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Deep Learning Interpretability: What have we learned?

▪ “Models are approximations, never exactly true” [Box, 1997]


▪ The sole optimization performance is not sufficient to ensure reliability [Doshi-Velez and Kim, 2017]

▪ Performance drops, little robustness, hidden biases [Arvidsson et al., 2015; Nguyen et al., 2015; Zou et al., 2018] 
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Deep Learning Interpretability: What have we learned?
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▪ Previous work and current research efforts teach us about

▪Model evaluation, debugging

▪ Some data correlations reflect the reality but may be harmful [Lengherich et al., 2022]


▪ Interpretability for performance improvement [Graziani et al., 2021]

▪Our general understanding about DL generalisation (and memorisation patterns) [Graziani et al., 2019]
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We learned: architectural biases in CNNs
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Low layers extract simple features of color and texture [Olah et al., 2016].


Complex (high-level) concept representations appear at deep layers [Kim et al., 2018; Graziani et al., 2018]


ImageNet7 pre-trained CNNs are biased towards texture [Gheiros et. al., 2018]

Gabor-like filters not crucial for medical images [Raghu et al., 2019], feature reuse at low layers [Graziani et al., 2018]
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We are now learning about transformers
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Transformer’s pay attention globally and locally [Raghu et al., 2022]

Large dataset Small dataset
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We learned: interpretability and domain-expertise improve our models
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Linear probing representations shows the learning dynamics [Kim et al., 2018; Graziani et al., 2018] and it 
can be used to improve model optimization [Graziani et al., 2021]


Multi-task adversarial architecture to learn desired patterns and forget undesired ones

Weighting of losses nontrivial: 

Vanilla sum and uncertainty-based approach 
[Graziani et al., 2021] 
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We learned: interpretability and domain-expertise improve our models
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Another example of “useful” interpretability: adapting transfer learning with domain-
knowledge [Graziani et al., 2020]
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Each data point I projected into this hidden space ¡(I ) is associated with its scale ratio r . We represent a
regression plane corresponding to the vector v in two dimensions.

In this scenario, we can represent g 0
æ(·) as a translation matrix in Rd by æ along v, so that g 0

æ(¡(I )) =¡(I )+v·æ.
To approximate g 0

æ(·) and generalize to multiple input images, we consider images of objects that appear
at various scales as shown in Fig. 2, and learn the regression of their corresponding scale ratios as in (1). The
correlation of hidden features with the scale can be evaluated for rescaled versions of an image as in [8]. The
rescaling, however, induces artifacts that can be highly correlated with response maps, as shown in [4, 19].

The approach used to analyze the scale information at a given layer is summarized in Fig. 1 and detailed in
the following. We extract the activations for a set of inputs and spatially average the d response maps to obtain
a d-dimensional feature vector ¡(I ) for each input image I . The averaging step is needed to remove locality and
to reduce dimensionality as discussed in [16]. When dealing with flattened final layers, the spatial averaging
does not apply. We also normalize the ¡(I )’s to have zero mean and unit variance on each dimension using the
set of regression training data (not to be mistaken with the CNN training data). We then learn the regression
vector v in (1). To this end, we regress a scale ratio which we define as r =

q
hb£wb
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, where hb , wb , hi and wi

are the height and width of the object bounding box and of the image. Additionally to the standard residual sum
of squares regression, we use a Lasso (L1 norm minimization) regularization. It is used as a feature selection
to evaluate the regression with a few features. The Lasso optimization function of the linear regression can be
written as the residual sum of squares with L1 penalization as follows.
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where n is the number of training images, y j and ŷ j are the ground truth and predicted scale ratio r , Æ is the
weight given to the Lasso regularization. Once optimized for a set of training images, the regression is evaluated
on held-out images either from the same class or from another class using the R2 coefficient of determination.
R2 > 0 means that the model is doing better than predicting the mean of the test set, while R2 = 1 represents a
perfect prediction. In the experiments, 220 training images from the albatross ImageNet class (ID: n02058221)
are randomly drawn to regress the scale. Similarly, 220 test images are used as test set either from the same or
from a different class as specified in the experiments.

Examples of images used in the analysis are illustrated in Fig.2. These three classes were selected from the
ImageNet so that images contain a single object and these objects either share similarities across classes (two
types of birds), or are fundamentally different (birds and racing cars).

4 Alignment of Scale Information Along Individual Dimensions

In this section, we consider training and test images of the scale regression of a single class (albatross) as in [4].

4.1 Measuring Alignment

In this section, we evaluate whether the scale information is encoded by individual feature maps or as complex
combinations of several feature maps. The alignment thus refers to scale values varying along a single feature
map. After training the regression model, the regression vector is normalized: v̂ = v

|v| . We then compute the
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Pruning strategy that removes the layers where invariance 
is learned to improve the transfer

MAE = 54.93 MAE = 81.85

Significant improvements in 
performances after pruning

pruned CNN

Task: 

Regression of 
average nuclei 
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What we know :
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So much we do not know yet!

9



Computational System Biology Group IBM       06.05.2022    

Deep Learning Interpretability

▪ We do not yet understand the full picture

▪ AlphaGo beats world Go champion in 2016 by opting for an 
unusual move [Silver et al., 2016]


▪ What is in between what DL can achieve and humans cannot? 

