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T cells as highly specialized anomaly detectors.
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Specific because each T cell's
receptor recognises specific
peptides
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Only one in a million T cells can detect
any given new pathogenic signal

(peptide).

T cells must search for these rare targets
that can activate them.

They do this in central "'meeting hubs'
called lymph nodes.



» 0:00/0:12

A. Peixoto, Harvard Medical School




Hidden figures.

500pm <

Image: Connie Shen & Judith Mandl.







The question: why no traffic jams?

» 0:00/0:12

How do T cells respond to complex and crowded environments, and does their
smooth traffic flow ever break down?



Approach:

mechanistic
modelling.




"What | cannot create, | do
not understand.’

— Richard Feynman




"Creating" real and simulated T-cell crowds.

Put T cells in controlled environments, inspired by the physics field of crowd
dynamics.

1. In silico: computational model
2. In vitro: controlled environment in the lab

Can we "build a crowd" — i.e., can our model predict what real T cells will do in vitro?

Data: time-lapse imaging of moving cells.
Predictions: what will the crowd do?



The circle of Hife mechanistic modelling.
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Given those rules,

what would happen

to cell crowds in
complex environments?
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The circle of Hife mechanistic modelling.
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The role of predictions.

(Interpretable) Al

X Q

Good predictions/decisions

Knowledge/models

Black-box models: OK
(if we could be sure they
were trustworthy & fair)

Interpretability is a side-goal
to foster trust, fairness,
accuracy.

Mechanistic modelling

X Q

Knowledge (or models of it)

Predictions

Black-box models: no
knowledge gain (since we
don't know how they work)

Interpretability is critical to
extract knowledge from
mechanistic models.



Example:
T-cells in one lane traffic.




Step 1: gather input knowledge.

top view

side view

@ molecules

push against

the cell

A - »
overall movement direction

>

Adapted from: Dupré et al (2015). doi: 10.3389/fimmu.2015.00586.


https://doi.org/10.3389/fimmu.2015.00586

Step 1: gather input knowledge.
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Step 2: encode into a model.

Evan Ingersoll & Ga€l McGill, Images from science 3 exhibition.

Option 1: Detailed model

Explicitly encode every
molecule and resulting force.

+ highly interpretable!
+ emergent behavior.

— too expensive to model
crowds.


https://images.cad.rit.edu/exhibit_36.html

Step 2: encode into a model.

Option 2: Phenomenological — Cellular Potts Model (CPM)1

Pixels belong to cells, which
move by copying pixels:
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TGraner and Glazier (1992). doi:10.1103/PhysRevLett.69.2013


https://doi.org/10.1103/PhysRevLett.69.2013

Step 2: encode into a model.

Option 2: Phenomenological — Cellular Potts Model (CPM)1

Pixels belong to cells, which Copy success chance (Peopy) is higher when it
move by copying pixels: helps the cell:
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Step 2: encode into a model.

Option 2: Phenomenological — Cellular Potts Model (CPM)1

Pixels belong to cells, which Copy success chance (Peopy) is higher when it
move by copying pixels: helps the cell:
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— Cells have shapes and interact naturally through volume exclusion (each pixel
can only belong to one cell at a time). Crowd behavior still emerges.


https://artistoo.net/

TGraner and Glazier (1992). doi:10.1103/PhysRevLett.69.2013


https://doi.org/10.1103/PhysRevLett.69.2013

Step 2: encode into a model.

Cells move if we add positive feedback on
protrusive activity (& actin polymerization)“:

protrusive activity:
recent

> Pcopy high
|20|d >Pcopy low

none

]

Parameters:
Nact ~  protrusive force

~/ . . . .
MaXact ~ polymerized actin lifetime

— realistic cell shape and motility 12,
Powered by Artistoo.net
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TNiculescu et al. (2015). doi:10.1371/journal.pcbi. 1004280
2Wortel et al. (2021). doi:10.1016/j.bp}.2021.04.036


https://doi.org/10.1371/journal.pcbi.1004280
https://doi.org/10.1016/j.bpj.2021.04.036

Step 3: predict crowd behavior.

A cornerstone scenario in crowding physics: one-lane traffic.

TJohn et al. (2009). doi:10.1703/PhysRevLett.102.108001
2Seyfried et al. (2005). doi:10.1088/1742-5468/2005/10/p10002


https://doi.org/10.1103/PhysRevLett.102.108001
https://doi.org/10.1088/1742-5468/2005/10/p10002

Step 3: predict crowd behavior.

