


In this talk, | will discuss interpretable models that are
small enough to fit on a powerpoint slide.
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Sparse generalized additive models
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Sparse Logistic Regression
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- coordinate descent + bounds (often setting coeffs to 0) ‘B\

- search over subsets of features



Logistic loss

log (1+ e~ vi(w' @)

Coeffic‘ient w;
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Logistic loss

Auxiliary function
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Logistic loss

Auxiliary function

Coeffic‘ient w;
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Logistic loss

Coefficient w;




Logistic loss

Cutting plane

Coefficient w;




Logistic loss

Cutting plane

Coefficient w;
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Cutting plane
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Logistic loss
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Logistic loss

Linear Cut

Lower Bound

Best Objective So Far

Coefficient w;




Logistic loss

Linear Cut vs. Quadratic Cut

Lower Bound

Coefficient w;




Sparse Logistic Regression
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- coordinate descent + bounds (often setting coeffs to 0)
- search over subsets of features



Sparse Exponential Loss Classification
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- coordinate descent + bounds (often setting coeffs to 0)
- search over subsets of features



Exponential loss
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Sparse Exponential Loss Classification
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- coordinate descent + bounds (often setting coeffs to 0)
- search over subsets of features
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Home Equity Line of Credit (HELOC) Dataset

This competition focuses on an anonymized dataset of Home Equity Line of Credit (HELOC) applications made by real homeowners. A
HELOC is a line of credit typically offered by a bank as a percentage of home equity (the difference between the current market value of
a home and its purchase price). The customers in this dataset have requested a credit line in the range of $5,000 - $150,000. The
fundamental task is to use the information about the applicant in their credit report to predict whether they will repay their HELOC
account within 2 years. This prediction is then used to decide whether the homeowner qualifies for a line of credit and, if so, how much
credit should be extended.




Abo Ut th e d ata Best black box accuracy

(boosted decision trees) 73%
* ~10K loan applicants

* Factors: Best black box AUC
* External Risk Estimate
Months Since Oldest Trade Open (2-|ayer neural netWOrk) 80

Months Since Most Recent Trade Open

Average Months In File . .

Number of Satisfactory Trades This dataset - 1917 binary features
Number Trades 60+ Ever

Number Trades 90+ Ever

Number of Total Trades

Number Trades Open In Last 12 Months LOgRegQuad_Lo ta kes < 1 min
Percent Trades Never Delinquent EXp'LO ta keS < 20 sec

Months Since Most Recent Delinquency
Max Delinquency / Public Records Last 12 Months
Max Delinquency Ever

Percent Installment Trades Train/Test Accuracy: 73.051£0.28, 72.35+1.24

Net Fraction of Installment Burden .

Number of Installment Trades with Balance Tra I n/TeSt AUC 80321’025, 79 11i103
Months Since Most Recent Inquiry excluding 7 days

Number of Inquiries in Last 6 Months

Number of Inquiries in Last 6 Months excluding 7 days. On the neXt S||de
Net Fraction Revolving Burden. (Revolving balance divided by credit limit.) . .
Number Revolving Trades with Balance A mOdel W|th 21 b|na ry featu res

Number Bank/Natl Trades with high utilization ratio
Percent of Trades with Balance



Generalized Additive Model on the FICO Dataset
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A model with 21 binary features
created in 3.85 seconds
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Train/Test Accuracy: 73.05, 72.28
Train/Test AUC: 80.34, 78.99



Even on challenging benchmark datasets,

interpretable models’ accuracy = black box accuracy.

Sparse generalized additive models
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What’s next?

* Already heard about GAMs twice today (Rich & I).

* Decision trees! You’ve heard about those today too. (Chudi)
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Home Equity Line of Credit (HELOC) Dataset

This competition focuses on an anonymized dataset of Home Equity Line of Credit (HELOC) applications made by real homeowners. A
HELOC is a line of credit typically offered by a bank as a percentage of home equity (the difference between the current market value of
a home and its purchase price). The customers in this dataset have requested a credit line in the range of $5,000 - $150,000. The
fundamental task is to use the information about the applicant in their credit report to predict whether they will repay their HELOC
account within 2 years. This prediction is then used to decide whether the homeowner qualifies for a line of credit and, if so, how much
credit should be extended.




