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1 Overview of the Field
The use of 4-dimensional perspectives and techniques to study 3-dimensional spaces and
knots inside of them is often referred to colloquially as topology in dimension 3.5. As the
study of 4-manifolds continues to accelerate, the analogous notion of topology in dimension
4.5 has become increasingly indispensable: the use of 5-dimensional techniques to study
4-dimensional manifolds and knotted surfaces inside of them.

One of the initial, and still most canonical, uses of topology in dimension 4.5 is to
study pairs of 4-manifolds that are homeomorphic but not diffeomorphic. Classifying
smooth 4-manifolds remains an elusive goal; for instance the generalized Poincaré con-
jecture remains open smoothly in dimension four. However, if two smooth, closed, simply
connected 4-manifolds X and Y are homeomorphic, then there is a smooth, simply con-
nected cobordism W 5 between them that induces homotopy equivalences on either end, i.e
an h-cobordism [Si]. This provides a valuable bridge between the smooth structures on X
and Y , and hence understanding W allows us to compare the two 4-manifolds.

More recent directions of the developing field of topology in dimension 4.5 include:
studying knotted surfaces in 4-manifolds up to isotopy and concordance, detecting the dif-
ference between topological and smooth isotopy of surfaces, and understanding the map-
ping class groups of 4-manifolds.
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2 Recent Developments and Open Problems

2.1 Corks
In the 1990’s, Curtis-Freedman-Hsiang-Stong [CFHS] showed that h-cobordisms are al-
ways smoothly products away from contractible sub-cobordisms called corks. This lo-
calizes the smooth differences between a simply connected exotic pair X,Y , since an h-
cobordism W between X and Y is a product away from some cork. Corks have been
well-studied in recent years (see e.g. [Ak, MS, AY]) to understand the complexities of
h-cobordisms between 4-manifolds and relate exotic structures in general. In particu-
lar, Freedman’s topological h-cobordism theorem implies the topological 4-dimensional
Poincaré conjecture: any simply connected 4-manifold with vanishing self-intersection is
homeomorphic to S4.

Motivating Question 1. Is an h-cobordism between two homotopy 4-spheres always dif-
feomorphic to S4 × I?

The above question is one of the most fundamental open problems in smooth 4-dimensional
topology, which would imply the smooth 4-dimensional Poincaré conjecture.

Motivating Question 2. Is there a single cork away from which any two homeomorphic,
simply-connected smooth 4-manifolds differ?

2.2 Concordance
One of the most prolific topics in 3.5-dimensional topology is the study of an equivalence
relation of knots in a 3-manifold called concordance. Several recent results have sparked
interest in concordance of knotted 2-spheres in 4-manifolds. The notion of 0-concordance
of knotted spheres was introduced by Melvin in 1977, who proved that 0-concordant 2-
spheres have diffeomorphic Gluck twists, providing relevance to the smooth 4-dimensional
Poincaré Conjecture. The first obstructions to 0-concordance were produced in 2019 by
Sunukjian [Su], Dai–Miller [DM], and Joseph [Jo], who showed that the 0-concordance
monoid is not finitely generated, and also not a group. Besides these results we know very
little about this 4.5-dimensional concept, which could provide a useful lens to study the set
of all knotted spheres.

Motivating Question 3. Are there examples of spheres that are n-concordant, for arbitrar-
ily high n? Are there spheres that are 0-cobordant but not 0-concordant?

2.3 Lightbulbs
Gabai’s recent ‘4-dimensional Lightbulb Theorem’ [Ga1] has sparked a new interest in
multiple classical concordance and isotopy invariants of 2-spheres in 4-manifolds. Gabai
used a hands-on geometric approach to characterize the conditions under which homotopy
implies isotopy for 2-spheres in certain 4-manifolds. Shortly afterwards, Schneiderman and
Teichner [ST2] proved the Lightbulb Theorem in arbitrary 4-manifolds, revitalizing the use
of a concordance invariant introduced by Freedman and Quinn [FQ] in the 1990’s and
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later corrected by Stong [St]. Several experts have conjectured an analog to the Lightbulb
Theorem for properly embedded disks instead of 2-spheres requiring a powerful refinement
of the Freedman-Quinn invariant due to Dax [Da], which obstructs isotopy as opposed to
concordance. Examples of concordant disks with vanishing Freedman-Quinn invariant but
non-vanishing Dax invariant were recently given by Gabai [Ga2]. Using the Dax invariant
along with other homotopy theoretic techniques, Budney and Gabai [BG] were also able to
produce pairs of 3-balls in the 4-sphere that are homotopic rel boundary, but not smoothly
isotopic.