A cornerstone scenario in crowding physics: one-lane traffic.
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Step 3: predict crowd behavior.

What do T cells do? Put single (CPM) cells together in constrained channels and
predict crowd behavior:
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Step 3: predict crowd behavior.

What do T cells do? Put single (CPM) cells together in constrained channels and
predict crowd behavior:

» 0:00/0:13

Qualitatively: cells rapidly align into "trains" to keep moving.



Step 4: test model predictions.

What about real T cells?

» 0:00/0:05

Data: Jérémy Postat and Judith Mandl.



Step 4: test model predictions.

What about real T cells? Again: train formation!

» 0:00/0:05

Data: Jérémy Postat and Judith Mandl.



Step 4: test model predictions.

Quantitatively: the fundamental diagram in both cases is flat.

computer model: prediction real T cells: validation
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Step 5: consolidate model — and repeat.

current
knowledge
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Are these rules sufficient to
predict how T-cell crowds
move in one-lane traffic, at
low or higher densities?



Step 5: consolidate model — and repeat.

Model consolidation = proof.

Can we predict crowd behavior in other scenarios as
well?



Step 5: consolidate model — and repeat.

Pedestrian crowds can form jamming arches near an exit. This scenario is well-

studied because of crowd disasters, such as at the Love Parade (Berlin, 2010).
§ %i O

— What about T cells?




Step 5: consolidate model — and repeat.

Simulated T cells can indeed form jamming arches:

ST

» 010 /054

Work in progress, but see: Wortel (2021). https://repository.ubn.ru.nl/handle/2066/236680.


https://repository.ubn.ru.nl/handle/2066/236680
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Work of Shabaz Sultan






CPMs are not fully interpretable.

Emergent behavior is nice, but...
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CPMs are not fully interpretable.

Emergent behavior is nice, but...

O in: parameters
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.. we still don't know exactly how parameters lead to outputs.



"Explaining" CPMs — visualization

Visualizing and manipulating models interactively: artistoo.net

*For correspondence:
inge wortel @rwnl IMRNAY;
johannes textordrunl (JT)

« @ ®

Artistoo, a library to build, share, and
explore simulations of cells and tissues in
the web browser

Inge MN Wortel"*™*, Johannes Textor™2'*

'Department of Tumer Immunclogy, Radboud Institute for Molecular Life Sciences,
Nijmegen, Metherlands; “Institute for Computing and Information Sciences, Data
Science, Radboud University, Nijmegen, Netherlands

Abstract The cellular Potts model (CPM) is a powerful in silico method for simulating biological
processes at tissue scale. Their inherently graphical nature makes CPMs very accessible in theory,
but in practice, they are mostly implemented in specialised frameworks users need to master
befere they can run simulations. \We here present Artistoo (Artificial Tissue Toolbox), a JavaScript
library for building ‘explorable’ CPM simulations where viewers can change parameters
interactively, exploring their effects in real time. Simulations run directly in the web browser and do
not require third-party software, plugins, or back-end servers. The JavaScript implementation
imposes no major performance loss compared to frameworks written in C++; Artistoo remains
sufficiently fast for interactive, real-time simulations. Artistoo provides an cpportunity to unlock
CPM models for a broader audience: interactive simulations can be shared via a URL in a zero-
install setting. We discuss applications in CPM research, science dissemination, open science, and
education.



https://artistoo.net/




"Explaining”" CPMs — tracking internal states

Tracking internal model states and outcomes over time:

« competing energy terms
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"Explaining" CPMs — parameter screening

For example: how does cell motion in a microchannel depend on channel size & cell
flexibility (perimeter)?

» 0:00/0:13
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For example: how does cell motion in a microchannel depend on channel size & cell
flexibility (perimeter)?
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"Explaining" CPMs — parameter screening

For example: how does cell motion in a microchannel depend on channel size & cell
flexibility (perimeter)?
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"Explaining" CPMs — parameter screening

For example: how does cell motion in a microchannel depend on channel size & cell
flexibility (perimeter)?
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"What | cannot create, | do
not understand.’

— Richard Feynman




"What | cannot create,
visualize, and take apart, |
do not understand.’

— Richard Feynman
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