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A quick overview: some highlights in the last 60 years!

Strominger et al. MEMORY
EFFECT

Foupfier VANUUM
TRAYSFORM TRANXTION

SOFT IpENTITY ASYMPTOTIC

THEOREM SYMMETRY [Ashtekar, 1409.1800],

[Strominger & Zhiboedov, 1411.5745]

1962 the BMS group = Lorentz x supertranslations:

asymptotic symmetry group for (asymptotically) flat spacetimes.
1965 Weinberg's graviton soft theorems:

relations among scattering amplitudes in the infrared regime.
1974 Gravitational memory/hereditary effects:

permanent shift in the relative position of two inertial detectors after GW passed.

Strominger’s triangle arises new theoretical questions — new gravitational effects.

E.g., the larger the symmetry group — the more soft theorems/memory effects.

Main question today: What is the largest asymptotic symmetry group in gravity?

It serves as an organising principle.
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The Weyl-BMS group




The Bondi-Sachs gauge
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[Madler&Winicour, 1609.01731]

Bondi coordinates: x* = (u, r,x*),
Bondi gauge: g =0, gra =0, Or det (gAB/r2) = @,

Bondi-Sachs metric:

ds? = —2e?Pdu(Fdu + dr) + r’qag(dx® — UAdu)(dxB — UBdu),

where 8, F, U”, and gag are functions of (u, r,xA).

What are the asymptotic boundary conditions for these quantities?




The boundary conditions

The ur and uA components obey the fall-off conditions:
gur = —14+0(r7%), gua=0(1).

More “freedom” in the uu and AB components:

guw=—1+0(r"Y), qag=qag+O(r™?) (original BMS)

guu = O(r), qag = €2 ,5 + O(r~1) (extended BMS)

Suu = O(1), qaB = Gag +O(r=1) (generalized BMS)

e}
original BMS: ‘?IAB round metric on S? with Ricci scalar R =2 [Bondi-Metzner-Sachs, 1962]
extended BMS: conformally related to SAB with u-dependence [Barnich-Troesseart, 2010]
generalized BMS: ,g§ag = 0 and §4/g =0 [Campiglia-Laddha, 2014] [Compere et al., 2018]
Weyl-BMS: 8,Gag = 0 and (5\/& =2 (0 ‘ [Freidel-RO-Pranzetti-Speziale, 2021]
o

Remark 1: 9,§Gag = 0 implies that gu, = O(1).
Enough to describe MPM spacetimes [Blanchet et al, 2021]

Remark 2: relaxing bcs — divergences — phase-space renormalization!
in AdS/CFT adding boundary action counter-terms [deHaro-Solodukhin-Skenderis, 2001], [Compére-Marolf, 2008]
in generalized BMS adding boundary Lagrangian (and associated symplectic potential) [Compére et al., 2018]

Additional investigation of this issue in [Freidel-Geiller-Pranzetti, 2020]



The asymptotic symmetry group: generators

We seek vector fields & = €48, + €70, + £,

a) preserving the Bondi gauge:

g =7, & =—W+ 2 [Da(1"%067) + U'oar|, €% =Y~ 1"B0pr

Here 7, W, and Y* are functions of (u,x?), and 148 = ffoo dr'e?Bq”B /r2.
Moreover, we allow the scale structure to vary:

5e/q = (Da¥*—2W) /3

b) preserving the boundary conditions:

r=T+uW, §W=0=0,T, 9,Y =0

Weyl-BMS generators at null infinity:

Er.w,y) = TOu+ W (udy — rd) + Y"0a

T(x"): super-translations; W(x*): Weyl rescaling of S?; YA(xB): diffeos of S.



