On the associativity of Kontsevich's (affine) star product up to order 7

Abstract: We show that the expansion of the Kontsevich star product \star mod $\bar{\sigma}\left(\hbar^{6}\right)$ found by Banks-Panzer-Pym (2018) is associative up to $\bar{\sigma}\left(\hbar^{6}\right)$. We find and reduce the formula $\star_{\text {aff }} \bmod \bar{o}\left(\hbar^{\bar{\gamma}}\right)$ for the expansion of the Kontsevich star-product restricted to affine Poisson brackets; it is associative up to $\bar{o}\left(\hbar^{7}\right)$. Moreover, we contrast the associativity mechanisms at orders $\leqslant 6$ against order 7 . The results are obtained using the newly developed free software package gcaops (Graph Complex Action on Poisson Structures) for SageMath; see https://github.com/rburing/gcaops for the code.

Star products: deform the pointwise product $M:=\mathbb{R}^{d}$ with coordinates $x^{1}, \ldots, x^{d} ; C^{\infty}(M):=\{f: M \rightarrow \mathbb{R} \mid f$ smooth $\}$ is an associative algebra w.r.t. the pointwise product $(f \cdot g)(x)=f(x) \cdot g(x)$. Now, deform!
$A:=C^{\infty}(M)[[\hbar]]:=\left\{\sum_{n=0}^{\infty} f_{n} \hbar^{n} \mid f_{n} \in C^{\infty}(M)\right\}$ formal power series in \hbar. Definition. A star product is an $\mathbb{R}[\hbar \hbar]$-bilinear product $\star: A \times A \rightarrow A$ given for $f, g \in C^{\infty}(M)$ by

$$
f \star g=f \cdot g+\hbar \cdot B_{1}(f, g)+\frac{\hbar^{2}}{2!} \cdot B_{2}(f, g)+\frac{\hbar^{3}}{3!} \cdot B_{3}(f, g)+
$$

where B_{k} are bi-linear bi-differential operators vanishing on constants, such hat \star is associative, i.e. $(f \star g) \star h=f \star(g \star h)$.
Example. On \mathbb{R}^{2} with Cartesian coordinates x, y, the formula
$f \star g=f \cdot g+\hbar \cdot x \cdot\left(\partial_{x} f \cdot \partial_{y} g-\partial_{y} f \cdot \partial_{x} g\right)+\hbar^{2} \cdot x^{2} \cdot\left(\partial_{x} \partial_{x} f \cdot \partial_{y} \partial_{y} g\right.$
$\left.2 \cdot \partial_{x} \partial_{y} f \cdot \partial_{x} \partial_{y} g+\partial_{y} \partial_{y} f \cdot \partial_{x} \partial_{x} g\right) / 2+\hbar^{2} \cdot x \cdot\left(\partial_{y} \partial_{y} f \cdot \partial_{x} g\right.$
$\left.-\partial_{x} \partial_{y} f \cdot \partial_{y} g+\partial_{x} f \cdot \partial_{y} \partial_{y} g-\partial_{y} f \cdot \partial_{x} \partial_{y} g\right) / 3+\hbar^{2} \cdot \partial_{y} f \cdot \partial_{y} g / 6+\bar{o}\left(\hbar^{3}\right)$
where $\partial_{x}=\frac{\partial}{\partial x}$ and $\partial_{y}=\frac{\partial}{\partial y}$) defines a star product modulo $\bar{o}\left(\hbar^{3}\right)$.

A touch of associativity $=$ Poisson

$$
\begin{aligned}
& \text { Proposition. If } \star \text { is associative, then } \\
& \qquad\{f, g\}_{\star}:=\left.\frac{f \star g-g \star f}{2 \hbar}\right|_{\hbar=0}=\frac{1}{2}\left(B_{1}(f, g)-B_{1}(g, f)\right)
\end{aligned}
$$

a Poisson bracket:

- Bi-derivation: $\{f, g\}=\sum_{i, j=1}^{d} P^{i j} \cdot \partial_{i}(f) \cdot \partial_{j}(g), \quad P^{i j} \in C^{\infty}(M), \partial_{i}:=\frac{\partial}{\partial x^{i}}$ Skew-symmetry: $P^{i j}=-P^{i}$
- Jacobi: $\sum_{s=1}^{d}\left(P^{s i} \partial_{s} P^{j k}+P^{s j} \partial_{s} P^{k i}+P^{s k} \partial_{s} P^{i j}\right)=0 \quad \forall i, j, k=1, \ldots, d$.

