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Why Interpretability or Explainability?
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Sources of Interpretation => fvidence

https://en.wikipedia.org/wiki/35_mm_movie_film#/media/File:35mm_movie_negative.jpg
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Abstract—As a subfield of machine learning, reinforcement
learning (RL) aims at empowering one'’s capabilities in be-
havioural decision making by using interaction experience with
the world and an evaluative feedback. Unlike traditional su-
pervised learning methods that usually rely on hot, ex-

RL Applications

Reinforcement Learning in Healthcare: A Survey

Chao Yu, Jiming Liu, Fellow, IEEE, and Shamim Nemati

feedback and the new state from the environment. The goal
of the agent is to learn an optimal policy (i.e., a mapping
from the states to the actions) that maximizes the accumulated
reward it receives over time. Therefore, agents in RL do

haustive and supervised reward signals, RL tackles with se-
quential decision making probl with pled luative
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RL Challenges

RL in simulations RL in the real world

Poole and Lee (2021). Towards Intrinsic Interactive Reinforcement Learning



RL Challenges
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Let us collect
“Evidence”




Deep Reinforcement Learning
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Dao and Lee (2018). Deep Reinforcement Learning Monitor for Snapshot Recording.
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Dao and Lee (2018). Deep Reinforcement Learning Monitor for Snapshot Recording.
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No action (not moving) does not help!

Dao and Lee (2018). Deep Reinforcement Learning Monitor for Snapshot Recording.



Ms PacMan (after 1.2M iterations)

Dao and Lee (2018). Deep Reinforcement Learning Monitor for Snapshot Recording.




Ms PacMan (after 1.2M iterations)

Craving for food. Heading towards the food is good, and moving away
from it is bad.

Dao and Lee (2018). Deep Reinforcement Learning Monitor for Snapshot Recording.



Ms PacMan (after 2.4M iterations)

Dao and Lee (2018). Deep Reinforcement Learning Monitor for Snapshot Recording.




Ms PacMan (after 2.4M iterations)

2 3

Starting to be scared with a ghost, but still craving for food to make a
wrong decision.

Dao and Lee (2018). Deep Reinforcement Learning Monitor for Snapshot Recording.




Overcoming
Interpretability-
Performance Tradeoff
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Continual / Lifelong
Learning




Continual Deep Reinforcement Learning

Dao and Lee (2021). Snapshots Storage for Continual Deep Reinforcement Learning



Continual Deep Reinforcement Learning

Forgetting

Dao and Lee (2021). Snapshots Storage for Continual Deep Reinforcement Learning



Continual Deep Reinforcement Learning

Dao and Lee (2021). Snapshots Storage for Continual Deep Reinforcement Learning



Continual Deep Reinforcement Learning
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Gatcher and Flappy Bird

Dao and Lee (2021). Snapshots Storage for Continual Deep Reinforcement Learning



Gatcher and Flappy Bird
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Gatcher and Flappy Bird
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Catcher Snapshots no Training
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Evidence-Driven Reinforcement Learning
Interpretation of Evidence

Use of Evidence for Efficient Learning

Evidence for Continual Learning

o Mitigate forgetting problem

Can be combined with existing methods

® Can collect evidence in all training stages of DRL




Evidence-Driven Reinforcement Learning
Interpretation of Evidence

Use of Evidence for Efficient Learning

Evidence for Continual Learning

o Mitigate forgetting problem

Can be combined with existing methods

® Can collect evidence in all training stages of DRL

Further exploration:

e Evidence-driven communication with Human
e Kernel tricks for stronger evidence selection
® Non-Bayesian Approximation

e Sparse Evidence / Local Evidence
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