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Deep Learning Interpretability: What have we learned?

Deep Learning

Big data

Prediction

= “Models are approximations, never exactly true” [Box, 1997]
= [he sole optimization performance is not sufficient to ensure reliability [Poshi-Velez and Kim, 2017]
= Performance drops, little robustness, hidden biases [Arvidsson etal., 2015; Nguyen et al., 2015; Zou et al., 2018
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Deep Learning Interpretability: What have we learned?

Feature Attribution (i) Feature Visualization (ii) Concept Attribution (iii) Surrogates (iv)
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» Previous work and current research efforts teach us about

= Model evaluation, debugging
= SOme data correlations reflect t
= Interpretabllity for performance

ne reality but may be harmful [Lengherich et al., 2022]

improvement [Graziani et al., 2021]

= Our general understanding about DL generalisation (and memorisation patterns) [Graziani etal., 2019]
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We learned: architectural biases in CNNSs

= | ow layers extract simple features of color and textu

= Comp
" |Image

ex (high-leve

) concept representations appea

e

Olah et al., 2016].

- at deep Iayers [Kim et al., 2018; Graziani et al., 2018]

Net” pre-trained CNNs are biased towards texture [Gheiros et. al., 2018]

(a) Texture image {b) Content image (c) Texture-shape cue conflict
81.4%  Indian elephant 71.1%  tabby cat 63.9%  Indian elephant
10.3% indr’ 17.3% grey [ox 206.4% ndri
8.2% klack swan 3.3% Siamese cat 9.6% kblack swan

= Gabor-like filters not crucial for medical images [Raghuetal., 20191 “fegture reuse at low layers [Grazianietal., 2018]
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We are now learning albout transformers

* Transformer’s pay attention globally and locally [Raghu etal., 2022]
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We learned: interpretability and domain-expertise improve our models

= | inear probing representations shows the learning dynamics [Kim etal., 2018; Graziani et al., 2018 gnd |t
can be used to improve model optimization [Graziani et al., 2021]

= Multi-task adversarial architecture to learn desired patterns and forget undesired ones
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. Global Average Pooling
F b, (=7 Dense nodes
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Undesired target
\ ~ J = : «-- Qradient reversal
0 - : First block
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K N
E § £z, ef’ ’ § Ez (Ofv Hk) Weighting of losses nontrivial:
| | Vanilla sum and uncertainty-based approach
: : [Graziani et al., 2021]
mailn task K extra tasks
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We learned: interpretability and domain-expertise improve our models

* Another example of “usetul” interpretability: adapting transter learning with domain-
knowledge [Graziani et al., 2020
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VWhat we kKnow
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SO much we do not know yet!
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Deep Learning Interpretabillity

What we know
about DL

= \We do not yet understand the full picture

» AlphaGo beats world Go champion in 2016 by opting for an
Unusual move [Silver et al., 2016]

= \What is in between what DL can achieve and humans cannot?
= Can interpretability can help us find out? YES!

What we do not know,
but DL knows
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1 Minute Irivia
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Extreme trivia

= Could you predict the gender of the patient?
= |ts risk of cardiovascular issues?

= CNNs predict the gender [Korotetal., 20211 - smoking habits and the risk of cardiovascular
diseases [Poplin etal., 2018l from eye fundus imaging
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Extreme trivia

B 3,:‘;’ | «» Could you predict the current distribution of pollen in
A Rl R Switzerland?
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= Could you predict gene mutations and expressions in
human tissue”?

= [hese are tasks above the capabillities of many of us...and of many domain-experts too
= Patterns of gene mutation can be predicted from human tissue microscopy [Katheretal. 20201 .
i)
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Interpretable DL modelling for colorectal cancer
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| earning biomedical patterns in colorectal adenocarcinoma

Irregular growth

Abnormal growth and

V' Regular structure Invasion

Colon of the tissue

= > 80% of colon cancer is adenocarcinoma Xietal., 2021]
= Molecular sub-types differentiate prognosis [Fonen etal., 2019 byt RNA-seq rarely integrated
= Previous work to predict gene mutations [Katheretal., 2020] gnd molecular subtypes (CMS) ImCMs]

= DL interpretabillity to facilitate scientific discovery:
= relationship between tissue microscopy and molecular patterns
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Objective: identify histologic appearance of molecular subtypes

= Use DL interpretabillity to discover relationships between

= Histologic tissue appearance ar

d molecular subtypes

= [umor heterogeneity and molec
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Step back: gene selection and upper bound

= 40-gene signature of CMS [Buechleretal., 2020] 4 7 gdditional genes identified as biomarkers [Fan etal., 2019; PMC3635192]
= [ lII'] Preliminary analysis with Explainable Boosting Machines (EBMs)Caruana etal., 2019]
= Jest AUC (One-Vs-Rest) UB 0.94; vs. vanilla XGBoost AUC 0.88 (thinking about Context after Ben'’s talk...)
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How’? Paying attention as the model does

Patient's frozen sections  Bag of Instances = Attention-based Multiple Instance Learning

lllse et al., 2018]:
= | earns a single label from a bag of instances
= Attention-based pooling
= 1 model/gene; multi-task combination of
gENES
= \ery hard for a pathologist, but not random
DL predictions for 47 genes:
= Mean Average Percentage Error < 60%
= CMS prediction AUC (OVR) UB 0.94
= CMS prediction from images AUC 0.67

attention
pooling
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Results

= Jest Median Absolute Pe

= Jop 4 genes from EBMs

= FSNC1 p =0.26; MAPE =
RAB34 o = 0.63; MAPE = 0.68

» Best gene model is AOC3: 0.54 MA

PE (vs. 60% baseline), p=0.63 (vs. 0.50 baseline)”

= AOCS3 is over expressed (+) in CMS4 and plays a role in adipogenesis NRP2,
» COL8A2, TGFB3 also have p at 0.57, 0.57 and 0.50 (vs. 0.65, 0.51, 0.43 baseline)*

rcentage Error (MAPE) avg. all genes = 0.66 vs. 0.80 baseline and 0.93 random

Not too well learned:
0.70// TP53RK p =0.58; MAPE = 0.71 // QPRT p = 0.43; MAPE =0.74 //
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Interpreting the model

-~ Tissue to - Tissue to
. gene exp. . gene exp.
RNA-seq ~

Patch-wise
attention

Patch-wise

attention

ensemble

20 computBaseckonthecWiiPof Nicolas Deutschman and Johnatan Hub

-» Robust model
attention



Interpreting the model ... by cherry picking
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Interpreting the modadel ... by measuring
TP53RK <L, CMS2
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Interpreting the modadel ... by measuring
RAB34 {FCI\/IS4
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Better job at separating visual features
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Final remarks

What we know
about DL

= There Is so much we do not know and understand yet

= |nterpretability may be a means to fill the gap between what D
can achieve and humans cannot

= [N biomedical research, it can uncover new patterns
= How do we assess, verify and test new knowledge?
= How do we disentangle real relationships from spurious ones?

= Attention mechanisms in MIL can teach us about where to pay
attention, yet we need to understand how and when we can
translate the discovered information into new knowledge

= Yet preliminary work, lots to extend further

What we do not know,
but DL knows
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