Fractals under quasiconformal maps

Efstathios Konstantinos Chrontsios Garitsis (Joint work with J. Tyson)

University of Illinois at Urbana-Champaign

Smooth Functions on Rough Spaces and Fractals with Connections to Curvature Functional Inequalities

BIRS, 24th of November, 2022

Definition

Let $F \subset \mathbb{R}^{n}$ bounded. For $r>0$, denote by $N(F, r)$ the smallest number of sets of diameter at most r needed to cover F. The (upper) box-counting dimension of F is

$$
\begin{gathered}
\operatorname{dim}_{B}(F)=\limsup _{r \rightarrow 0} \frac{\log N(F, r)}{\log (1 / r)}= \\
=\inf \{\alpha>0: \exists C>0 \text { s.t. } \\
\left.N(F, r) \leq C r^{-\alpha} \text { for all } 0<r \leq \operatorname{diam}(F)\right\} .
\end{gathered}
$$

Example

Let $a>0$ and $S_{a}:=\left\{t^{-a} e^{i t} \in \mathbb{C}: t>1\right\}$. J. Fraser in 2019 proved

$$
\operatorname{dim}_{B}\left(S_{a}\right)=\max \left\{\frac{2}{1+a}, 1\right\}
$$

Hence, for all $a<1$ we have $\operatorname{dim}_{H}\left(S_{a}\right)=1<\operatorname{dim}_{B}\left(S_{a}\right)=\frac{2}{1+a}$.

Definition

Let $F \subset \mathbb{R}^{n}$, the Assouad dimension of F is

$$
\operatorname{dim}_{A}(F)=\inf \left\{\alpha>0: \begin{array}{c}
\exists C>0 \text { s.t. for all } 0<r \leq R \text { and } x \in F \\
N(B(x, R) \cap F, r) \leq C(R / r)^{\alpha}
\end{array}\right\} .
$$

Example

- $\operatorname{dim}_{A}\left(F_{a}\right)=1$ where $F_{a}=\left\{1 / n^{a}: n \in \mathbb{N}\right\}$,
- $\operatorname{dim}_{A}\left(S_{a}\right)=2$

Not enough for even bi-Lipschitz classification of S_{a}.

Definition

For $0<\theta<1$ and $F \subset \mathbb{R}^{n}$, define its (regularized θ-)Assouad spectrum

$$
\operatorname{dim}_{A, \text { reg }}^{\theta}(F)=\inf \left\{\alpha>0: \begin{array}{c}
\exists C>0 \text { s.t. } N(B(x, R) \cap F, r) \leq C(R / r)^{\alpha} \\
\forall 0<r \leq R^{1 / \theta}<R<1, \forall x \in F
\end{array}\right\}
$$

For all $x \in F, R>0$ and $m \in \mathbb{N}$, denote by $N_{d}(B(x, R) \cap F, m)$ the number of m-dyadic cubes of $Q(x, R)$ needed to cover $B(x, R) \cap F$. We then have

$$
\operatorname{dim}_{A, \text { reg }}^{\theta}(F)=\inf \left\{\alpha>0: \begin{array}{c}
\exists C>0 \text { s.t. } N_{a}(B(x, R) \cap F, m) \leq C 2^{m \alpha} \\
\forall 0<2^{-m} R \leq R^{1 / \theta}<R<1, \forall x \in F
\end{array}\right\} .
$$

Examples

- For all $0<\theta<1$,

$$
\operatorname{dim}_{A, r e g}^{\theta}\left(F_{a}\right)=\min \left\{\frac{1}{(1+a)(1-\theta)}, 1\right\} \in\left(\operatorname{dim}_{B}\left(F_{a}\right), \operatorname{dim}_{A}\left(F_{a}\right)\right)
$$

- For all $a>0$ and $0<\theta<1$ we have (by Fraser)

$$
\operatorname{dim}_{A, r e g}^{\theta}\left(S_{a}\right)= \begin{cases}\min \left\{\frac{2}{(1+a)(1-\theta)}, 2\right\}, & \text { if } 0<a \leq 1 \\ \min \left\{1+\frac{\theta}{a(1-\theta)}, 2\right\}, & \text { if } a \geq 1\end{cases}
$$

Hence, for all $a<1$ and $\theta<\frac{a}{1+a}$ we have

$$
\operatorname{dim}_{B}\left(S_{a}\right)=\frac{2}{1+a}<\operatorname{dim}_{A, r e g}^{\theta}\left(S_{a}\right)=\frac{2}{(1+a)(1-\theta)}<\operatorname{dim}_{A}\left(S_{a}\right)=2 .
$$

Proposition

(1) For fixed θ, the set function $F \mapsto \operatorname{dim}_{A, \text { reg }}^{\theta}(F)$ is
(a) monotonic,
(b) finitely stable, i.e.,

$$
\operatorname{dim}_{A, r e g}^{\theta}(E \cup F)=\max \left\{\operatorname{dim}_{A, r e g}^{\theta}(E), \operatorname{dim}_{A, r e g}^{\theta}(F)\right\}
$$

(c) invariant under taking closures, and
(d) invariant under bi-Lipschitz maps.
(2) For fixed $F, \lim _{\theta \rightarrow 1^{-}} \operatorname{dim}_{A, \text { reg }}^{\theta}(F):=\operatorname{dim}_{q A}(F)$.

