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Definition

Let F ⊂ Rn bounded. For r > 0, denote by N(F , r) the smallest number

of sets of diameter at most r needed to cover F. The (upper)

box-counting dimension of F is

dimB(F) = lim sup
r→0

log N(F , r)

log(1/r)
=

= inf{α > 0 : ∃C > 0 s.t.

N(F , r) ≤ Cr
−α

for all 0 < r ≤ diam(F)}.

Example

Let a > 0 and Sa := {t−aeit ∈ C : t > 1}. J. Fraser in 2019 proved

dimB(Sa) = max

{
2

1 + a
, 1

}
.

Hence, for all a < 1 we have dimH(Sa) = 1 < dimB(Sa) = 2

1+a
.
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Definition

Let F ⊂ Rn, the Assouad dimension of F is

dimA(F) = inf

{
α > 0 :

∃C > 0 s.t. for all 0 < r ≤ R and x ∈ F

N(B(x, R) ∩ F , r) ≤ C(R/r)α

}
.

Example

dimA(Fa) = 1 where Fa = {1/na : n ∈ N},
dimA(Sa) = 2

Not enough for even bi-Lipschitz classification of Sa .
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Definition

For 0 < θ < 1 and F ⊂ Rn, define its (regularized θ-)Assouad spectrum

dimθ
A,reg(F) = inf

{
α > 0 :

∃C > 0 s.t. N(B(x, R) ∩ F , r) ≤ C(R/r)α

∀ 0 < r ≤ R1/θ < R < 1, ∀ x ∈ F

}
.

For all x ∈ F , R > 0 and m ∈ N, denote by Nd(B(x, R) ∩ F ,m) the

number of m-dyadic cubes of Q(x, R) needed to cover B(x, R) ∩ F .

We then have

dimθ
A,reg(F) = inf

{
α > 0 :

∃C > 0 s.t. Nd(B(x, R) ∩ F ,m) ≤ C2mα

∀ 0 < 2−mR ≤ R1/θ < R < 1, ∀ x ∈ F

}
.
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Examples

For all 0 < θ < 1,

dimθ
A,reg(Fa) = min

{
1

(1+a)(1−θ) , 1
}
∈ (dimB(Fa), dimA(Fa))

For all a > 0 and 0 < θ < 1 we have (by Fraser)

dimθ
A,reg(Sa) =

min
{

2

(1+a)(1−θ) , 2
}
, if 0 < a ≤ 1,

min
{

1 + θ
a(1−θ) , 2

}
, if a ≥ 1.

Hence, for all a < 1 and θ < a

1+a
we have

dimB(Sa) =
2

1 + a
< dimθ

A,reg(Sa) =
2

(1 + a)(1− θ) < dimA(Sa) = 2.
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Proposition

(1) For fixed θ, the set function F 7→ dimθ
A,reg(F) is

(a) monotonic,

(b) finitely stable, i.e.,

dimθ
A,reg(E ∪ F) = max{dimθ

A,reg(E), dimθ
A,reg(F)},

(c) invariant under taking closures, and

(d) invariant under bi-Lipschitz maps.

(2) For fixed F, limθ→1− dimθ
A,reg(F) := dimqA(F).

Moreover, if F is bounded, then limθ→0+ dimθ
A,reg(F) = dimB(F),

and

dimB(F) ≤ dimθ
A,reg(F) ≤ dimqA(F) ≤ dimA(F).
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Definition

A homeomorphism f : Ω→ Ω′ between domains in Rn, n ≥ 2, is said

to be K-quasiconformal (K-QC) if f lies in the local Sobolev space W
1,n
loc

and there is a K ≥ 1 such that the inequality

|Df |n ≤ K det Df

holds a.e. in Ω.

The smallest value KO(f) ≥ 1 for which the above inequality holds a.e.

in Ω is known as the outer dilatation of f .

QC maps are actually "more integrable" than initially expected.
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Definition

For n ≥ 2 and K ≥ 1, define p(n, K ) to be the supremum of those

values p > 0 so that there exists a constant C > 0 such that for every

QC map f : Ω→ Ω′ in Rn with KO(f) ≤ K , the estimate(∫
Q

|Df |p
)1/p

≤ C

(∫
2Q

|Df |n
)1/n

holds for every cube Q ⊂ Ω with diam Q < dist(Q, ∂Ω) and

diam f(2Q) < dist(f(2Q), ∂Ω′).

By Gehring (’73), p(n, K ) > n for each n ≥ 2 and K ≥ 1.

Astala (’94) showed that

p(2, K ) =
2K

K − 1
.
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QC distortion of the Hausdorff and box dimensions:

Theorem (Gehring - Väisälä, ’73)

Let E be a subset of Ω ⊂ Rn with dimH(E) = α ∈ (0, n). Then

0 <
(p(n, K n−1)− n)α

p(n, K n−1)− α
≤ dimH f(E) ≤ p(n, K )α

p(n, K )− n + α
< n

for any K -QC map f : Ω→ Ω′ ⊂ Rn.

Theorem (Kaufman, 2000)

Let E be a bounded subset of Ω ⊂ Rn with dimB(E) = α ∈ (0, n). Then

0 <
(p(n, K n−1)− n)α

p(n, K n−1)− α
≤ dimB f(E) ≤ p(n, K )α

p(n, K )− n + α
< n

for any K -QC map f : Ω→ Ω′ ⊂ Rn.
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We proved similar estimates for dimA and dimθ
A,reg :

Theorem 1 (C.G. - Tyson, 2021)

Let f : Ω→ Ω′ be a K -QC map in Rn, n ≥ 2. Let E ⊂ Ω be a compact

set with dimA(E) = α. Then

(p(n, K n−1)− n)α

p(n, K n−1)− α
≤ dimA f(E) ≤ p(n, K )α

p(n, K )− n + α
.

