

Building Networks

Karen Daniels Department of Physics NC State University

Dramatis Personnae

How do grains resist stresses?

0.4 0.2 0 0 1000 2000 3000 time

Estelle Berthier, Farnaz Fazelpour, Clayton Kirberger

Measuring Interparticle Contact Forces

low

Abed-Zadeh, Barés, et al. Granular Matter (2019)

Rigidity

- the ability of a system to resist imposed stresses
- caveat: materials often contain rigid & floppy subregions

... are system-wide averages still useful?

- where will failures occur?
- what sets failure criterion?

3 frameworks

less physics

network scie<mark>nce</mark>

con<mark>str</mark>aint cou<mark>ntin</mark>g

vibr<mark>ati</mark>onal mo<mark>des</mark>

more physics

frictional grains

disordered lattices

2 materials

Force chains

Desmond & Weeks. Soft Matter (2013)

20

Brujic et al. Physica A (2003)

Lin, Bierbaum, Schall, Sethna, Cohen (2016)

Force chains record history

Majmudar & Behringer Nature (2005)

Sensitivity to Small Changes

Jonthan Kollmer

"movie" of images taken of the same, regenerated configuration

Kollmer & Daniels. Soft Matter (2019)

Real particles are rough

Kool, Charbonneau, Daniels, arXiv: 2205.06794

Configurations \rightarrow Adjacency Matrix

particle packing (a)

network nodes (b)

network edges (c)

Papadapoulous, Daniels, Porter, Bassett. *J. Complex* Networks (2018)

edge weight

Network science metrics for different scales

System

ID: Curves

Global Efficiency

Modularity

Geodesic Node Betweenness

Clustering Coefficient

- Efficiency of global signal transmission
- Local geographic domains

 Bottlenecks or centrality Local loop structures

Betweenness Centrality

- s_{ij} = shortest path between particles i,j
- can be either # of hops or weighted
- b(n) = fraction of total # of shortest paths that go through particles n
- high $b(n) \sim$ "airline hubs"

http://www.brain-connectivity-toolbox.net/

Betweenness centrality predicts forces

Kollmer & Daniels. *Soft Matter* (2019)

Betweenness centrality predicts forces

Kollmer & Daniels. *Soft Matter* (2019)

Does centrality forecast failure locations?

→ Disordered lattices

Estelle Berthier

laser-cut lattice

Berthier, Porter, Daniels. *PNAS* (2019) Berthier, Kollmer, Henkes, Liu, Schwarz, Daniels. *Phys. Rev. Mat.* (2019)

Failure Locations & Betweenness

About 77% of failing edges have $E^{failed} > \langle E \rangle$

About 37% of the network edges have $E > \langle E \rangle$

Shared property of all networks for small damage event

 $E_{ij}/\langle \mathbf{E} \rangle$

Berthier, Porter, Daniels. PNAS (2019)

Better model \rightarrow better prediction

Berthier, Porter, Daniels. PNAS (2019)

Lattice Fracture

Continuous Cast Acrylic Thickness = 3.17 mm Beam width = 1.5 mm

Vary mean coordination number z

Berthier, Kollmer, Henkes, Liu, Schwarz, Daniels. Phys. Rev. Mat. (2019)

Connectivity controls failure mode

Berthier, Kollmer, Henkes, Liu, Schwarz, Daniels. Phys. Rev. Mat. (2019)

Low-z response & failure

• Phase I: Elastic response

- Beams compress & stretch
- Intersections rotate
- Phase 2: Successive Failures
 - Progressive damage
 - Distributed damage
- End result: spanning crack

Berthier, Kollmer, Henkes, Liu, Schwarz, Daniels. Phys. Rev. Mat. (2019)

Changes in behavior with <z>

Brittle-like:

- Localized
- Catastrophic
- Low deformation

Rigidity in granular experiments

Jonthan Kollmer

Kuang Liu

Constraint Counting

less physics

- torque and force balance
- degrees of freedom
- look for clusters where constraints are satisfied

: Vibrational Modes

$$\begin{split} \delta \ddot{r}^{i}_{\alpha\beta} &= -D^{ij}_{\alpha\beta} \delta r^{j}_{\beta} + \text{dissipation}(\delta \dot{r}) + O(\delta r^{2}), \\ D^{ij}_{\alpha,\beta} &= \frac{1}{\sqrt{m_{i,\alpha}m_{j,\beta}}} \frac{\partial^{2} V_{ij}}{\partial r_{i,\alpha} \partial r_{j,\beta}}. \end{split}$$

more physics

- consider (frictional, dissipative) particles as being in energy wells
- look for regions of low-frequency modes

