F2( , @ ) :=
sinh(2�+ 2⇤̃)

sinh2(�+ ⇤̃)
(@t�@t ⇤̃� @x�@x ⇤̃).
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(
@↵(m↵�@� ) = F ( , @ )

( , @t )|{t=0} = ( 0, 1) 2 H.
(13)

Where m↵� are the components of the Minkowski metric with
↵,� 2 {0, 1}, and

( , @t ) 2 H := H1(R)⇥ H1(R)⇥ L2(R)⇥ L2(R).

We are also going to impose the following condition on the initial data

||( 0, 1)||H 
�

2D
. (14)
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Proposition 1.

If ( 0, 1) satisfies the condition (14) with an appropriate constant D,
then:

(1). (Existence and uniqueness of local-in-time solutions). There exists T
(depende of the initial data and �) such that there exists a (classical)
solution  to (12) with

( , @t ) 2 L1([0,T ];H).

Moreover, the solution is unique in this function space.
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(2). (Continuous dependence on initial data). Let  i
0, 

i
1 be sequence

such that  i
0 �!  0 in H1(R)⇥ H1(R) and  i

1 �!  1 in
L2(R)⇥ L2(R) as i �! 1. Then taking T > 0 su�ciently small, we
have

||( (i)
� , @t( 

(i)
� ))||L1([0,T ];H) �! 0.

Here  is the solution arising from data ( 0, 1) and  (i) is the

solution arising from data ( (i)
0 , (i)

1 ).

Main idea of the proof: Use energy estimates for the wave equation and
bootstrap method5.

5Sogge Christopher. Lectures on Non-Linear Wave Equations
Jessica Trespalacios Principal Chiral Model October 13, 2022 14 / 34



Global Existence

Klainerman with the pioneering works
The null condition and global existence to nonlinear wave equations,
1986 (in three space dimensions).

and by Demetrios Christodoulou, Global solutions of nonlinear
hyperbolic equations for small initial data, 1986 (in three space
dimensions).

Serge Alinhac, The null condition for quasilinear wave equations in
two space dimensions, 2001.
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In one space dimension case waves:

Luli, Yang and Yu in 2018, On one-dimension semi-linear wave
equations with null conditions.

Leonardo Abbrescia and Willie Yeung in 2020, Geometric analysis of
1 + 1 dimensional quasilinear wave equations.

Dongbing Zha in 2021, On one-dimension quasilinear wave equations
with null conditions.

The classical null form, can be introduced as the bilinear form given by

Q0(�, ⇤̃) = m↵�@↵�@�⇤̃, (15)

where m↵� to denote the standard Minkowski metric on R1+1.

(PCFE )

8
><

>:

@2
t ⇤̃� @2

x ⇤̃ = �2 sinh(2�+ 2⇤̃)((@x�)2 � (@t�)2),

@2
t �� @2

x� = �
sinh(2�+ 2⇤̃)

sinh2(�+ ⇤̃)
(@t�@t ⇤̃� @x�@x ⇤̃).
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Teorema 1.

There exits "0 su�ciently small such that if the size of the data at time
zero (�, @t�, ⇤̃, @t ⇤̃)(0) is " < "0, there is a solution that remains smooth
for all time in (PCFE).

Idea of the proof

We will use two coordinate systems: the standard Cartesian

coordinates (t, x) and the null coordinates (u, u):

u :=
t + x

2
, u :=

t � x

2
.

St0 := {(t, x) : t = t0}.

Dto := {(t, x) : 0  t  t0}, Dt0 =

[

0tt0

St0 .

Ct0,u0 :=

⇢
(t, x) : u =

t � x

2
= u0, 0  t  t0

�
.
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Sketch of the proof

Consider the two null vector fields defined globally as

L = @t + @x , L = @t � @x ,

then,

(@x�)
2
� (@t�)

2 = Q0(�,�) = 2L�L�, (16)

@x�@x ⇤̃� @t�@t ⇤̃ = Q0(�, ⇤̃) =
1

2
L�L⇤̃+

1

2
L⇤̃L�. (17)

Can be proved in a simple way that the null structure is “preserved”
after diferentiating:

@xQ0(�, ⇤̃) = Q0(@x�, ⇤̃) + Q0(�, @x ⇤̃). (18)
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Also, based on this, we have the following inequality

Q0(@
p
x�, @

q
x�) . |L@p

x�||L@
q
x�|+ |L@p

x�||L@
q
x�|. (19)