The asymptotic symmetry group: algebra

Weyl-BMS generators at null infinity:

’g‘(TVW,y) = T8y + W (uBy — rdy) + Y8, ‘

Weyl-BMS Lie algebra:

’ (diff(5%) B We2) ® T2

from the Lie commutators [g(TleLVl)’ g(TzaV'/z‘Vz)] = 5(7'12~W12vY12) with
T2 = V1[To] = W1 Ty — (1 4> 2), Wip = Vi[Wa] — Yo[W4], Y12 = [Y1, V2]

L background structure l restriction L parametrisation ‘
Weyl-BMS 0 0 (T,W,Y)

generalized BMS scale structure 0/q=0 (T, %DA V2R
extended BMS conformal structure Slgas]l =0 | (e%t, %(DA YA —w),Y)

original BMS round sphere structure | dgag =0 (T, %DA ZRV)

o Weyl-BMS group: (Diff(5?) x Ws2) X Ts2 [Freidel, RO, Pranzetti, Speziale, 2021]

e generalized BMS group: Diff(5%) x Ts2 [Campiglia-Laddha, 2014]-[Compére et al., 2018]

e extended BMS group: (Vil’ X \/il’) X 7—52 [Barnich-Troessaert, 2010]

e original BMS group: SL(2,C) x T2



The Weyl-BMS charge algebra and
asymptotic Einstein’s equations



Canonical analysis

Nomenclature:
d,i¢, L¢}, spacetime diff., contraction and Lie derivative: L¢ = di¢ + icd
& ~g 3 3 1S
{6,1¢ == /LE,ng = 655}, field-space diff., contraction and variation: d¢ = /¢ + I¢d.

Given a Lagrangian L, L = df; — E.
E stands for the e.o.m., and 0, is the symplectic potential.

Noether’s theorems say that
/5E = ng, jg = I§9L — IIEL = Cg + dq.g (d_]g ~ O)
In gravity: E = G, 6g""e, C¢ =€V G ey, 0, = 2gf’[”5r“,}(,e“, where €, = ig, €; and ¢ = VFEV ey

The symplectic 2-form, the Noether charge and the flux read as

Q=/59L, Qg=/ g, fg=/ (igfr + gs,)
b2 s? s?

obey the fundamental canonical relation (see e.g., [Lee-Wald, 1990], [lyer-Wald, 1994])

’—ISQzJQg —fg‘

Contracting again with /,:

e Qx — hFe = — (0x Qe — IeFx) ‘

Remark 1: invariant under the change of boundary Lagrangian L — L + dI;

Remark 2: insensitive to phase-space renormalization: divergences cancel out! 7



Charge bracket

The antisymmetry of the symplectic form € suggests the charge bracket
(generalizes [Barnich-Troessaert, 2011], related work [Wieland, 2021])

{Qe, Qu}i =06 Qx — hJe + /52 igixL

Consider two (field-dependent) vector fields £ and x with modified Lie bracket

€, x] == [& X]Lie + 0x& — dex

s.t. the commutator of two field space variations is still a symmetry transformation
[0¢,0x] = =0, x]

It can be proven that [technical step: AgQy = (6¢ — L¢ — ls:)Qx = Qs ¢ — Qe x1]

Qe @b = ~Qpent — [ G~ ~Qte

Property 1: it provides a representation of the vector field algebra on-shell.
Property 2: it is invariant under L — L + dl.

This is the flux-balance relation, equivalent to the (asymptotic) Einstein’s equations.



Obtaining the asymptotic Einstein’s equations

geometric data — phase-space data — dynamics

{Qe, @ + Qpey) ® 0 = 3¢ Qx + Qe ] = hFe + /52 ixicL

Weyl-BMS generators (&, x) {Qe, Qx} + Qpe,x) =0 ‘ Einstein’s equations
(Ous €T) 2Ey — 1AEE =0 £6," =
(€7, 0u) 2Ew + D*Eg, + jAEF =0 £4G," —€7G," =0
(Bu, Ew) D Eg, + u (2Em — ;AEg) = &G, =0
(€w, ) —DEg, +u (26w + D"Eg, + 1AEF) =0|€4,G," — £,,G," =0
(0w, &v) Ep, +2DaE5 — 2FEg, — JUaE; =0 kG, =
&y, Ou) 0=0 0=0

- 1 flux-balance (energy);
- 3 flux-balances (energy, angular mom) — importance of diff(S?);
- 5 flux-balances — importance of the Weyl rescalings.