Motivating Question 4. What invariants obstruct smooth (rather than topological) isotopy
and concordance of 2-spheres in 4-manifolds?

2.4 The Disk Embedding Theorem
In another revitalization of classical techniques, several authors have been investigating
Freedman and Quinn’s seminal work on Freedman’s disk embedding theorem [FQ] and
other foundational results in the topological category [BKKPR], leading to many gener-
alizations of well-known theorems from that era which fall neatly into the category of
4.5-dimensional topology. For instance, Freedman’s proof that every knot in the 3-sphere
with Alexander polynomial 1 bounds a topological disk has been recently generalized to
the setting of n-shake sliceness by Feller–Miller–Nagel–Orson–Powell–Ray [FMNOPR].
In another direction, Conway–Powell [CP] classify locally flat homotopy-ribbon disks in
the 4-ball with certain prescribed fundamental groups of their exteriors. Using their result,
Hayden recently gave the first examples of exotic ribbon disks in the 4-ball, i.e. disks that
are topologically isotopic but smoothly distinct. Guth [Gu] later modified these examples
to produce exotic ribbon disks that must be stabilized an arbitrarily high number of times
before becoming smoothly isotopic.

Motivating Question 5. What conditions on the exteriors of two disks with the same
boundary ensure that the disks are topologically isotopic? What invariants can smoothly
distinguish two disks with simple boundary?

2.5 Diffeomorphism Groups
Watanabe uses a strikingly different set of higher dimensional tools to study problems in
smooth 4-dimensional topology in his recent proof [Wa1] that the smooth 4-dimensional
Smale conjecture is false, and his even more recent work [Wa2] constructing mutually non-
isotopic diffeomorphisms of non simply-connected 4-manifolds. Interesting elements of πk

of diffeomorphism groups of 4-manifolds are studied by building 4-manifold bundles over
Sk+1, which are described using graphs that encode parametrized 4-dimensional surgery
instructions. Invariants of these bundles are then computed, intersection-theoretically, in
higher dimensional configuration spaces of points in the 4-manifolds. The case k = 0, i.e.
the study of smooth mapping class groups of 4-manifolds, yields a fascinating interplay
between dimensions 4 and 5.

Motivating Question 6. What invariants can distinguish elements of πn(Diff(X4))? Are
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they computable?

3 Presentation Highlights
The presentations given during the week-long workshop consisted of:

• 25-minute ‘Picture this!’ talks: Instead of a traditional abstract, we let the picture
do the talking and serve as the abstract for these talks. Four of the ‘Picture this!’ talk
pictures are included in Figure 1.

Eight ‘Picture this!’ talks were given in total; six of them by graduate students. The
informal and creative format of these talks engaged the conference participants, and gave
an opportunity for graduate students to advertise their results in a unique way.

• 50-minute ‘Hot-off-the-press’ talks: These were more traditional research talks on
recent results of interest, including several talks by early-career researchers.

There were 10 ‘Hot-off-the-press’ talks given by a mixture of graduate students, early-
career researchers, and established professors who are leaders in the field. For instance:
graduate student Kai Nakamura gave a talk on his new techniques for constructing exotic
4-manifolds, titled Annulus twisting a disk: Standard and exotic, Slava Krushkal discussed
research in-progress with his collaborators at the conference during his talk Topological
pseudoisotopy of 4-manifolds, and Ryan Budney employed background from the mini-
lecture series to explain ‘How to show a barbell diffeomorphism is non-trivial’.

