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Please view this presentation at 
 for the best
experience.

https://computational-
immunology.org/inge/presentations/banff
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The biological problem.
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T cells:

Detect and clean up
infected/cancerous cells

T cells as anomaly detectors.

Adapted from National Cancer Institute (NIH)
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T cells:

Detect and clean up
infected/cancerous cells

T cells as anomaly detectors.

Using their T-cell receptor (TCR) to
screen for short peptides displayed
on a molecule called MHC
Compromised (infected/cancerous)
cells display different peptides than
healthy cells do


→  "anomaly detection"
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T cells:

Detect and clean up
infected/cancerous cells

T cells as  anomaly detectors.highly specialized

Using their T-cell receptor (TCR) to
screen for short peptides displayed
on a molecule called MHC
Compromised (infected/cancerous)
cells display different peptides than
healthy cells do


→  "anomaly detection"
Specific because each T cell's
receptor recognises specific
peptides
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T cells search for anomalies in lymph nodes.

Only one in a million T cells can detect
any given new pathogenic
signal
(peptide).
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T cells search for anomalies in lymph nodes.

Only one in a million T cells can detect
any given new pathogenic
signal
(peptide).

T cells must search for these rare targets
that can activate them.

They do this in central "meeting hubs"
called lymph nodes.
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T cells search for anomalies in lymph nodes.




A. Peixoto, Harvard Medical School
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Hidden figures.

Image: Connie Shen & Judith Mandl.
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The question: why no traffic jams?







?

How do T cells respond to complex and crowded environments, and does their
smooth
traffic flow ever break down?

0:00 / 0:12
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Approach:
mechanistic

modelling.
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"What I cannot create, I do
not understand."

— Richard Feynman
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"Creating" real and simulated T-cell crowds.
Put T cells in controlled environments, inspired by the physics field of crowd
dynamics.

1. In silico: computational model
2. In vitro: controlled environment in the lab

Can we "build a crowd" — i.e., can our model predict what real T cells will do in vitro?

Data: time-lapse imaging of moving cells.

Predictions: what will the crowd do?
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The circle of life mechanistic modelling.
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The circle of life mechanistic modelling.
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(Interpretable) AI Mechanistic modelling

The role of predictions.
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(Interpretable) AI Mechanistic modelling

The role of predictions.

Good predictions/decisions

Knowledge/models

Black-box models: OK 

(if we could be sure they

were trustworthy & fair)
Interpretability is a side-goal
to foster trust, fairness,
accuracy.

Knowledge (or models of it)

Predictions

Black-box models: no
knowledge gain (since
we
don't know how they work)
Interpretability is critical to
extract knowledge
from
mechanistic models.
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Example:

T-cells in one lane traffic.
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Step 1: gather input knowledge.

Adapted from: Dupré et al (2015). doi: .10.3389/fimmu.2015.00586 15

https://doi.org/10.3389/fimmu.2015.00586


Step 1: gather input knowledge.

Carlier and Shekhar (2017). doi: .10.1038/nrm.2016.172 16

https://doi.org/10.1038/nrm.2016.172


Option 1: Detailed model

Explicitly encode every
molecule and resulting force.

+   highly interpretable!

+   emergent behavior.

—   too expensive to model
crowds.

Step 2: encode into a model.

Evan Ingersoll & Gaël McGill, .Images from science 3 exhibition 17

https://images.cad.rit.edu/exhibit_36.html


Pixels belong to cells, which 

move by copying pixels:

Step 2: encode into a model.

Option 2: Phenomenological — Cellular Potts Model (CPM)1

= {𝑃copy
𝑒

−Δ𝐻/𝑇

1

Δ𝐻 > 0

Δ𝐻 ≤ 0



1Graner and Glazier (1992). doi:  



10.1103/PhysRevLett.69.2013
18

https://doi.org/10.1103/PhysRevLett.69.2013


Pixels belong to cells, which 

move by copying pixels:

Step 2: encode into a model.