Example. Continuing the Example above, we have that $\{f, g\}_{\star}=B_{1}(f, g)=$
$x \cdot\left(\partial_{x} f \cdot \partial_{y} g-\partial_{y} f \cdot \partial_{x} g\right)$ is a Poisson bracket on \mathbb{R}^{2}

Deformation quantization of Poisson manifolds

 Problem. Given a Poisson bracket $\{-,-\}$, find a star product \star such that $\{-,-\}_{\star}=\{-,-\}$.Theorem (Kontsevich 1997). For every Poisson bracket P on \mathbb{R}^{d} the fol lowing star product

$$
f \star g=f \cdot g+\sum_{k \geqslant 1} \frac{\hbar^{k}}{k!} \sum_{\Gamma \in G_{2, k}} w(\Gamma) \cdot \Gamma(P)(f, g)
$$

s associative and $\{-,-\}_{\star}=P$

Kontsevich's graphs

A Kontsevich graph $\Gamma \in G_{\ell, k}$ is an oriented graph made of k wedges \wedge_{i}^{n} on ℓ ordered sinks (wedges are not necessarily added one-by-one)
 Examples

Graphs \rightleftarrows diff. operators

Let P be a Poisson structure. To $\Gamma \in G_{\ell, k}$ associate a differential operator $\Gamma(P)$ of ℓ arguments: - Ascribe indices to edges; put $P^{i j}$ in vertex - Edge $m \Longrightarrow \partial_{m}$ acts on target vertex's content - Multiply (differentiated) contents of vertices - Sum over all indices. $\Gamma_{1}=\wedge \mapsto P^{i j} \partial_{i} \otimes \partial_{j}$
$\Gamma_{2}=\stackrel{i}{l}_{i}^{\ell} . \mapsto P^{k \ell} \cdot \partial_{\ell} P^{i j} \partial_{k} \partial_{i} \otimes \partial_{j}$

Kontsevich graphs $\hookrightarrow \overline{\mathbb{H}}$
$V(\Gamma) \hookrightarrow \overline{\mathbb{H}}$, sinks to $\{0,1\}$, edges as geodesics. Harmonic angle form

$$
\mathrm{d} \varphi(p, q):=\mathrm{d} \operatorname{Arg}\left(\frac{q-p}{q-\bar{p}}\right)
$$

Associate to $\Gamma \in \tilde{G}_{2, k}$ a $2 k$-form
$\omega_{\Gamma}:=\bigwedge_{j=1}^{k} \mathrm{~d} \varphi\left(p_{j}, p_{\text {Left }(j)}\right) \wedge \mathrm{d} \varphi\left(p_{j}, p_{\text {Right }(j)}\right)$.
The graph weight of Γ is

$$
w(\Gamma):=\frac{1}{(2 \pi)^{2 k}} \int_{C_{k}(\mathbb{H})} \omega
$$

where the integral is taken over
$C_{k}(\mathbb{H}):=\left\{\left(p_{1}, \ldots, p_{k}\right) \in \mathbb{H}^{k}: p_{i} \neq p_{j}\right\}$.
Examples. $\quad \omega_{\Gamma_{1}}=\mathrm{d} \varphi\left(p_{1}, 0\right) \wedge \mathrm{d} \varphi\left(p_{1}, 1\right)$,
$\omega_{\Gamma_{2}}=\mathrm{d} \varphi\left(p_{1}, 0\right) \wedge \mathrm{d} \varphi\left(p_{1}, 1\right) \wedge \mathrm{d} \varphi\left(p_{2}, 0\right) \wedge \mathrm{d} \varphi\left(p_{2}, p_{1}\right)$

Star product: graphically

The hunting of the star product

Let the weights of graphs at \hbar^{k} be undetermined variables:
$\cdot \star \cdot=\cdot+\hbar^{1} \triangleq+\hbar^{2}$ (as above) $+\hbar^{3}($ as above $)+\hbar^{4}\left(w_{1} \ngtr\right.$

$\left.+w_{9}+w_{10} A+\ldots\right)+\hbar^{5}(\ldots)+\hbar^{6}(\ldots)+\hbar^{7}(\ldots)+\ldots$

$\operatorname{Assoc}(\star)=\sum$ Leibniz

Theorem (Buring-Kiselev 2017-2022). - $\operatorname{Assoc}(\star) \bmod \bar{o}\left(\hbar^{4}\right)$ is a sum of 0th layer Leibniz graphs $\bullet \operatorname{Assoc}(\star) \bmod \bar{o}\left(\hbar^{5}\right)$ is a sum of 0th layer Leibniz graphs $\bullet \operatorname{Assoc}(\star) \bmod \bar{o}\left(\hbar^{6}\right)$ is a sum of 0th layer Leibniz graphs \bullet Assoc (\star) mod $\bar{o}\left(\hbar^{7}\right)$ needs 1st layer of Leibniz graphs.

Layers of Leibniz graphs

Neeessary Leibniz graphs are not all obtained by contraction of an edge between aerial vertices in contraction of an edge between aerial vertices in
Kontsevich graphs in the associator (0th layer) Example. At \hbar^{\top}, the following Leibniz graph

has weight $-3 / 128 \cdot \zeta(3)^{2} / \pi^{6}+31 / 725760$; ye its expansion does not appear in $\operatorname{Assoc}(\star)$ itself Indeed, contracting Kontsevich subgraphs over $\{0,1\}$ or $\{1,2\}$ in its expansion \Longrightarrow the outer graph is composite, with one of the factors (the one containing the 3 -cycle) having zero weight.

