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Magnetic skyrmion

Schematic image of Skyrmions. (From:
Melcher, Preceedings of the Royal Society
(2014))

Nontrivial homotopy class as R2 → S2.

Magnetic skyrmion: vortex-like structure appearing in magnetic
materials (∼ 100nm)

Stabilization due to non-trivial topology

Application to future magnetic storage is expected.
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Toward understanding the mechanism

Micromagnetism (Landau-Lifshitz 1935):
Consider the magnetic material as a collection of small magnets, and
describe large scale magnetism via interaction of each magnets

Equilibrium state: (local) minimizer of Landau-Lifshitz energy:

E[n] := (D[n] + Eother[n]) , n : R2 → S2.

n: magnetization

D[n] := 1
2

∫
R2 |∇n|2dx; Exchange interaction energy

Eother[n]; Other effect (external fields, crystalline structure, etc...)

Scale: Atomic level � Micromagnetics � Crystalline lattice
� 1nm ∼ 100nm
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Dzyaloshinskii-Moriya interaction

Skyrmions are observed in the material with Dzyaloshinskii-Moriya
interaction:

E[n] := D[n] + rH[n] + V [n], (r > 0)

Helicity functional (Dzyaloshinskii-Moriya interaction)

H[n] :=

∫
R2

(n− e3) · ∇ × n dx.

where

H̃[n] :=

∫
R2

n · ∇ × ndx, ∇× n =

 ∂2n3
−∂1n3

∂1n2 − ∂2n1


Potential energy:

V [n] =
1

2

∫
R2

(1− n3)2dx, e3 := t(0, 0, 1).
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The picture of observed magnetization (
From: Yu et al., Proc. Natl Acad. Sci.
USA 109 (2012))

By experiments, we can observe

skyrmions when the external field is
strong

helix when the external field is weak

(Occurrence of phase transition)

Problem

Can we explain the above phenomena via the Landau-Lifshitz energy?
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Setting

E[n] := D[n] + rH[n] + V [n], (2 ≤ p ≤ 4, r > 0)

Strong potential energy ⇐⇒ Small r.

Function space:

M := {n : R2 → R3 | |n|2 ≡ 1, D[n] + V [n] <∞}.

(H[n] is well-defined on M.)

Topological degree:

Q[n] :=
1

4π

∫
R2

n · ∂1n× ∂2ndx.

(n ∈Mp =⇒ Q[n] is well-defined, Q[n] ∈ Z.)

We restrict ourselves to Q = −1. (single skyrmion)
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Known results

(Including related energy)

Existence of minimizer [Melcher 2014], [Döring-Melcher 2017]

Stability of critical point [Li-Melcher 2018]

Quantitative analysis of minimizers [Gustafson-Wang 2021]

Geometric analysis [Barton-Singer-Ross-Schroer 2020]

Local well-posedness of related dynamical PDEs [Shimizu 2022]

Theorem([DM 2017], [BSRS 2020])

When r < 1, then

min
n∈M4

Q[n]=−1

E4[n] = 4π(1− 2r2)

Minimizing set ⊃ {h2r(· − a) | a ∈ R2}, where

h(x) :=

(
−2x2

1 + |x|2
,

2x1
1 + |x|2

,−1− |x|2

1 + |x|2

)
, h2r(x) := h

( x
2r

)
.
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Schematic graph of h. (From: Melcher, Pre-

ceedings of the Royal Society (2014))

When r < 1 (strong potential case), the theorem succeeds in
explaining the formation of one Skyrmion under the restriction
Q[n] = −1.
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The Mechanism behind Theorem

Key identity:

E[n] =
r2

2

∫
R2

|Dr1n + n×Dr2n|2dx+ (1− r2)D[n] + 4πQ[n].

where

Drjn := ∂jn−
1

r
ej × n. (helical derivative)

When r < 1,

n :minimizer

⇐= Dr1n + n×Dr2n = 0 and min
n∈M4

Q[n]=−1

D[n] attains

⇐= {h2r(· − a) | a ∈ R}.
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Problems

Question.

What happens when r > 1?

No result in this regime.

Premise Proposition

For all r > 0, h2r is a critical point of E4.

Question

Is h2r a local minimizer?

When r ≤ 1, then the answer is True by [DM 2017], [BSRS 2020]
(global minimizer in fact.)

When r > 1, the question has been open.
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Main theorem 1 (Linear instability)

Main theorem (Linear instability)

If r > 1, then h2r is linearly unstable; ∀ neighborhood of h2r, ∃n ∈M
s.t.

E[n]− E[h2r] < 0.

This mathematically explains phase transition; the stability of
skyrmions breaks down when the external field is weak.

The threshold is quantified at r = 1.
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Main theorem 2 (Unboundedness)

We further showed

Main theorem 2 (Unboundedness)

If r > 1, then
inf

n∈M
Q=−1

E[n] = −∞.

The counterexample is constructed by 1-helix. (Consistent with
experiment)

The unboundedness of energy is due to the unboundedness of
domain.
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Outline of proof

Outline of proof of Theorem 1.

We follow the argument of [Li-Melcher 2018].

It suffices to show that the Hessian Hr is not non-negative definite if
r > 1.

(ρ, ψ): polar coord. of x ∈ R2.
→ Apply Fourier expansion w.r.t. ψ
→ The Hessian is decomposed into Hrk (k: Fourier mode)

We can show that Hr3 is not non-negative definite.
(We can also show that

Hr
k (k ≥ 2) is non-negative definite for large r.
Hr

0, Hr
1 is always non-negative definite.)
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Hessian

For n ∈M4 with Q[n] = −1, we write

n = h2r + φ.