We will use the bootstrap method
We define the space-time weighted energy norms:

Ek(t) =

Z

St

h
(1 + |u|2)1+�

|L@k
x ⇤̃|

2 + (1 + |u|2)1+�
|L@k

x ⇤̃|
2
i
dx ,

Fk(t) = sup
u2R

Z

Ct,u

(1 + |u|2)1+�
|L@k

x ⇤̃|
2d⌧

+ sup
u2R

Z

Ct,u

(1 + |u|2)1+�
|L@k

x ⇤̃|
2d⌧.
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Long time behavior

Energy and momentum densities:

p(t, x) := @x⇤@t⇤+ 4 sinh2(⇤)@x�@t�,

e(t, x) :=
1

2
((@x⇤)

2 + (@t⇤)
2) + 2 sinh2(⇤)((@x�)

2 + (@t�)
2).

(20)

Lemma: Continuity equations

Using the definition above in Eq. (20), one has the following continuity
equations

@tp(t, x) = @xe(t, x), @te(t, x) = @xp(t, x), (21)

and the inequality
|p(t, x)|  e(t, x). (22)
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Lemma: Energy conservation

If ⇤(t, x),�(t, x) are the solutions of (10) with ⇤(t, x) 2 C1

0 (R) and
�(x) 2 C1

0 (R) then the energy of the system is conserved, that is

d

dt
E [⇤,�](t) = 0.
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Virial estimates

Considerations:

In what follows, we consider |t| � 2 only, and

!(t) :=
t

log2(t)
,

!0(t)

!(t)
=

1

t

✓
1�

2

log(t)

◆
. (23)

Let ⇢ := tanh(·), v 2 (�1, 1), let I(t) be defined as6

I(t) := �

Z
⇢

✓
x � vt

!(t)

◆
(@x⇤@t⇤+ 4@x�@t� sinh2(⇤))dx (24)

6C. Muñoz and M. Alejo.
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Lema: Virial identity

We have

d

dt
I(t) =

!0(t)

�(t)

Z
x � vt

!(t)
⇢0
✓
x � vt

!(t)

◆
(@x⇤@t⇤+ 4@x�@t� sinh2(⇤))

+
1

!(t)

Z
⇢0
✓
x � vt

!(t)

◆✓
1

2
(@x⇤)

2 + 2(@t�)
2 sinh2(⇤)

◆

+
1

!(t)

Z
⇢0
✓
x � vt

!(t)

◆✓
1

2
(@t⇤)

2 + 2(@x�)
2 sinh2(⇤)

◆

+
v

!(t)

Z
⇢0
✓
x � vt

!(t)

◆
(@x⇤@t⇤+ 4@x�@t� sinh2(⇤))

(25)
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Lema 4.

Let !(t) given as in (23). Assume that the solution (⇤,�)(t) of the
system (PCFE) satisfies

E [⇤,�](t) < +1

then we have the averaged estimate

Z
1

2

1

!(t)

Z
sech2

✓
x � vt

!(t)

◆
e(t, x)dxdt . 1, (26)

Moreover, there exists an increasing sequence of times tn �! +1 such
that

lim
n�!+1

Z
sech2

✓
x � vt

!(tn)

◆
e(tn, x)dx = 0. (27)
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Integration of the dynamics

Teorema 2.

Let (⇤,⇤t ,�,�t) be a global solution to (PCFE) such that its energy is
conserved and finite. Then, for any v 2 (�1, 1) and !(t) = t2 log�1 t, one
has

lim
t!+1

Z vt+!(t)

vt�!(t)

�
(@x⇤)

2 + (@t⇤)
2 + sinh2 ⇤((@x�)

2 + (@t�)
2)
�
(t, x)dx = 0.
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Aplications to Solitons Solutions

Belinskii and Zakharov in Relativistically invariant two dimensional
models of field theory integrable by inverse scattering problem
method proposed that the Eqn. (4) has N�soliton solutions.

Hadad in Integrable Nonlinear Relativistic Equations also showed
explicit examples of soliton solutions for the equation (PCFE) using
diagonal backgrounds.

g (0) =

"
e⇤

(0)
0

0 e�⇤(0)

#

The function ⇤(0)(t, x) satisfies

@2
x⇤

(0)
� @2

t ⇤
(0) = 0.
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Singular Soliton

One-soliton solution, with ⇤(0) = t (time-like) and �(0) = 0. With a fixed
parameter µ > 1, one has

Qc(·) =
p
c sech(

p
c(·)),

c =

✓
2µ

µ2 � 1

◆2

, v = �
µ2 + 1

2µ
< �1, and x0 =

ln |µ|
p
c
.

