Interpretable prediction of T cell receptor binding

María Rodríguez Martínez

IBM, Zürich Research Lab

T cells are essential for adaptive immune responses

- T cells
 - → distinct T cell receptor (TCR)
 - → selectively recognize foreign epitopes
 - → cross-reactive
 - → regulate adaptive immune responses

Modeling adoptive cell transfer therapies

- Chimeric Antigen Receptor (CAR) T cell therapies
- T cell-based therapies

- Extract T cells from a patient
- (Engineer them to express a CAR)
- Expand them in vivo
- Reinfuse them into the patient

Credit: US National Cancer Institute

TITAN, an interpretable model to predict T cell receptor – antigen binding.

TITAN: AI model to predict T cell receptor – antigen binding

• TITAN: multimodal neural network to predict TCR binding

- 10¹⁵-10²⁰ theoretical diversity of TCRs
- Binding data of very few epitopes

Data

- VDJ database contains 40,438 TCR sequences binding 191 epitopes
- COVID dataset with 154,320 TCR sequences binding 269 epitopes
- Generate negative examples by shuffling

- Final data:
 - 46,290 TCRs binding 192 epitopes (15 400 TCRs/epitope)

TITAN: predicting TCR- epitope binding affinity

TITAN performance

TITAN performance: good TCR generalization

TITAN performance: good TCR generalization

TITAN performance: poor epitope generalization

Extracting insights with attention mechanisms

Attention mechanisms:

→ Identify amino acids most important to predict the binding

AA CDR3

a CDR3 sequences

Extracting insights with attention mechanisms

Attention mechanisms:

→ Identify amino acids most important to predict the binding

AA CDR3

high

low

Extracting insights with attention mechanisms

Attention mechanisms:

→ Identify amino acids most important to predict the binding

AA CDR3

a CDR3 sequences

- Good generalization towards new TCRs \checkmark
- Bad generalization towards new epitopes X

Unravelling TCR-antigen binding rules

Predict cross-reactivity:

- A single TCR can recognize a million peptides
 - Off-target toxicities
 - Autoimmune diseases

Engineer TCRs with improved affinity

Mechanistic insights

DECODE: Interpretable pipeline for TCR binding

- Understand TCR binding rules
- Generate if-then rules

Precision: 90.09 %, Coverage: 36.43 %

DECODE: Interpretable pipeline for TCR binding

Explanations can be visualized and evaluated

DECODE: Interpretable pipeline for TCR binding

Explanations can be visualized and evaluated:

→ Cluster level: a sample is a true positive if it fulfills *only* the anchor rule generated from the medoid of its cluster

Blue – non-binding rules Orange – binding rules

Ongoing work

Increasing the amount of epitope data

- Semi-supervised learning approaches
 - > Exploit labelled and unlabelled data

Increasing the amount of epitope data

- Semi-supervised learning approaches
 - > Exploit labelled and unlabelled data

• Future work: reinforcement learning for domain adaptation

Conclusions

Goal

- Predicting TCR binding is essential to understand the adaptive immune system and to engineer immune interventions
 - Optimization of cancer immunotherapies

TITAN

- Predicts the binding of TCRs and a small set of epitopes
 - Good accuracy when epitope is fixed
 - Interpretability through attention mechanisms

DECODE

 Interpretable pipeline to generate biochemical rules to explain TCR-epitope binding

Future work

- Predicting cross-reactivity when little epitope data
 - Semi-supervised learning approaches
 - Combination of molecular dynamics + Al

Thank you for your attention!

Systems Biology team

@ IBM Research
and
many external
collaborators.

FONDS NATIONAL SUISSE
SCHWEIZERISCHER NATIONALFONDS
FONDO NAZIONALE SVIZZERO
SWISS NATIONAL SCIENCE FOUNDATION

grant agreements: No 668858, 826121, 765158, 813545.

