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Multi Electrode Arrays (MEAs)



Population activity

110 neurons, M1, hS3



Analysis of population activity
• Consider a population of 𝑁 neurons whose spiking activity 
is observed during a time interval (0,𝑇 ].
• The interval is divided into 𝐾 bins of size  D = 𝑇 /𝐾, labeled 
by an index 1 ≤ 𝑘 ≤ 𝐾.
• In each time bin 𝑘 we observe the number of spikes 𝑛𝑖 (𝑘)
emitted by neuron 𝑖, for all 1 ≤ 𝑖 ≤ 𝑁. 
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Population activity
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Data matrix !" has $" rows and  , columns

, is the duration of the experiment in units of bin size ∆

For a reach movement, $" ≈ 106 in M1

Stringer, Pachitariu, Steinmetz, Carandini, & Harris. Nature (2019)



Neural population activity 

• A simple motor task

• Neural manifolds for motor control

• The unreasonable effectiveness of linear methods



A simple motor task: center-out reaches
Instructed delay center-out reaching task 



Neural activity: 
variability and specificity 

Georgopoulos, Kalaska, Caminity, Massey, J of Neurosci (1982)

Single neuron recordings



Population activity : multiple targets
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Target-dependent population activity

Santhanam, Yu, Gilja, Ryu, Afshar, Sahani, & Shenoy. J Neurophysiol (2009)

Neural modes: directions in neural space

Specific patterns of populations activity 

Santhanam, Yu, Gilja, Ryu, Afshar, Sahani, Shenoy, J Neurophysiol (2009) 



Neural population activity 

• A simple motor task

• Neural manifolds for the control of movement

• The unreasonable effectiveness of linear methods



Population activity: Subsampling
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Data matrix !" has $" rows and , columns 

- is the ambient dimension 

- ≈ 102 for Multi-Electrode Arrays (MEAs)

- ≈ 103 for Neuropixels



Population dynamics: the empirical neural space



Population dynamics: the empirical neural space
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Dimensionality reduction: neural modes and 
latent variables

neural manifold 
DIMENSIONALITY REDUCTION

linear or nonlinear? 

neural modes
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Dimensionality reduction: neural modes and 
latent variables
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Population dynamics: latent variables
as a generative model
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Neural population activity 

• A simple motor task 

• Neural manifolds for the control of movement

• The unreasonable effectiveness of linear methods



Behavioral stability



Stable neural dynamics underlying 
consistent behavior?

• Subjects consistently perform the same
behavior over days, months, and years.

• Hypothesis: the true latent dynamics
associated with consistent behavior should
be stable.

• But: The same neurons cannot be recorded
over this period.

In order to verify this hypothesis, we need to compensate for
the fact that the true latent dynamics is being projected onto
different empirical manifolds on different days.



Alignment of latent dynamics



Manifold orientation and latent dynamics 

Use Singular Value Decomposition (SVD) on data matrices !:

Data matrix for day " !# = %# Σ# '#(

Data matrix for day ) !* = %* Σ* '*(

Both data matrices ! are of dimension + by ,, where the ambient
dimension + is the cardinality of the union set of neurons recorded
on days " and ), and , is the duration of the experiment.

Neurons unrecorded on a given day are assigned zero activity.
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Day-specific neural modes and manifolds 



Day-specific neural modes and manifolds 
Keep the first 𝑑 columns of the matrices 𝑈! and 𝑈", 
to obtain 2𝑈! and 2𝑈".

#𝑈

𝐷

𝐷𝑑

The day-specific low-dimensional manifolds are two hyperplanes:

the 𝑑-dimensional hyperplane spanned by the columns of 2𝑈!
the 𝑑-dimensional hyperplane spanned by the columns of 2𝑈"

𝑈

These column vectors are the day-specific neural modes 

𝑑 is the flat dimension of the day-specific manifolds 



Canonical Correlation Analysis (CCA)
The data matrices !" and !# are projected onto the corresponding
$-dimensional manifolds spanned by the neural modes using %&"
and %&# to obtain the latent variables '" and '#:

'" = %&") !" and     '# = %&#) !#

These data matrices are of dimension $ by *, where:
$: flat manifold dimensionality
*: duration of the experiment

The CCs between the corresponding unaligned latent variables are
given by the pairwise correlations between the rows of '" and '#:
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Canonical Correlation Analysis (CCA)
CCA starts with a QR decomposition of the transposed latent 
variable matrices !" and !#,

!"$ = &" '" and     !#$ = &# '#

The ( column vectors of each matrix & provide an orthonormal
basis for the column vectors of the corresponding matrix !$. The
( by ( inner product matrix of &" and &# yields a SVD:

&"$ &# = ) * +$

The elements of the diagonal matrix * are the canonical correlations
(CCs), sorted from largest to smallest. They quantify the similarity in
the aligned latent dynamics.

The CCs between the unaligned latent dynamics are the pairwise 
correlations between the rows of 𝐿! and 𝐿": 𝐿! 𝐿"#

Canonical Correlation Analysis (CCA)



Canonical Correlation Analysis (CCA)

CCA yields new manifold directions that maximize the pairwise
correlations between latent dynamics across the two days. The
linear transformations that align the latent variables are effected
by ! by ! matrices "# and "$:

"# = &#'()

"$ = &$'(*day +

day ,
-# ⟹ "#/ -#

-$ ⟹ "$/ -$

𝐿! 𝐿"( ⇒ (𝑀!
( 𝐿!) (𝑀!

( 𝐿!)( = 𝑆



Stability of M1 latent dynamics



Alignment of latent dynamics

Gallego, Perich, Chowdhury, Solla, Miller, Nature Neurosci (2020) 



Neural manifolds for the 
control of movement

Juan A. Gallego Matthew G. Perich
Raeed H. Chowdhury          Lee E. Miller

Northwestern University



The future: natural behavior 



Stable prediction of movement kinematics



Prediction of muscle activity