Reduce $\star_{\text {aff }}$ by Jacobi

$\star_{\text {aff }} \bmod o\left(h^{7}\right)$: \# 1423 K. graphs. Coefficients $\star_{\text {aff }} \bmod o\left(N \cdot \zeta(3)^{2} / \pi^{6}\right.$. Assimilating as much as
$\left.\in \mathbb{Q}+\mathbb{Q} \cdot{ }^{2}\right)$ possible into Leibniz graphs $\rightsquigarrow \star_{\text {aff }}^{\text {red }} \bmod \bar{o}\left(\hbar^{\top}\right)$ with 326 Kontsevich graphs and \mathbb{Q}-coefficients. NB: All such \sum K. graphs encode same formula $f \star_{\text {aff }} g$! You can use it

References

- Banks P., Panzer E., Pym B. (2020) Multiple zeta values in de formation quantization. Invent.
arxiv:1812.11649
math.QA
Buring R., Kiselev A.V. (2022) The expansion \star mod $\bar{o}\left(h^{4}\right)$
and computer-asisted proof schemes in the Buring computer-assisted proof schemes in thphe Kontseevich deformation quantization. Exp.
arXiv: 1702.00881 [math.Co]
- Buring R. (2020) gcaops software package for SageMath https://github. com/rour ing gocapos
Kontsevich M. (2003) Deformation quantiaztion of Poisson mant
ifolds. Lett. Math. Phys. $66(3): 157-216$. Preprint arxi v:q
ifolds. Lett. Math. Phys. $66(3): 157-216$. Preprint arXiv:q-
alg/9709040 [math.QA]
$\operatorname{Assoc}(\star)$ is not identically zero as a sum of Kontsevich graphs
 and its differential consequences, by graphs containing Jacobiator
Strategy. Find relations between $w(\Gamma)$'s and solve the system of equations. This is made possible by the new gcaops software

Known relations between weights

- Multiplicativity: $w(\boldsymbol{A})=w(\Lambda)^{2} \rightsquigarrow$ prime and composite graphs. - Skew-symmetry: $w\left(\sum_{\wedge}\right)=-w\left(\sum_{n}\right) \rightsquigarrow$ also "zero graphs" with $\omega_{\Gamma}=0$. - Mirror-reflection: $w(\lambda)=w\left(\not, \lambda_{\mathrm{s}}\right)$, in general with sign $(-1)^{k}$ - Any sink receives no edges \Longrightarrow weight is zero (by dimension count). - Cyclic weight relations (Shoikhet-Felder-Willwacher 2008):

$$
w(\Gamma)=(-1)^{n} \sum_{\forall \in \in E, \text { target }(e) \neq 0}^{E \subset E d(\Gamma)}(-1)^{N_{0}\left(\Gamma_{E}\right)} \cdot w\left(\Gamma_{E}\right) .
$$

$\Gamma_{E}: \Gamma$ but edges in E directed to $0, N_{0}\left(\Gamma_{E}\right)=\#\left\{e \in \Gamma_{E} \mid \operatorname{target}(e)=0\right\}$.

- Graphs containing an "eye on ground" ∇ have zero weight
- Families of graphs with known weights (e.g. Bernoulli).
- Relations between weights from associativity

M1. Assoc $_{\star}(P)(f, g, h)(x)=0$ as a number $\in \mathbb{R}$, for fixed P, f, g, h, x. M2. $\operatorname{Assoc}_{*}(P)(f, g, h)=0$ as polynomial for $P^{i j}, f, g, h \in \mathbb{R}[x$ M3. Assoc ${ }_{\star}\left(P\left[f_{1}, \ldots, f_{r}\right]\right) \equiv 0$ as a differential operator on f_{1}
$P^{i j}$ is differential polynomial in f_{1}, \ldots, f_{r}, e.g. $P^{i j}=\varepsilon_{i j k} u \partial_{k} \varphi$ on \mathbb{R}^{3}

$\star \bmod \bar{o}\left(\hbar^{k}\right)$ for $k=4,5,6,7$: progress

$\star \bmod \bar{o}\left(\hbar^{4}\right)$: Buring-Kiselev (2017) up to 10 parameters, Banks-PanzerPym (2017) full. We verify \checkmark
$\star \bmod \bar{o}\left(\hbar^{5}\right):$ Banks-Panzer-Pym (2017-18). We verify relations (2018) $\star \bmod \bar{o}\left(\hbar^{6}\right):$ Banks-Panzer-Pym (2018). We verify associativity (2022). Restriction to Poisson brackets with affine coefficients:
$\star_{\text {aff }} \bmod \bar{o}\left(\hbar^{7}\right)$: We verify associativity and rationality (2022); cf. BenAmar (2003) for rationality

Associator and Jacobi: graphically

$\operatorname{Assoc}(\star)=(\bullet \star \bullet) \star \bullet-\bullet \star(\bullet \star \bullet)$, calculated by bilinearity and e.g.:

Acknowledgements: Partially supported by JGU
Mainz, Institut für Mathematik project 5020 .

