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The Elephant in the

Room

What is it really?

Technical:

Post-hoc
explainable (vs)
Intrinsically

interpretable

Transparency (vs)
Reasoning

Snake?

Causal (vs)
Correlational
associations
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Wall?

Global (vs) Local
explanations

Model-agnostic
(vs) Model-specific
approaches

Attributions (vs)
Actionable
Explanations

Feature-level (vs) Latent
Concept-level Explanations




Viewing XAl from Different Perspectives

Our Efforts
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Post-hoc Explainability Intrinsic Interpretability
& GradCAM++: Generic v Ante-hoc explainability
method for visual explanations for CNN via concepts
models & Transferring concepts

* in knowledge distillation tasks

Explainability

Canonical saliency maps for face

recognition/processing models in Deep o Causally disentangled
* . .
' Su?modular Learning representations
ensembles of attribution methods v Dataset for causal
"""""""""""""" representation learning
v Mitigating bias
o Causal attributions in through causal perspectives
neural networks i Causal regularizers

Complementarity of explanations and robustness

Causal Perspectives in Explaining NN Models

Iy
(%]
S
c

o
c
@)

Z




Causation vs Correlation in XAl

Is feature correlation to output a true CORRELATION IS NOT CAUSATION!

indicator of explainability? M ICE CREAM SALES
B SHARK ATTACKS

Or do we need to find causal relationships
in the analyzed data-output pairs?

T USED T© THINK THEN I TOOK A | | SOUNDS LIKE THE
CORRELATION MPUED STATISTICS CLASS. cmss HELPED. JAN MAR MAY JUL SEP NOV
CAUSATION. NOw I DON'T WELL, MAYBE

Both ice cream sales and shark attacks increase when the weather is hot
and sunny, but they are not caused by each other (they are caused by

good weather, with lots of people at the beach, both eating ice cream
and having a swim in the sea)

@
Causal Perspectives in Explaining NN Models Il




Causality
In
Machine
Learning

The Three Layer Causal Hierarchy

What if I had acted
differently?

Level Typical Typical Questions Examples
(Symbol) Activity
1. Association Seeing What is? What does a symptom tell me
P(y|z) How would seeing X about a disease?
change my belief inY? What does a survey tell us

about the election results?
2. Intervention Doing What if? What if I take aspirin, will my
P(y|do(z), z) Intervening What if I do X? headache be cured?

What if we ban cigarettes?
3. Counterfactuals Imagining, Why? Was it the aspirin that
P(ys|z', o) Retrospection Was it X that caused Y7 stopped my headache?

Would Kennedy be alive had
Oswald not shot him?

What if I had not been smok-
ing the past 2 years?

Causal Perspectives in Explaining NN Models

Figure 1: The Causal Hierarchy. Questions at level 7 can only be answered if information from level ¢ or
higher is available.

Judea Pearl, The Seven Tools of Causal Inference with Reflections on Machine Learning, 2018
Judea Pearl, The Book of Why:The New Science of Cause and Effect, 2018
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Causal Perspectives in XAl

Our Recent Efforts

Given a trained NN model, ) :
what causal input-output Given known causal domain

attributions did it learn? Pl el e U

relationships, can we make a
trained NN model learn and
maintain these causal
relationships?

Causal Attributions in Neural Networks Causal Regularization with Domain Priors
ICML 2019 arXiv, 2022 (under review)

)
Causal Perspectives in Explaining NN Models ]



Flight Parameters
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Causal Attributions of Neural Network Models

What does this mean?

* Attribution: Effect of an input feature on prediction
function’s output

— Inherently a causal question!

* Existing attribution methods
— Gradient-based

* “How much would perturbing a particular input affect the output?” Not a causal
analysis

— Using surrogate models (or interpretable regressors)

* Correlation-based again



Causal Attributions of Neural Network Models

What does this mean?

Our objective: What are the causal attributions learned by
a trained neural network model?

— To the best of our knowledge, first such effort
Assume a setting that is often valid

— Input dimensions are causally independent of each other (they can be
jointly caused by a latent confounder)

Show how this can be done with feedforward networks as
well as RNNs



Structural Causal Model

Structural Causal Model

(X, U, f, P,

/W

varlables
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Neural Network as a SCM

Feedforward neural network

M([llvl% --“7ln]7 Ua [f17f27 fn]va) M/([lla ln]a U7 fla PU)

* I;—neurons in layer |

* f;— corresponding causal functions

Causal Perspectives in Explaining NN Models



Neural Network as a SCM

Recurrent neural network

Causal Perspectives in Explaining NN Models



Gradient-Based Attribution

Individual Causal Effect

Gradient-based and Perturbation-based attribution methods —
special cases of Individual Causal Effect

ICEY . = Ynima(t) — y(w)

Setting o to u; + €
Such methods are sensitive and cannot give global attributions



