Interpretable Machine Learning @ Duke

Cynthia Rudin Duke University In this talk, I will discuss interpretable models that are small enough to fit on a powerpoint slide.

Fast Sparse Classification for Generalized Linear and Additive Models

Jiachang Liu

Jiachang Liu¹ Chudi Zhong¹ Margo Seltzer² Cynthia Rudin¹ ¹Duke University ² University of British Columbia {jiachang.liu, chudi.zhong}@duke.edu, mseltzer@cs.ubc.ca, cynthia@cs.duke.edu

Abstract

or the exponential loss

We present fast classification techniques for sparse generalized linear and additive models. These techniques can handle thousands of features and thousands of observations in $\ell(\boldsymbol{w}, \boldsymbol{x}_i, y_i) = e^{-y_i(\boldsymbol{w}^T \boldsymbol{x}_i)}$

where $\boldsymbol{x}_i \in \mathbb{R}^p$ is the *i*-th observation, and $y_i \in \{-1, 1\}$ is the label of the *i*-th data sample. The logistic loss tends to yield nicely calibrated probability estimates,

Chudi Zhong

Margo Seltzer

AISTATS, 2022

Coefficient w_i

Andrei Patrascu and Ion Necoara. Random coordinate descent methods for 10 regularized convex optimization. IEEE Transactions on Automatic Control, 2015

Antoine Dedieu, Hussein Hazimeh, and Rahul Mazumder. Learning sparse classifiers: Continuous and mixed integer optimization perspectives. Journal of Machine Learning Research, 2021

Coefficient w_j

Andrei Patrascu and Ion Necoara. Random coordinate descent methods for 10 regularized convex optimization. IEEE Transactions on Automatic Control, 2015

Antoine Dedieu, Hussein Hazimeh, and Rahul Mazumder. Learning sparse classifiers: Continuous and mixed integer optimization perspectives. Journal of Machine Learning Research, 2021

Coefficient w_j

Andrei Patrascu and Ion Necoara. Random coordinate descent methods for 10 regularized convex optimization. IEEE Transactions on Automatic Control, 2015

Antoine Dedieu, Hussein Hazimeh, and Rahul Mazumder. Learning sparse classifiers: Continuous and mixed integer optimization perspectives. Journal of Machine Learning Research, 2021

Sparse Logistic Regression

$$\min_{\boldsymbol{w}} \sum_{i=1}^{n} \ell(\boldsymbol{w}, \boldsymbol{x}_{i}, y_{i}) + \lambda_{0} \|\boldsymbol{w}\|_{0}$$
where $\ell(\boldsymbol{w}, \boldsymbol{x}_{i}, y_{i}) = \log \left(1 + e^{-y_{i}(\boldsymbol{w}^{T}\boldsymbol{x}_{i})}\right)$

$$\int \int f(\boldsymbol{x}) = \boldsymbol{w}^{T}\boldsymbol{x}$$

$$\hat{P}_{\text{logistic}}(\boldsymbol{y} = 1 | \boldsymbol{x}) = \frac{e^{f(\boldsymbol{x})}}{1 + e^{f(\boldsymbol{x})}}$$

- coordinate descent + bounds (often setting coeffs to 0)

- search over subsets of features

Sparse Exponential Loss Classification

$$\min_{\boldsymbol{w}} \sum_{i=1}^{n} \ell(\boldsymbol{w}, \boldsymbol{x}_{i}, y_{i}) + \lambda_{0} \|\boldsymbol{w}\|_{0}$$

where $\ell(\boldsymbol{w}, \boldsymbol{x}_{i}, y_{i}) = e^{-y_{i}(\boldsymbol{w}^{T}\boldsymbol{x}_{i})}$
 $\hat{f}(\boldsymbol{x}) = \boldsymbol{w}^{T}\boldsymbol{x}$
 $\hat{P}_{\exp loss}(y = 1|\boldsymbol{x}) = \frac{e^{2f(\boldsymbol{x})}}{1 + e^{2f(\boldsymbol{x})}}$

(parties

- coordinate descent + bounds (often setting coeffs to 0)

- search over subsets of features

Sparse Exponential Loss Classification

$$\min_{\boldsymbol{w}} \sum_{i=1}^{n} \ell(\boldsymbol{w}, \boldsymbol{x}_{i}, y_{i}) + \lambda_{0} \|\boldsymbol{w}\|_{0}$$

where $\ell(\boldsymbol{w}, \boldsymbol{x}_{i}, y_{i}) = e^{-y_{i}(\boldsymbol{w}^{T}\boldsymbol{x}_{i})}$
 $\hat{f}(\boldsymbol{x}) = \boldsymbol{w}^{T}\boldsymbol{x}$
 $\hat{P}_{\exp loss}(y = 1|\boldsymbol{x}) = \frac{e^{2f(\boldsymbol{x})}}{1 + e^{2f(\boldsymbol{x})}}$

(R.S. M.S.

- coordinate descent + bounds (often setting coeffs to 0)

- search over subsets of features

Home Equity Line of Credit (HELOC) Dataset

This competition focuses on an anonymized dataset of Home Equity Line of Credit (HELOC) applications made by real homeowners. A HELOC is a line of credit typically offered by a bank as a percentage of home equity (the difference between the current market value of a home and its purchase price). The customers in this dataset have requested a credit line in the range of \$5,000 - \$150,000. The fundamental task is to use the information about the applicant in their credit report to predict whether they will repay their HELOC account within 2 years. This prediction is then used to decide whether the homeowner qualifies for a line of credit and, if so, how much credit should be extended.