If Ω = Ω′ = Rn then the conclusion holds for all E ⊂ Rn.

Theorem 2 (C.G. - Tyson, 2021)

Let f : Ω→ Ω′ be a K -QC map in Rn, n ≥ 2, and let E ⊂ Ω be a

compact set with αt := dim
θ(t)
A,reg(E), where θ(t) = 1/(t + 1). Then

(p(n, K n−1)− n)αKt

p(n, K n−1)− αKt

≤ dim
θ(t)
A f(E) ≤

p(n, K )αt/K

p(n, K )− n + αt/K

,

for all t > 0.
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Proof of Thm 2: We can assume w.l.o.g. the following:

E, f(E) ⊂ Q0 := [− 1

5
√

n
, 1

5
√

n
]n

f(Q0) ⊂ Q0

there is a constant CK ,η ∈ (0, 1) such that

diam Q0 ≤ CK ,η min{dist(Q0, ∂Ω), dist(Q0, ∂Ω′)}.

It suffices to prove

dim
θ(t)
A,reg(f(E)) ≤ β0 :=

p(n, K )α0

p(n, K )− n + α0

, α0 = dim
θ(t/K)
A,reg (E).

Fix p < p(n, K ), α > α0 and let β := pα
p−n+α .
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Let y ∈ f(E) and 0 < R′ ≤ 1. By QCy of g = f−1 we can find B(x, R)
"deep" in Q0 with x = g(y), R < 1 and

B(y, R′) ∩ f(E) ⊂ f(B(x, R) ∩ E).

We consider cubes obtained via dyadic decomposition of Q(x, R).

rm := 2
−m

R

r
′
m := 2

−mα/β
R
′

for all meaningful scales m ≥ m′0. Local Hölder continuity of f and

choice of θ(t) ensure m′0 ≥ m0.

Fix m ≥ m′0. For j ≥ m, a j-dyadic cube Q j is (m-)minor if

diam f(Q j) ≤ r ′m and (m-)major otherwise.
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Lemma 1

The total number of all m-major subcubes of Q(x, R) is bounded above

by CK ,n2mα.

Proof of Lemma 1: For j ≥ m, let M(j) be the number of m-major

subcubes of Q(x, R) of side length 2−jR. Denote Q
j

i such a cube,

1 ≤ i ≤ M(j).

By Morrey-Sobolev inequality on Q
j

i :

diam f(Q
j

i ) ≤ C2(diam(Q
j

i ))1−n/p

(∫
Q

j

i

|Df |p
)1/p

Sum over all m-major cubes of level j and then over all j ≥ m:

∞∑
j=m

M(j) ≤ C4 2
mαp

β
−m(p−n) (R

′)−p
R

p−n

∫
Q(x,R)

|Df |p . (1)
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Recall RHI for p < p(n, K ):

1

Ln(Q(x, R))1/p

(∫
Q(x,R)

|Df |p
)1/p

≤ 1

Ln(Q(x, 2R))1/n

(∫
Q(x,2R)

|Df |n
)1/n

So the integral on the right of (1) is at most, up to some C′4:

Rn

Rp
Ln(f(Q(x, 2R)))p/n ≤ R

n−pLn(Q(y, R′))p/n ≤ R
n−p(R

′)p .

Hence, by the definition of β = pα
p−n+α , we obtain

∞∑
j=m

M(j) ≤ C5 2
mα. Lemma1

Hence, we can use

Cα

(
R

rm

)α
+
∞∑

j=m

2
n
M(j) ≤ Cα2

mα + C5 2
mα+n ≤ C62

mα =

(
R′

r ′m

)β
images of minor cubes to cover B(y, R′) ∩ f(E).
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An application of Theorem 2 is the following:

Theorem

For a > b > 0, there exists a QC map f : C→ C with f(Sa) = Sb if and

only if KO(f) ≥ a

b
.

Proof: (⇐) f(z) = |z|1/K−1z is K -QC with K = a/b and f(Sa) = Sb.

(⇒) Suppose K < a

b
and there is a K-QC f with f(Sa) = Sb.

Using p(2, K ) = 2K

K−1
on the right of Theorem 2 gives

1

K

(
1

dim
θ(t/K)
A,reg (Sa)

− 1

2

)
≤ 1

dim
θ(t)
A,reg(Sb)

− 1

2
.

But for t = 1/b, θ(t) = b/(1 + b) and θ(t/K ) < a/(1 + a), so the

right is = 0 while the left > 0.
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Remarks

We can actually improve Theorem 2 by replacing p(n, K n−1) by

the larger (or equal) pI(n, K ), where pI(n, K ) is defined as p(n, K )
but involving the inner dilatation KI .

Kaufman’s Theorem only provides

K ≥ min{a, 1}
min{b, 1}

for the spirals. Theorem 2 is necessary for the QC and bi-Lipschitz

classification of spirals.

The theorems on dimH and dimB distortion can be stated for

W 1,p(Ω;Rn) (right hand side inequality), not necessarily

quasiconformal. Our proofs rely on quasiconformality.
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Thank You!
Theorem

Let f : Ω→ Ω′ be a K -QC map in Rn, n ≥ 2, and let E ⊂ Ω be a

compact set with αt := dim
θ(t)
A,reg(E), where θ(t) = 1/(t + 1). Then

(p(n, K n−1)− n)αKt

p(n, K n−1)− αKt

≤ dim
θ(t)
A f(E) ≤

p(n, K )αt/K

p(n, K )− n + αt/K

,

for all t > 0.

Theorem

For a > b > 0, there exists a quasiconformal map f : C→ C with

f(Sa) = Sb if and only if KO ≥ a

b
.
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