Causal Attribution

ACE: Average Causal Effect

For binary variables:

Ely|do(z = 1)] - Ely|do(z = 0)]

For continuous variables:
ACFEY

do(z;=a
where baseline is defined as:
Ex, [E, [yldo(z; = a)]]

= Ely|do(x; = )] — baseline,,

the average ACE across all x;



Computing ACE

E[yldo(z: = a)] = / yp(yldo(z: = a))dy

Y
Let: Consider the Taylor-series expansion:
Y = fy(@1, 32, 2) IHOESAMER w AMICEIIE
1 0w o
;i = Elz;|do(z; = a)]Vx; € I 51 =) V2 fy () (b — p)

Marginalizing over all other input neurons:

E[fy(l)|do(z: = a)] ~ f,(n)+

1 . A
STr(V2 1, () El(l — ) (1 — )7 do(a: = o))

%t 21 e

K= [,ula 2, °°'7,uk’}T



Computing ACE

Elyldo(w; = o) = [ yplyldo(w; = a))dy — BUy()ldoz: = )] ~ £y () +
STr(V2f, (W) El( — p)( — )| dof; = )

* Intervened input neuron is d-separated from other input neurons; what
does this give us!

* Given an intervention on a particular variable, the probability distribution
of all other input neurons doesn’t change, i.e.for Tj 7# T;

P(zjldo(x; = o)) = P(x;)

* Interventional means and covariances of non-intervened neurons same as

observational means and covariances

o



Causal Regressors

Computing the baseline

ACEY

do(z;=«

= Ely|do(x; = «)] — baseline,,
where baseline is defined as:

E.,[Ey[yldo(z: = a)]]

We use causal regressors (Bayesian regression) to obtain
baseline using different intervention values, a, from its range

o



What about RNNs?

Depends on a particular RNN architecture.
Where output does not feed into input, same idea can be used.

Causal Perspectives in Explaining NN Models



Scaling to Large Data

Computation of ACE requires Hessian:

E[f} (h)ldo(z: = )] ~ fi(u)+

éT'r[(ll — p)(lh — )" |do(z; = a))])

However, we only need

k k
izt 21 VAL ()i Cov(wi, xjldo(z = o))
To this end, consider eigendecomposition of covaHlance matrix:

Cov(x, x|do(x; = @) = Y.i_; Arerel Let VUr = /\1/26T

iy ( Fy o)+ £y ebenr )21, ) = oV o,

e—0 62
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Results

Iris Dataset
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Results

Aircraft Data (NASA Dashlink Dataset)

FDR report:“....due to slippery runway,
the pilot could not apply

timely brakes, resulting in a steep ) 8

acceleration in the airplane o

post-touchdown...”
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ALT]
AOA1
AOA2

CAS

GS
LATG
LONG

MH

MSQT_1
MSQT 2
NSQT
PTCH
ROLL
TAT
VRTG
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Flight Parameters
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Axioms of Attribution

° Completeness Completeness: For any input x, the sum Q/ [/7(’_/<’alurc attributions cqua/s

S F(z): F(z)=) AF(z)
* Sensitivity ;
Sensitivity: If « has only one non-zero feature and F(x) # 0, then the

* Implementation Invariance . :
attribution to llmt_/calur(' should be non-zero.

* Symmetry Preservatlon Implementation Invariance: W/l(’l'l wo Il(’lll’(ll I’I(’llVOI’/\’S C()I’I’l[)lll(’ ll’l(’ same

° Input Invariance nmthcn'mlz'cal‘/iu'lction F(z), rc’(gara’]c'ss Q/‘how d{[]i’rc'mly tll(’y are
im )/c’mcnlca’, the attributions to all features should always be identical.
I _ Y
Proposed method Symmetry-Preserving: For any input x where the values q/‘lwo symmmetric
satisfies all important features are the same, their attributions should be identical as well.
axioms (almost) Gradient-based methods violate Axiom 2;

Sundararajan et al, ICML 2017; Kindermans et al, 2017 e R L sl txions

@
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More Details

Flight Parameters
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(c)
MSQT 1 '
MSQT 2 .
0 10 15 20 0 5 10 15 20
0.00

5
time-lag (in seconds) time-lag (in seconds)

0.0040
0.0035
0.0030

0.0025

- arXiv:
= https://arxiv.org/abs/1902.02302

0.0010

Flight Parameters

0.0005

»“  Code:
.. https:/github.com/Piyushi-0/ACE
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https://github.com/Piyushi-0/ACE

Causal
Regularization

ACE of sensitive features
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To the best of our
knowledge, first
effort to integrate
causal knowledge
for attribution in
neural networks

Joint work with:

Gowtham Reddy A Sai Srinivas K

arXiv 2022

(under review)
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Key Idea

* Match causal effects learned by a neural network to effects we want it to learn

Causal Domain Prior
Relationship Between Features

o(T) CREDO: Causal
0 @ @ REgularization with
g@(n w4 DOmain Priors
&

T Neural Network Graph G

ACEONY

@
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Causal Graph and Effects

We regularize for three kinds of causal
effect in NN models:

Controlled direct effect
Natural direct effect
Total causal effect

(1
29

S
[ ]

Figure 5: Causal graph G representing input features Xi, X>, X3, true output Y
and NN output Y (Blue arrows = true causal relationships, Red arrows =
relationships learned by traditional NN (without CREDO).