Explainable ML Challenge (FICO dataset) tree:

External RiskEstimate < 67.5

class External RiskEstimate < 76.5
| e e —
1 PercentTradesW Balance < 73.5 class
B e |
AverageMInFile < 63.5 M SinceMostRecentIngexcl7days < 0.5 0
/ﬂ/\ ,////’\
M SinceMostRecentIngexclTdays < 0.5  External RiskEstimate < 70.5 M SinceMostRecentIngexclTdays < —7.5 AverageM InF'ile < 63.5
class class class class class class class class
| | | | | | | |
1 0 1 0 0 1 1 0

GOSDT+Guessing:

10K data points, >1900 binary features

e depth limit 5

* training accuracy 72% (best black box is 73%), test accuracy 71.7%
e 10 leaves

» ~8.1sec




What’s next?

* Already heard about GAMs twice today (Me & Rich).
* Decision trees! You’ve heard about those today too. (Chudi)
* Interpretable neural networks? (Zhi)

* Exploratory data analysis through dimension reduction



Visualizing data using t-SNE
L Maaten, G Hinton - Journal of machine learning research, 2008 - jmir.org

We present a new technique called" t-SNE" that visualizes high-dimensional data by giving
each datapoint a location in a two or three-dimensional map. The technique is a variation of

Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize ...
Y¢ 99 CCited by 13929 Related articles All 44 versions 99

t-SNE is a dimension reduction algorithm.

Input: high-dimensional data

Output: low-dimensional data that preserves...

- the graph structure?
- local neighborhoods?
- global structure?

MNIST
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t-SNE on MINIST




Visuaizing deta using t SNE How to Use t-SNE Effectively

L Maaten, G Hinton - Journal of machine learning research, 2008 - jmir.org
We present a new technique called" t-SNE" that visualizes high-dimensional data by giving

each datapoint a location in a two or three-dimensional map. The technique is a variation of MERTIN WATTENBERG FERNANDA_ ¥e8As IANSOUNOON el 12
Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize ... Google Brain Google Brain Google Cloud 2016
Y¢ 99 CCited by 13929 Related articles All 44 versions 99

1. Those hyperparameters really matter
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Visualizing data using t-SNE
L Maaten, G Hinton - Journal of machine learning research, 2008 - jmir.org

We present a new technique called" t-SNE" that visualizes high-dimensional data by giving
each datapoint a location in a two or three-dimensional map. The technique is a variation of

Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize ...
Y¢ 99 CCited by 13929 Related articles All 44 versions 99

t-SNE is a dimension reduction algorithm.

Input: high-dimensional data

Output: low-dimensional data that preserves...
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- local neighborhoods?
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PaCMAP(n_neighbors=10)

Yingfah Wang
PaCMAP PhD student, Duke ©
:w/ﬂ/ (i 1h é
Haiyang Huang
Maintains both local and global structure PhD student, Duke
Much simpler than t-SNE or UMAP Yaron Shaposhnik

_ . Asst. Prof., U Rochester
More computationally efficient

Pairwise Controlled Manifold Approximation Projection

...on FICO?
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Home Equity Line of Credit (HELOC) Dataset

This competition focuses on an anonymized dataset of Home Equity Line of Credit (HELOC) applications made by real homeowners. A
HELOC is a line of credit typically offered by a bank as a percentage of home equity (the difference between the current market value of
a home and its purchase price). The customers in this dataset have requested a credit line in the range of $5,000 - $150,000. The
fundamental task is to use the information about the applicant in their credit report to predict whether they will repay their HELOC
account within 2 years. This prediction is then used to decide whether the homeowner qualifies for a line of credit and, if so, how much
credit should be extended.




higher PercentTradesWBalance,
NetFractionRevolvingBurden and
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Understanding How Dimension Reduction Tools Work: An
Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and
PaCMAP for Data Visualization

Yingfan Wang, Haiyang Huang, Cynthia Rudin, Yaron Shaposhnik

Dimension reduction (DR) techniques such as t-SNE, UMAP, and TriMAP have demonstrated
impressive visualization performance on many real world datasets. One tension that has always faced
these methods is the trade-off between preservation of global structure and preservation of local

structure: these methods can either handle one or the other, but not both. In this work, our main
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What’s next?

* Already heard about GAMs twice today (Me & Rich).

* Decision trees! You’ve heard about those today too. (Chudi)
* Interpretable neural networks? (Zhi)

* Exploratory data analysis through dimension reduction

* Exploratory model analysis through variable importance
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Exploring the cloud of variable importance for the
set of all good models
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What’s next?

* Already heard about GAMs twice today (Me & Rich).

* Decision trees! You’ve heard about those today too. (Chudi)
* Interpretable neural networks? (Zhi)

* Exploratory data analysis through dimension reduction

* Exploratory model analysis through variable importance
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