• Three mini-lecture series: Each mini-lecture series was given by teams of 4-6 con-
ference participants. They presented background, new results, and open questions
about selected topics of interest in the field.

Our mini-lecture series generated many questions and potential avenues of study. It
also prompted experts in these topics to go ‘back to basics’ and welcome a broader 4.5-
dimensional topology community into discussions previously privy to only a few. One
highlight was Tadayuki Watanabe presenting on his pioneering approaches to the study of
diffeomorphism groups of 4-manifolds, one of the topics on which the conference explicitly
focused. Section 3 provides more details on the mini-lecture series and a complete list of
the questions that were generated.

• An ‘after-hours talk’ given by Rob Kirby on some classical proofs and results in
4-manifold topology.

Many also joined the workshop remotely, both to speak and participate, including some
graduate students who reached out to us after we had finalized the participant list. Early-
career researchers such as Danica Kosanovic and Allison Miller who gave talks, but were
not able to attend in-person, also enjoyed the remote option.
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(a) Speaker: Isaac Sundberg, Title: A non-
detection result in Khovanov homology

(b) Speaker: Peter Teichner, Title: Isotopy clas-
sification of half-disks in 4-manifolds

(c) Speaker: Nicholas Cazet, Title: Broken
Sheet Diagrams of Knot Cobordisms

(d) Speaker: Sarah Blackwell, Title: Triple
Grid Diagrams

Figure 1: Selected ‘Picture This!’ abstracts

4 Scientific Progress Made
During the conference, we asked three groups of 4–6 researchers to present a mini-lecture
series on topics related to the theme of this conference. These were, “knotted surfaces,”
“concordance in dimension 4.5,” and “diffeomorphism groups.” Each of these groups (and
some additional participants) proposed open questions in a range of difficulties. We com-
piled the following list of suggested open problems, which we made publicly available at
https://math.stanford.edu/ maggiehm/TopologyDim4point5.html. We include the list here
to illustrate the depth of the conference, although the language is necessarily technical.

———– · ———–

Question 1. [P. Naylor] Is the Gluck twist of the roll-spun 2-knot of the classical knot 73
diffeomorphic to the standard 4-sphere?

Naylor and Schwartz [NS] previously showed that the Gluck twist of the roll-spun 2-knot
of any classical knot with unknotting number one is diffeomorphic to S4. The knot 73 is the
first prime knot with unknotting number two.

Question 2. [J. Boyle [Boy], posed at the conference by P. Naylor] For any classical knot
K, is the turned 1-twisted spun torus of K smoothly unknotted?

Question 3. [P. Naylor] What is known about spinning classical links?

https://math.stanford.edu/~maggiehm/TopologyDim4point5.html
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Question 4. [P. Naylor] Are there similar constructions to deform spins using non-standard
ribbon disks?

Exercise 5. [A. Conway] Find a 2-knot K ⊂ S4 with trivial Alexander module but non-
trivial Rochlin invariant µ.

Question 6. [Unknotting problem, posed at the conference by A. Conway] If K ⊂ S4 is
a 2-knot with π1(S

4 \K) ∼= Z, is K smoothly unknotted? What invariants could possibly
prove such a 2-knot is smoothly nontrivial?

It follows from work of Freedman [Fr] that a 2-knot in S4 whose complement has funda-
mental group Z is topologically unknotted.

Question 7. [A. Conway] Can you define µ for nullhomologous 2-spheres in other 4-
manifolds?

Question 8. [A. Conway] What invariants determine the homotopy type of S4 \ ν(K)?

Problem 9. [A. Ray] Define the Freedman–Quinn invariant fq(R,R′) for more surfaces
R,R′ (e.g. positive-genus or nonorientable surfaces).

Problem 10. [A. Ray] Extend the lightbulb theorem of Gabai [Ga1] to non-orientable
ambient 4-manifolds.

Question 11. [A. Ray] Can the conditions on the dual sphere G in the lightbulb theorem
[Ga1] be refined? For example, what if G intersects R and R′ in a single point but R is
immersed?

Question 12. [well-known; posed at the conference by M. Powell] Is every 2-link slice?