Phase space renormalization

Rule-of-thumb: the weaker the boundary conditions, the more the divergences!
The divergent part of the symplectic potential reads as

Ogiv = d¥qiy — %5 (\/5 (R- 4/3)) du d*c
where (recall that 6/g # 0)

2
- — 1 _
Daiy = (%&f - iﬁCAB&";AB) 2o + rdPeagdoB A du, 9a0A = 50(/aR)
Strategy: make use of a boundary Lagrangian LR = L + d/ to renormalize
R =0—do+dt, QFf = Qg—&-/ (it —lew), FE :}'E—i-/ (il — 5¢9)
S2 s2 '

Remark: we recover Barnich-Troessaert (and Wald-Zoupas) prescriptions for £ = /q (M — Cas NAB /8) dud?c.

Renormalized expression for the symplectic 2-form at null infinity:

QR:/
JIT

1
+ Z6NAB A 8(1/qCAB) (61/3 = 0 = 6Gap, [Ashtekar & Streubel, 1981])

1_/R
= Z6 <5CAB = D<ADCCB>C> AS(\/GGB) (613 =0 +# 63ap, [Compere et al., 2018])

1
+46 (I\/H— ZDADBCAB) /\5\/5} du d’c

10



Rediscovering the Weyl-BMS group:
pushing extended corner symmetry
to scri




Extended corner symmetry

Corner symmetry group: surface diffeomorphisms “plus” surface boosts
[Donnelly-Freidel, 2016], [Donnelly-Freidel-Moosavian-Speranza, 2020]

gs2 = diff(S%) ®sl(2, R)

Extended corner symmetry includes surface translations (see also [Ciambelli-Leigh, 2021])

|03f = (diff(s?) ®si(2,R)) BR?

To prove this, consider the following metric around the corner S2:
ds? = hypdx?dxb + yap(da? — Uldx?)(doB — UB dxP)

One defines YA = §A|X.s —0, W, b — Bagb\xa —0, T2 = &3|xa—0 and the associated charges
1 1
Pa = 5748 (95 + U0A)UG,  Ng' = 2 hpce®
1
Q= 5ecb(ab + UP9p)hae — UBPg — Dc(NLUE),

Pushing these charges to scri, one gets (after renormalization) the Weyl-BMS algebra

0% = (diff(5?) ®sl(2,R)) GR> 55 bmsw = (diff(5%) @ Ws2) G Ts2

The factor s[(2,R) is typical of GR; it might change in modified theories of gravity.
Deformation/extension of difF(Sz)? [Rojo-Prochazka-Sachs, 2021]



Conclusions and future directions




Conclusions

Recap:

e new asymptotic symmetries in GR: the Weyl-BMS group;
e derivation of (asymptotic) Einstein's equations from first principles;

e phase-space renormalization.
Follow-ups:

e relax 9,gag = 0 and extend the Weyl-BMS group;

e explore the consequences of Weyl-BMS for memory effects and soft theorems.
Other interesting directions:
e make advantage of asymptotic symmetries to improve gravitational waveforms;
e.g., [Ashtekar et al., 2019, 2020], [Mitman et al, 2020, 2021a,b]
e coupling QNM and BMS modes [Gasperin-Jaramillo, 2021]

e asymptotic symmetries in dS; [Fernandez-Alvarez & Senovilla, 2020-2021], [Compere et al., 2020]
asymptotically and spatially flat FLRW,; [Bonga-Prabhu, 2020], [Rojo-Heckelbacher-RO, 2022]

e investigate the “triangle” in the cosmological setting;

e explore the role of asymptotic symmetries in modified theories of gravity.



THANK YOU FOR YOUR ATTENTION!
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