About the data

- ~10K loan applicants
- Factors:
 - External Risk Estimate
 - Months Since Oldest Trade Open
 - Months Since Most Recent Trade Open
 - Average Months In File
 - Number of Satisfactory Trades
 - Number Trades 60+ Ever
 - Number Trades 90+ Ever
 - Number of Total Trades
 - Number Trades Open In Last 12 Months
 - Percent Trades Never Delinquent
 - Months Since Most Recent Delinquency
 - Max Delinquency / Public Records Last 12 Months
 - Max Delinquency Ever
 - Percent Installment Trades
 - Net Fraction of Installment Burden
 - Number of Installment Trades with Balance
 - Months Since Most Recent Inquiry excluding 7 days
 - Number of Inquiries in Last 6 Months
 - Number of Inquiries in Last 6 Months excluding 7 days.
 - Net Fraction Revolving Burden. (Revolving balance divided by credit limit.)
 - Number Revolving Trades with Balance
 - Number Bank/Natl Trades with high utilization ratio
 - Percent of Trades with Balance

Best black box accuracy (boosted decision trees) 73%

Best black box AUC (2-layer neural network) .80

This dataset \rightarrow 1917 binary features

LogRegQuad-L0 takes < 1 min Exp-L0 takes < 20 sec

Train/Test Accuracy: 73.05±0.28, 72.35±1.24 Train/Test AUC: 80.32±0.25, 79.11±1.03

> On the next slide... A model with 21 binary features

Even on challenging benchmark datasets, interpretable models' accuracy = black box accuracy.

What's next?

- Already heard about GAMs twice today (Rich & I).
- Decision trees! You've heard about those today too. (Chudi)

Home Equity Line of Credit (HELOC) Dataset

This competition focuses on an anonymized dataset of Home Equity Line of Credit (HELOC) applications made by real homeowners. A HELOC is a line of credit typically offered by a bank as a percentage of home equity (the difference between the current market value of a home and its purchase price). The customers in this dataset have requested a credit line in the range of \$5,000 - \$150,000. The fundamental task is to use the information about the applicant in their credit report to predict whether they will repay their HELOC account within 2 years. This prediction is then used to decide whether the homeowner qualifies for a line of credit and, if so, how much credit should be extended.

Explainable ML Challenge (FICO dataset) tree:

What's next?

- Already heard about GAMs twice today (Me & Rich).
- Decision trees! You've heard about those today too. (Chudi)
- Interpretable neural networks? (Zhi)
- Exploratory data analysis through dimension reduction

Visualizing data using t-SNE L Maaten, <u>G Hinton</u> - Journal of machine learning research, 2008 - jmlr.org We present a new technique called" t-SNE" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize ... ☆ 99 Cited by 13929 Related articles All 44 versions ≫

t-SNE is a dimension reduction algorithm.

Input: high-dimensional data Output: low-dimensional data that preserves...

- the graph structure?
- local neighborhoods?
- global structure?

t-SNE on MNIST

Visualizing data using t-SNE

L Maaten, G Hinton - Journal of machine learning research, 2008 - jmlr.org

We present a new technique called" t-SNE" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize ...

 $\cancel{2}$ $\cancel{5}$ Cited by 13929 Related articles All 44 versions $\cancel{5}$

How to Use t-SNE Effectively

MARTIN WATTENBERG	FERNANDA VIÉGAS	IAN JOHNSON	Oct. 13	
Google Brain	Google Brain	Google Cloud	2016	

1. Those hyperparameters really matter

2. Cluster sizes in a t-SNE plot mean nothing

Visualizing data using t-SNE L Maaten, G Hinton - Journal of machine learning research, 2008 - jmlr.org We present a new technique called" t-SNE" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize ... ☆ 99 Cited by 13929 Related articles All 44 versions ≫

t-SNE is a dimension reduction algorithm.

Input: high-dimensional data Output: low-dimensional data that preserves...

- the graph structure?
- local neighborhoods?
- global structure?

t-SNE on MNIST

Original Mammoth

PaCMAP(n neighbors=10)

Yingfan Wang PhD student, Duke

PhD student, Duke

Yaron Shaposhnik Asst. Prof., U Rochester

PaCMAP

Haiyang Huang

- Much simpler than t-SNE or UMAP -
- More computationally efficient -
- Pairwise Controlled Manifold Approximation Projection

... on FICO?

Home Equity Line of Credit (HELOC) Dataset

This competition focuses on an anonymized dataset of Home Equity Line of Credit (HELOC) applications made by real homeowners. A HELOC is a line of credit typically offered by a bank as a percentage of home equity (the difference between the current market value of a home and its purchase price). The customers in this dataset have requested a credit line in the range of \$5,000 - \$150,000. The fundamental task is to use the information about the applicant in their credit report to predict whether they will repay their HELOC account within 2 years. This prediction is then used to decide whether the homeowner qualifies for a line of credit and, if so, how much credit should be extended.

What's next?

- Already heard about GAMs twice today (Me & Rich).
- Decision trees! You've heard about those today too. (Chudi)
- Interpretable neural networks? (Zhi)
- Exploratory data analysis through dimension reduction
- Exploratory model analysis through variable importance

What's next?

- Already heard about GAMs twice today (Me & Rich).
- Decision trees! You've heard about those today too. (Chudi)
- Interpretable neural networks? (Zhi)
- Exploratory data analysis through dimension reduction
- Exploratory model analysis through variable importance