Option 2: Phenomenological — Cellular Potts Model (CPM)1

Copy success chance (Pcopy) is higher when it
helps the cell:

Powered by Artistoo.net

Pcopy =
e −ΔH /T ΔH > 0
1 ΔH ≤ 0{

https://artistoo.net/


1Graner and Glazier (1992). doi:  



10.1103/PhysRevLett.69.2013
18

https://doi.org/10.1103/PhysRevLett.69.2013


Pixels belong to cells, which 

move by copying pixels:

Step 2: encode into a model.

Option 2: Phenomenological — Cellular Potts Model (CPM)1

Copy success chance (Pcopy) is higher when it
helps the cell:

Powered by Artistoo.net

→  Cells have shapes and interact naturally through volume exclusion (each pixel
can only belong to one cell at a time). Crowd behavior still emerges.

https://artistoo.net/


1Graner and Glazier (1992). doi:  



10.1103/PhysRevLett.69.2013
18

https://doi.org/10.1103/PhysRevLett.69.2013


Powered by 








Cells move if we add positive feedback
on
protrusive activity (  actin polymerization)1:

Parameters:
λact protrusive force

maxact polymerized actin lifetime

 realistic cell shape and motility 1,2.

Step 2: encode into a model.

Artistoo.net

≈

≈

≈

→

https://artistoo.net/


1Niculescu et al. (2015). doi:  

2Wortel et al. (2021). doi:

10.1371/journal.pcbi.1004280
10.1016/j.bpj.2021.04.036
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https://doi.org/10.1371/journal.pcbi.1004280
https://doi.org/10.1016/j.bpj.2021.04.036


Step 3: predict crowd behavior.
A cornerstone scenario in crowding physics: one-lane traffic.

1John et al. (2009). doi:  

2Seyfried et al. (2005). doi:

10.1103/PhysRevLett.102.108001
10.1088/1742-5468/2005/10/p10002
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Step 3: predict crowd behavior.
What do T cells do? Put single (CPM) cells together in constrained channels and
predict crowd behavior:

0:00 / 0:13
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Step 3: predict crowd behavior.
What do T cells do? Put single (CPM) cells together in constrained channels and
predict crowd behavior:

0:00 / 0:13

Qualitatively: cells rapidly align into "trains" to keep moving.
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Step 4: test model predictions.
What about real T cells? 

0:00 / 0:05

Data: Jérémy Postat and Judith Mandl.
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Step 4: test model predictions.
What about real T cells? Again: train formation!

0:00 / 0:05

Data: Jérémy Postat and Judith Mandl.
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Step 4: test model predictions.
Quantitatively: the fundamental diagram in both cases is flat.
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Step 5: consolidate model — and repeat.
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Step 5: consolidate model — and repeat.

Model consolidation != proof.
Can we predict crowd behavior in other scenarios as

well?
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Step 5: consolidate model — and repeat.
Pedestrian crowds can form jamming arches near an exit. This scenario is well-
studied because of crowd disasters, such as at the Love Parade (Berlin, 2010).

 What about T cells?→
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Step 5: consolidate model — and repeat.
Simulated T cells can indeed form jamming arches:

0:00 / 0:54

Work in progress, but see: Wortel (2021). .



https://repository.ubn.ru.nl/handle/2066/236680
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Work of Shabaz Sultan

0:00 / 0:15
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Challenge:

Are CPMs interpretable?
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CPMs are not fully interpretable.
Emergent behavior is nice, but...
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CPMs are not fully interpretable.
Emergent behavior is nice, but...

... we still don't know exactly how parameters lead to outputs.
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"Explaining" CPMs — visualization
Visualizing and manipulating models interactively: artistoo.net

https://artistoo.net/
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competing energy terms

(i.e.: maintaining volume, adhesion,

protrusions, ...)
protrusion activity
cell breaking
cell shape, speed, turning, ...

"Explaining" CPMs — tracking internal states
Tracking internal model states and outcomes over time:
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"Explaining" CPMs — parameter screening
For example: how does cell motion in a microchannel depend on channel size & cell
flexibility (perimeter)?

0:00 / 0:13
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"What I cannot create, I do
not understand."

— Richard Feynman

33



"What I cannot create
, I

do not understand."
— Richard Feynman

,
visualize, and take apart
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