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In this talk, I will discuss interpretable models that are 
small enough to fit on a powerpoint slide.
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Sparse generalized additive models
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Sparse generalized additive models



Sparse Logistic Regression

- coordinate descent + bounds (often setting coeffs to 0)
- search over subsets of features

where

age≥16, age≥17,…, age≥90age

age

contribution to f

16   17   18  19   20
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Lower Bound

Best Objective So Far
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Sparse Logistic Regression

- coordinate descent + bounds (often setting coeffs to 0)
- search over subsets of features

where



- coordinate descent + bounds (often setting coeffs to 0)
- search over subsets of features

where

Sparse Exponential Loss Classification
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- coordinate descent + bounds (often setting coeffs to 0)
- search over subsets of features

where

Sparse Exponential Loss Classification





About the data
• ~10K loan applicants
• Factors:

• External Risk Estimate
• Months Since Oldest Trade Open
• Months Since Most Recent Trade Open
• Average Months In File
• Number of Satisfactory Trades
• Number Trades 60+ Ever
• Number Trades 90+ Ever
• Number of Total Trades
• Number Trades Open In Last 12 Months
• Percent Trades Never Delinquent
• Months Since Most Recent Delinquency
• Max Delinquency / Public Records Last 12 Months
• Max Delinquency Ever
• Percent Installment Trades
• Net Fraction of Installment Burden
• Number of Installment Trades with Balance
• Months Since Most Recent Inquiry excluding 7 days
• Number of Inquiries in Last 6 Months
• Number of Inquiries in Last 6 Months excluding 7 days.
• Net Fraction Revolving Burden. (Revolving balance divided by credit limit.) 
• Number Revolving Trades with Balance
• Number Bank/Natl Trades with high utilization ratio
• Percent of Trades with Balance

Best black box accuracy 
(boosted decision trees) 73% 

Best black box AUC
(2-layer neural network) .80

On the next slide…
A model with 21 binary features

This dataset → 1917 binary features

LogRegQuad-L0 takes < 1 min 
Exp-L0 takes < 20 sec

Train/Test Accuracy: 73.05±0.28, 72.35±1.24
Train/Test AUC: 80.32±0.25, 79.11±1.03



Generalized Additive Model on the FICO Dataset

On the next slide…
A model with 21 binary features

created in 3.85 secondsTrain/Test Accuracy: 73.05, 72.28
Train/Test AUC: 80.34, 78.99

On the next slide…



Even on challenging benchmark datasets, 
interpretable models’ accuracy = black box accuracy.

Sparse generalized additive models 

3.85 sec



What’s next?

• Already heard about GAMs twice today (Rich & I).
• Decision trees! You’ve heard about those today too. (Chudi)





Explainable ML Challenge (FICO dataset) tree:

GOSDT+Guessing:
• 10K data points, >1900 binary features
• depth limit 5
• training accuracy 72% (best black box is 73%), test accuracy 71.7%
• 10 leaves
• ~8.1 sec



What’s next?

• Already heard about GAMs twice today (Me & Rich).
• Decision trees! You’ve heard about those today too. (Chudi)
• Interpretable neural networks? 
• Exploratory data analysis through dimension reduction

(Zhi)



t-SNE is a dimension reduction algorithm. 

Input: high-dimensional data
Output: low-dimensional data that preserves…

- the graph structure?
- local neighborhoods?
- global structure?

t-SNE on MNIST
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Input: high-dimensional data
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PaCMAP

- Maintains both local and global structure
- Much simpler than t-SNE or UMAP
- More computationally efficient 
- Pairwise Controlled Manifold Approximation Projection

…on FICO?





has missing data

higher PercentTradesWBalance, 
NetFractionRevolvingBurden and 
NetFractionInstallBurden

higher ExternalRiskEstimate





What’s next?

• Already heard about GAMs twice today (Me & Rich).
• Decision trees! You’ve heard about those today too. (Chudi)
• Interpretable neural networks? 
• Exploratory data analysis through dimension reduction
• Exploratory model analysis through variable importance

(Zhi)
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What’s next?

• Already heard about GAMs twice today (Me & Rich).
• Decision trees! You’ve heard about those today too. (Chudi)
• Interpretable neural networks? 
• Exploratory data analysis through dimension reduction
• Exploratory model analysis through variable importance

(Zhi)



Interpretable Machine Learning Lab

Optimal Sparse 
Decision Trees

(materials science)

Almost Exact Matching for Causal Inference
(criminal justice)

Data Visualization/
Dimension Reduction
(biology)

Understanding the 
Set of Good Models

and Importance of Variables

Interpretable Neural Networks for 
Computer Vision

(radiology)

Neural Disentanglement

Generalized Additive Models 
(healthcare, criminal justice)

Thanks