Traveling superluminal soliton which travels to the left:

g (1) =

2

664

etQc(x � vt)

Qc(x � vt � x0)
�
1

c
Qc(x � vt)

�
1

c
Qc(x � vt)

e�tQc(x � vt)

Qc(x � vt + x0)

3

775

Yaron Hadad.
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parameter µ > 1, one has

Qc(·) =
p
c sech(

p
c(·)),

c =

✓
2µ

µ2 � 1

◆2

, v = �
µ2 + 1

2µ
< �1, and x0 =

ln |µ|
p
c
.

Traveling superluminal soliton which travels to the left:

g (1) =

2

664

etQc(x � vt)

Qc(x � vt � x0)
�
1

c
Qc(x � vt)

�
1

c
Qc(x � vt)

e�tQc(x � vt)

Qc(x � vt + x0)

3

775

Yaron Hadad.
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Lemma

One has,

⇤(t, x) = ln(|v | cosh(t))

+ ln

0

@1�
tanh(t) tanh(�)

|v |
p
c

+

s✓
1�

tanh(t) tanh(�)

|v |
p
c

◆2

�
sech2(t)

|v |2

1

A ,

�(t, x) =
⇡

4
�

1

2
arctan

�
cosh(t) cosh(

p
c(x � vt))(tanh(

p
c(x � vt)) + v

p
c tanh(t))

�
.

with � :=
p
c(x � vt). For Emod the previous solution gives

Emod[⇤,�](t) = 0.

where

Emod[⇤,�](t) :=

Z ✓
1

2
(((@t⇤)

2
� 1) + (@x⇤)

2) + 2 sinh2(⇤)((@x�)
2 + (@x�)

2)

◆
.
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Finite energy solitons

Considerations:

1 Take a function ✓ 2 C1
c (R).

2 Consider the constraint 0 < µ < 1.

3 For any � > 0, and " > 0 small, let

⇤(0)" := �+ "✓(t + x), �(0) := 0.

4 Finite Energy

E [⇤(0)" ,⇤(0)",t ,�
(0),�(0)

t ] < +1.
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The corresponding 1-soliton is now

g (1) =

2

664

e�+"✓ sech(�(�+ "✓))

sech(�(�+ "✓)� x0)
�

1
p
c
sech(�(�+ "✓))

�
1
p
c
sech(�(�+ "✓))

e�(�+"✓) sech(�(�+ "✓))

sech(�(�+ "✓) + x0)

3

775 , (28)

with � = µ+1
µ�1 .

Corollary

Suitable perturbations of any soliton as in (28), whit the conditions
(1)-(3), are globally well-defined.

Jessica Trespalacios Principal Chiral Model October 13, 2022 30 / 34



The corresponding 1-soliton is now

g (1) =

2

664

e�+"✓ sech(�(�+ "✓))

sech(�(�+ "✓)� x0)
�

1
p
c
sech(�(�+ "✓))

�
1
p
c
sech(�(�+ "✓))

e�(�+"✓) sech(�(�+ "✓))

sech(�(�+ "✓) + x0)

3

775 , (28)

with � = µ+1
µ�1 .

Corollary

Suitable perturbations of any soliton as in (28), whit the conditions
(1)-(3), are globally well-defined.

Jessica Trespalacios Principal Chiral Model October 13, 2022 30 / 34



The corresponding 1-soliton is now

g (1) =

2

664

e�+"✓ sech(�(�+ "✓))

sech(�(�+ "✓)� x0)
�

1
p
c
sech(�(�+ "✓))

�
1
p
c
sech(�(�+ "✓))

e�(�+"✓) sech(�(�+ "✓))

sech(�(�+ "✓) + x0)

3

775 , (28)

with � = µ+1
µ�1 .

Corollary

Suitable perturbations of any soliton as in (28), whit the conditions
(1)-(3), are globally well-defined.

Jessica Trespalacios Principal Chiral Model October 13, 2022 30 / 34



Example

Let us choose

✓(x) :=

(
exp

⇣
�

1
1�|x |2

⌘
, |x | < 1

0, |x | � 1,

(a) ⇤̃(t = 0, x) (b) �(t = 0, x) (c) @t ⇤̃|{t=0}

(d) @t�|{t=0}

Figure: Initial data.
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Thanks!
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