Then

E4[n]− E4[h2r] =
1

2
〈Lφ, φ〉L2

where
Lφ := −∆φ+ 2r∇× φ+ φ3e3 − Λ(h2r)φ,

Λ(h2r) := |∇h2r|2 + 2rh2r · (∇× h2r)− (1− h2r3 )h2r3 ∈ R.

By linearization, we may suppose φ(x) ∈ Th2r(x)S2 for every x ∈ R2.
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The Hessian

〈Lφ, φ〉, φ : R2 → R3 φ(x) ⊥ h2r(x).

Several transforms

Rescaling: φ→
Orthonormal frame {J1,J2} ⊂ Th2rS2, and write

φ = u1J1 + u2J2, uj : R2 → R

Let (ρ, ψ): polar coord. of R2 & Fourier transform w.r.t. ψ:

uj(ρ, ψ) = α
(0)
j (ρ) +

∞∑
k=1

(
α
(k)
j (ρ) cos(kψ) + β

(k)
j (ρ) sin(kψ)

)
.

〈Lφ, φ〉L2 = 2πHr
0(α

(0)
1 , α

(0)
2 ) + π

∞∑
k=1

(
Hr

k(α
(k)
1 , β

(k)
2 ) +Hr

k(β
(k)
1 ,−α(k)

2 )
)
.
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〈Lφ, φ〉L2 = 2πHr0(α
(0)
1 , α

(0)
2 ) + π

∞∑
k=1

(
Hrk(α

(k)
1 , β

(k)
2 ) +Hrk(β

(k)
1 ,−α(k)

2 )
)
.

with

Hr
k[α, β]

=

∫ ∞

0

[
(α′)2 + (β′)2 +

(
k2

ρ2
− (θ′(ρ))2 +

cos2 θ(ρ)

ρ2
+

4r2 sin θ(ρ)

ρ

)
(α2 + β2)

+4k

(
cos θ(ρ)

ρ2
−

2r2 sin θ(ρ)

ρ
αβ

)]
ρdρ.

where

θ = θ(ρ) : (0,∞)→ R is defined by

sin θ(ρ) =
2ρ

ρ2 + 1
, θ(0) = π, θ(∞) = 0.



Introduction Known result Main theorems Proof

Key Proposition

Key proposition (Instability at higher mode)

For k ≥ 2, there exists rk,c ≥ 1 such that if r > rk,c,

∃α, β ∈ C∞0 (0,∞) s.t. Hrk[α, β] < 0.

Moreover, if k = 3, then we can take r3,c = 1.

We can also show that Hr0,Hr1 ≥ 0 for ∀α, β ∈ C∞0 (0,∞)

The same structure appears in Ginzburg-Landau energy. (cf.
[Lamy-Zuniga 2022])
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Proof of Key proposition

Consider scaling limit:

Irk [ξ] := lim
λ→0+

Hrk
[

sin θ

ρ
ξλ,

sin θ

ρ
ξλ

]
, ξλ(ρ) =

1

λ2
ξ(λρ).

Then

Irk [ξ] =

∫ ∞
0

[
8

ρ3
(ξ′)2 − 8(k − 1)(8r2 − k − 3)

ρ5
ξ2
]
dρ.

It is known that:

Fact. (Hardy-Littlewood-Polya 1941)

inf
ξ∈C∞

0 (0,∞)\{0}

∫∞
0

(ξ′)2

ρ3 dρ∫∞
0

ξ2

ρ5 dρ
= 4.
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For all ε > 0, there exists ξε ∈ C∞0 (0,∞) s.t.∫ ∞
0

ξ2ε
ρ5
dρ >

1

4 + ε

∫ ∞
0

(ξ′ε)
2

ρ3
dρ.

Thus

Irk [ξε] < 8[4 + ε− (k − 1)(8r2 − k − 3)]

∫ ∞
0

ξ2ε
ρ5
dρ.

If k ≥ 2, RHS < 0 for large r.

If k = 3,

8[4 + ε− (k − 1)(8r2 − k − 3)] = 128
(

1− r2 +
ε

16

)
.

For r > 1, we have RHS < 0 if ε� 1.
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Proof of Theorem 2

If r > 1, then
inf

n∈M
Q=−1

E[n] = −∞.

Key ingredient: 1-helix

b(x) := h1/r(x1, 0) = t

(
0,

2rx1
r2(x1)2 + 1

,
r2(x1)2 − 1

r2(x1)2 + 1

)
.

We have

Integrand of E =
2(1− r2)

(r2x21 + 1)2
.

In particular, E[b] = −∞ if r > 1.

To construct counterexample in M, we use h1/r, and stretch the
x1-axis in x2-direction.
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Future study: Critical case: r = 1

When r = 1,

n : minimizer ⇐⇒ Dr1n + n×Dr2n = 0. (*)

Theorem. [Barton-Singer-Ross-Schroer 2020]

Let

v :=
1 + n3
n1 + in2

(Inverse of stereographic coord.).

Then,

(*)
Formally⇐⇒ ∂zv = − i

2
r (z := x+ iy)

⇐⇒ v = − i
2
rz + f(z) (f : holomorphic).
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{(*)} = {v = − i
2
rz + f(z)}

Open. (Future work)

Rigorous argument?

M4 ∩ {(*)} =?
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Thank you for listening
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