▪ Can interpretability can help us find out? YES!

10

What we know 
about DL

What we do not know, 
but DL knows
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1 Minute Trivia
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Extreme trivia
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CNNs predict the gender [Korot et al., 2021], smoking habits and the risk of cardiovascular 
diseases [Poplin et al., 2018] from eye fundus imaging

▪ Could you predict the gender of the patient?

▪ Its risk of cardiovascular issues?
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▪ Could you predict the current distribution of pollen in 
Switzerland?


Extreme trivia

▪ Could you predict gene mutations and expressions in 
human tissue?


▪ These are tasks above the capabilities of many of us…and of many domain-experts too

▪ Patterns of gene mutation can be predicted from human tissue microscopy [Kather et al., 2020]
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Interpretable DL modelling for colorectal cancer
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Learning biomedical patterns in colorectal adenocarcinoma
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Colon
Regular structure 
of the tissue 

Irregular growth

Infiltration

▪ > 80% of colon cancer is adenocarcinoma [Xi et al., 2021]

▪ Molecular sub-types differentiate prognosis [Ronen et al., 2019], but RNA-seq rarely integrated 
▪ Previous work to predict gene mutations [Kather et al., 2020] and molecular subtypes (CMS) [imCMS]


▪ DL interpretability to facilitate scientific discovery: 

▪ relationship between tissue microscopy and molecular patterns

Abnormal growth and 
invasion
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Objective: identify histologic appearance of molecular subtypes
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Survival 
curves from X

▪ Use DL interpretability to discover relationships between

▪ Histologic tissue appearance and molecular subtypes

▪ Tumor heterogeneity and molecular analyses
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Step back: gene selection and upper bound
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▪ 40-gene signature of CMS [Buechler et al., 2020] + 7 additional genes identified as biomarkers [Pan et al., 2019; PMC3635192] 

▪ [ !!! ] Preliminary analysis with Explainable Boosting Machines (EBMs)[Caruana et al., 2015]


▪ Test AUC (One-Vs-Rest) UB 0.94; vs. vanilla XGBoost AUC 0.88 (thinking about Context after Ben’s talk…)

TP53RK

RAB34
TOP 4

PRIOR
KNOWLEDGE

AXIN2MUC2

FSNC1

QPRT

CMS1 CMS2 CMS3 CMS4
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How? Paying attention as the model does

18

▪ Attention-based Multiple Instance Learning 
[Ilse et al., 2018]:

▪ Learns a single label from a bag of instances

▪ Attention-based pooling

▪ 1 model/gene; multi-task combination of 

genes

▪ Very hard for a pathologist, but not random 

DL predictions for 47 genes:

▪ Mean Average Percentage Error < 60%

▪ CMS prediction AUC (OVR) UB 0.94

▪ CMS prediction from images AUC 0.67

Bag of Instances

W
T

TGFB3

MUC2

Patient’s frozen sections

CNN 
Gene expression

attention 
pooling

1 5

ts
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Results

19* all p-values < 0.001

▪ Test Median Absolute Percentage Error (MAPE) avg. all genes = 0.66 vs. 0.80 baseline and  0.93 random 

▪ Top 4 genes from EBMs not too well learned:


▪ FSNC1 ρ = 0.26; MAPE = 0.70 //  TP53RK ρ = 0.58; MAPE = 0.71 // QPRT ρ = 0.43; MAPE = 0.74 //
RAB34 ρ = 0.63; MAPE = 0.68 


▪ Best gene model is AOC3: 0.54 MAPE (vs. 60% baseline), ρ=0.63 (vs. 0.50 baseline)* 

▪ AOC3 is over expressed (+) in CMS4 and plays a role in adipogenesis NRP2, 


▪ COL8A2, TGFB3 also have ρ at 0.57, 0.57  and 0.50 (vs. 0.65, 0.51, 0.43 baseline)* 
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Interpreting the model 
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ensemble

…
Tissue to 
gene exp.

RNA-seq 

Patch-wise 

attention             

Patch-wise 

attention

Tissue to 
gene exp.…

RNA-seq 

Robust model 
attention

*Based on the WIP of Nicolas Deutschman and Johnatan Hub
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Interpreting the model … by cherry picking
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TP53RK AXIN2

TP53RK AXIN2

TOP SECTION

BOTTOM SECTION

AXIN2 GEX

AXIN2 GEX

Come talk to 
me for more 

results!
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Interpreting the model … by measuring
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TP53RK CMS2 

LOW GEX HIGH GEX

Structural Similarity Index

Model seems confused…
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Interpreting the model … by measuring
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RAB34      CMS4

LOW GEX HIGH GEX

Better job at separating visual features

… but more metrics should be used!



Computational System Biology Group IBM       06.05.2022    

Final remarks

24

▪ There is so much we do not know and understand yet

▪ Interpretability may be a means to fill the gap between what DL 

can achieve and humans cannot


▪ In biomedical research, it can uncover new patterns

▪ How do we assess, verify and test new knowledge?

▪ How do we disentangle real relationships from spurious ones?


▪ Attention mechanisms in MIL can teach us about where to pay 
attention, yet we need to understand how and when we can 
translate the discovered information into new knowledge


▪ Yet preliminary work, lots to extend further

What we know 
about DL

What we do not know, 
but DL knows