Problem 13. [M. Powell] Classify n-component link maps ⊔nS2 → S4 up to link homo-
topy for n ≥ 3.

Problem 13 is known for n = 1, and solved for n = 2 by Schneiderman and Teichner
[ST1].

Question 14. [R. Schneiderman] Are there more settings in which the Freedman–Quinn
invariant can be defined considering unbased homotopies?

Question 15. [R. Schneiderman] Does there exist a self-homotopy J of some S2 ⊂ M4

such that the self-intersection invariant J µ(J) is not in µ(π3(M))?

Question 16. [R. Budney] Do barbell diffeomorphisms generate π0(Diff(D4) or
π0(Diff(S1 ×D3)?

Question 17. [R. Budney] Is θ2 (as in [BG]) nontrivial?

Budney and Gabai [BG] proved that θn is nontrivial for n ≥ 3.

Question 18. [R. Budney] Can Watanabe’s invariants [Wa1] be defined in terms of scan-
ning?

Question 19. [R. Budney] Does knotting of the 2-spheres used in a barbell give any inter-
esting behavior to study?



7

Question 20. [R. Budney] Are the Hatcher–Wagoner invariants surjective in dimension 4?

Problem 21. [R. Budney] Understand Diff(S2×S2) or Diff(CP2). Can you find generators
of π0?

Question 22. [R. Budney] What is the difference between Diff(spin 4-manifold) and
Diff(non-spin 4-manifold)?

Question 23. [well-known; posed at the conference by R. Budney] What is π0(Diff(D4))?

Question 24. [S. Krushkal] Barbells generate the subgroup of π0(Diff(S1 ×Bn−1)) that is
null in pseudoisotopy for n ≥ 6 [HW]. Does this hold for n = 5 too?

Problem 25. [S. Krushkal] Find null-pseudoisotopies for the Budney–Gabai [BG] diffeo-
morphisms of S1 ×D3 and compute their Hatcher–Wagoner obstructions.

Question 26. [S. Krushkal] Budney–Gabai [BG] proved π0(Diff(S1 × B3, ∂) contains an
infinite set of linearly independent elements. Are (some of) these elements still nontrivial
up to topological isotopy?

Problem 27. [D. Auckly] Compare πn(Diff(Z,D4)) to πn(Homeo(Z,D4)) up to stabiliz-
ing Z4 with S2 × S2 summands.

Question 28. [T. Watanabe] Do the graph classes in πk(BDiff(D4)) survive under the map
πk(BDiff∂(D4)) → πk(Bdiff∂(D4#(S2 × S2))) from the Weiss fiber sequence?

Question 29. [T. Watanabe] Are the theta-graph (or barbell) classes mapped to nontrivial
elements by π1(BDiff∂(D3 × S1)) → π1(BHomeo∂(D

3 × S1))?

Question 30. [T. Watanabe] Can a configuration space integral invariant be defined on
π1(Bhomeo∂(D

3 × S1))?

Question 31. [T. Watanabe] What is the image of p : π1(Mpsc
∂ (X4)) → π1(BDiff∂(X4))?

Here, Mpsc
∂ (X4) refers to the moduli space of positive scalar curvature metrics on X4.

5 Outcome of the Meeting
Through the mini-lecture series, conference talks, and discussions/collaborations through-
out the week at BIRS, our workshop was successful in achieving its stated goals: (i) facil-
itating in-depth discussions on recent results about knotted surfaces in 4-manifolds which
utilize 5-dimensional perspectives, (ii) raising awareness of 4-dimensional isotopy and con-
cordance invariants, as well as their potential applications, and (iii) developing tools to
understand smooth mapping class groups of 4-manifolds.

In addition to the creation of the extensive problem list in Section 3, two of the par-
ticipants who presented in the mini-lecture series created written notes to accompany their
portion of the lecture. The first, Anthony Conway, posted his notes ‘Invariants of 2-knots’
to the arXiv during our workshop [Co]. The latter, Mark Powell, posted his notes ‘Concor-
dance and isotopy invariants of surfaces’ as an available reference on his website [Po].

The conference at BIRS last week was really enlightening! –Watanabe
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