Matching Controlled Direct Effect

fet Y i =Y do(x=a)

Definition

(Controlled Direct Effect in NN). Controlled Direct Effect (NN — CDE)
measures the causal effect of treatment T at an intervention t (i.e.,
do(T = t)) on Y when all parents of Y except T (PA?) are intervened
to pre-defined control values a.. Average Controlled Direct Effect

(NN — ACDE) is defined as: NN — ACDEY, ;=

A

EU[Yt,PAV:a] - IEU[Yt*,PAV:oz] = Yt,PAV:a - Yt*,PAV:a-

NN — ACDE,” = E 5[, pas] — Epsr[V;e pas]

Causal Perspectives in Explaining NN Models | ]



Regularizing for Controlled Direct Effect

Proposition

(ACDE lIdentifiability in Neural Networks) For a neural network with
output \7, the ACDE of a feature T at t on Y is identifiable and given
by ACDEY =E,5 [Y|t, PAY] —Ep,y [Y|t* PAY]

Proposition

(ACDE Regularization in Neural Networks) The n" partial derivative of
ACDE of T at ton Y is equal to the expected value of e partial

d"ACDE, a"[V (t,PAY)]
derivative of Y w.r.t. T at t, that is: ot =Epy [Fgr—2].

@
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Our Regularizer

N
~N . 1 .
H:argmgln ERM+/\N g max{0, |V;f © M —0G’|1 — €}

j=1

where V; f is the C X d Jacobian of f w.rt. x/; M is a
C X d binary matrix that acts as an indicator of features
for which prior knowledge is available; © represents the
element-wise (Hadamard) product; N is the size of training
data; and € is a hyperparameter to allow a margin of error.

Algorithm 1 CREDO Regularizer

Result: Regularizers for ACDE, ANDE, ATCE in f.

Input: D = {(xf,yf)}j?’:l. ¥ e {0,1,..., c}, x ~ X,
Q = {i|3 &f for some c}; G = {g{|gf is prior for it" fea-
ture w.rt. class c}; F = {f1,..., KV is the set of structural
equations of the underlying causal model s.t f describes Z’; € is
a hyperparameter

Initialize: j = 1,6G/ = 0cxgVj =1,...N, M = 0cxq

while j < N do

foreachi € Q do

foreach g; € G do

6GI[c,i] = Vgf| s Mle,i] =1

i

case I: regularizing ACDE do
Vifleil = §E 1
case 2: regularizing ANDE do
/* causal graph is known */
t=x; .
1 — OY
ij[C,l] = :j_xil(tj,z,l;,wj)
case 3: regularizing ATCE do

/* causal graph is known */
q_[a¥ K oy df!
Vifleil =4 + i ﬁ;{% (9
end
end
Jj=Jj+1

end
return % S, max{0,||V;f o M - 6G/||1 - €}

Causal Perspectives in Explaining NN Models
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Sample Results

T,‘ COMPAS COMPAS COMPAS
_Eu: . - ‘ == GT 0.11 . GT
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1.01 o
— -w-- GT
I 0.5 1 21 —¥— ERM ol
o ‘
b~ —a— CREDO CDE_/ &%
= 0.0{y—F—F A% ¥y P
w 0
8 -0.54 ¥— ERM
o —&— CREDO _CDE
=1.0 1 -2

CREDO shows promising performance in matching causal domain priors with no
significant impact on model accuracy/training time
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Viewing from Different Perspectives: Our Efforts

in knowledge distillation tasks

Post-hoc Explainability Intrinsic Interpretability b

, -

—= & GradCAM++: Generic v Ante-hoc explainability B

. . : O

~ method for visual explanations for CNN via concepts L

6 models & Transferring concepts o)

N * Z
c
®)
Z

Canonical saliency maps for face Explainability e

recognition/processing models in Deep & Causally disentangled

& Submodular Learning representations

ensembles of attribution methods v Dataset for causal
""""""""""""""" representation learning

v Mitigating bias
o Causal attributions in through causal perspectives
neural networks i Causal regularizers

Complementarity of explanations and robustness

@
Causal Perspectives in Explaining NN Models 1]



Thank you!

Questions!

vineethnb@cse.iith.ac.in

http://www.iith.ac.in/~vineethnb

Causal Perspectives in Explaining NN Models
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