Liu, Kollmer, Daniels, Schwarz, Henkes PRL (2021)

Pebble game reveals rigid clusters

3

bond

redundant

frictional contact sliding contact

- 3 pebbles / particle
- 2 bonds / frictional contact
- 1 bond / sliding contact

Cover bonds with pebbles Leave 3 pebbles for global dof

leftover

pebbles

Decompose into rigid clusters and floppy bonds

Jacobs & Thorpe. *PRL* (1995) Henkes, Quint, Fily, Schwarz. *PRL.* (2016)

Vibrational modes: set a threshold

Liu, Kollmer, Daniels, Schwarz, Henkes PRL (2021)

Force Chains

Vibrational

Constraints

Force Chains

Constraints

Vibrational

2 frameworks tell the same story

Liu, Kollmer, Daniels, Schwarz, Henkes PRL (2021)

Threshold for global rigidity: $z_c \sim 2.4$

- 50% probability of finding a system-spanning cluster
- no tossing out of rattlers

Characterizing floppy regions

Liu, Kollmer, Daniels, Schwarz, Henkes PRL (2021)

Do floppy regions forecast failure locations?

Recall: ductile vs. brittle behavior

Brittle-like:

- Localized
- Catastrophic
- Low deformation

Identify rigid clusters via pebble game

Compare to failure dynamics

Flexible

Rigid cluster percolation

Lattice failure transition point

Flexible

Rigid cluster percolation

Most failures occur on flexible bonds

$$<_{z}> = 3.0$$

Force Chains

Vibrational

Constraints

Forecasting loss of rigidity

- Multilayer community detection
- GenLouvain modularity maximization

$$Q = \frac{1}{2\mu} \sum_{ij\ell m} [(A_{ij\ell} - \gamma P_{ij\ell})\delta_{\ell m} + \omega_{j\ell m}\delta_{ij}]\delta(c_{i\ell}, c_{jm})$$

Mucha, Richardson, Porter, Onnela, *Science* (2010) http://netwiki.amath.unc.edu

layer *l*

layer l + 1

Forecasting loss of rigidity

• Size: number of particles in community

Farnaz Fazelpour

- Strength: average interparticle for in community
- Volatility: how much communities change from layer to layer

layer t

layer *t*+1

Examine a series of stick-slip failures

Volatility changes slightly before image intensity changes

Weak chains matter

How about for real landslides?

Handwerger et al. Scientific Reports (2019)

https://www.usgs.gov/media/images/mud-creek-shaded-relief-topograp hy-2010-2017

Forecasting loss of rigidity

Which locations have reliable community detection?

Community Persistence Π

A measure based on the stability of nodal composition for each community in relation to community size for each layer *I*

$$\Pi = \frac{1}{N} \sum_{c} \frac{|c_{l-1} \cap c_l|}{n_{c,l}}$$

N: Total number of nodes

 $\underline{n_{c,l}}$: Number of nodes in community *c* at layer *l* | $c_{l-1} \cap c_l$ | : number of nodes present in community *c* in both layers *l* and *l*-1

Layer I-1

Layer /

Increased community persistence forecasts failure

General Conclusions

- more physics gives you better predictions and a better understanding ...
- but simple models are surprisingly effective
- sometimes topology is a strong control

Conclusions

- centrality identifies likely force chain locations, lattice failure locations
- communities-detected change character ahead of failure
- granular packings: pebble game identifies same rigid areas as vibrational modes
- floppy areas may be more prone to failures (at least for some lattices)

Open Science Tools

- Data from our papers: http://datadryad.org
- Photoelastic Granular Solver: Jonathan Kollmer github.com/jekollmer/PEGS
- Rigidity Toolbox: Silke Henkes https://github.com/silkehenkes/RigidLibrary
- NetWiki: Mason Porter, Peter Mucha http://netwiki.amath.unc.edu/
- Brain Connectivity Toolbox: Mikail Rubinov, Olaf Sporns http://www.brain-connectivity-toolbox.net/

Real particles

Kool, Charbonneau, Daniels, arXiv Liu, Kollmer, Daniels, Schwarz, Henkes *PRL* (2021)

Characterizing floppy regions

Liu, Kollmer, Daniels, Schwarz, Henkes *PRL* (2021)