Moreover, if F is bounded, then $\lim _{\theta \rightarrow 0^{+}} \operatorname{dim}_{A, r e g}^{\theta}(F)=\operatorname{dim}_{B}(F)$,
and

$$
\operatorname{dim}_{B}(F) \leq \operatorname{dim}_{A, \text { reg }}^{\theta}(F) \leq \operatorname{dim}_{q A}(F) \leq \operatorname{dim}_{A}(F)
$$

Definition

A homeomorphism $f: \Omega \rightarrow \Omega^{\prime}$ between domains in $\mathbb{R}^{n}, n \geq 2$, is said to be K-quasiconformal ($K-Q C$) if f lies in the local Sobolev space $W_{\text {loc }}^{1, n}$ and there is a $K \geq 1$ such that the inequality

$$
|D f|^{n} \leq K \operatorname{det} D f
$$

holds a.e. in Ω.
The smallest value $K_{O}(f) \geq 1$ for which the above inequality holds a.e. in Ω is known as the outer dilatation of f.

QC maps are actually "more integrable" than initially expected.

Definition

For $n \geq 2$ and $K \geq 1$, define $p(n, K)$ to be the supremum of those values $p>0$ so that there exists a constant $C>0$ such that for every $Q C$ map $f: \Omega \rightarrow \Omega^{\prime}$ in \mathbb{R}^{n} with $K_{O}(f) \leq K$, the estimate

$$
\left(f_{Q}|D f|^{p}\right)^{1 / p} \leq c\left(f_{2 Q}|D f|^{n}\right)^{1 / n}
$$

holds for every cube $Q \subset \Omega$ with $\operatorname{diam} Q<\operatorname{dist}(Q, \partial \Omega)$ and $\operatorname{diam} f(2 Q)<\operatorname{dist}\left(f(2 Q), \partial \Omega^{\prime}\right)$.

By Gehring ('73), $p(n, K)>n$ for each $n \geq 2$ and $K \geq 1$. Astala ('94) showed that

$$
p(2, K)=\frac{2 K}{K-1}
$$

QC distortion of the Hausdorff and box dimensions:

Theorem (Gehring - Väisälä, '73)

Let E be a subset of $\Omega \subset \mathbb{R}^{n}$ with $\operatorname{dim}_{H}(E)=\alpha \in(0, n)$. Then

$$
0<\frac{\left(p\left(n, K^{n-1}\right)-n\right) \alpha}{p\left(n, K^{n-1}\right)-\alpha} \leq \operatorname{dim}_{H} f(E) \leq \frac{p(n, K) \alpha}{p(n, K)-n+\alpha}<n
$$

for any $K-Q C$ map $f: \Omega \rightarrow \Omega^{\prime} \subset \mathbb{R}^{n}$.

Theorem (Kaufman, 2000)

Let E be a bounded subset of $\Omega \subset \mathbb{R}^{n}$ with $\operatorname{dim}_{B}(E)=\alpha \in(0, n)$. Then

$$
0<\frac{\left(p\left(n, K^{n-1}\right)-n\right) \alpha}{p\left(n, K^{n-1}\right)-\alpha} \leq \operatorname{dim}_{B} f(E) \leq \frac{p(n, K) \alpha}{p(n, K)-n+\alpha}<n
$$

for any $K-Q C$ map $f: \Omega \rightarrow \Omega^{\prime} \subset \mathbb{R}^{n}$.

We proved similar estimates for dim_{A} and $\operatorname{dim}_{A, r e g}^{\theta}$:

Theorem 1 (C.G. - Tyson, 2021)

Let $f: \Omega \rightarrow \Omega^{\prime}$ be a $K-Q C$ map in $\mathbb{R}^{n}, n \geq 2$. Let $E \subset \Omega$ be a compact set with $\operatorname{dim}_{A}(E)=\alpha$. Then

$$
\frac{\left(p\left(n, K^{n-1}\right)-n\right) \alpha}{p\left(n, K^{n-1}\right)-\alpha} \leq \operatorname{dim}_{A} f(E) \leq \frac{p(n, K) \alpha}{p(n, K)-n+\alpha} .
$$

If $\Omega=\Omega^{\prime}=\mathbb{R}^{n}$ then the conclusion holds for all $E \subset \mathbb{R}^{n}$.

Theorem 2 (C.G. - Tyson, 2021)

Let $f: \Omega \rightarrow \Omega^{\prime}$ be a $K-Q C$ map in $\mathbb{R}^{n}, n \geq 2$, and let $E \subset \Omega$ be a compact set with $\alpha_{t}:=\operatorname{dim}_{A, r e g}^{\theta(t)}(E)$, where $\theta(t)=1 /(t+1)$. Then

$$
\frac{\left(p\left(n, K^{n-1}\right)-n\right) \alpha_{K t}}{p\left(n, K^{n-1}\right)-\alpha_{K t}} \leq \operatorname{dim}_{A}^{\theta(t)} f(E) \leq \frac{p(n, K) \alpha_{t / K}}{p(n, K)-n+\alpha_{t / K}},
$$

for all $\dagger>0$.

Proof of Thm 2: We can assume w.l.o.g. the following:

- $E, f(E) \subset Q_{0}:=\left[-\frac{1}{5 \sqrt{n}}, \frac{1}{5 \sqrt{n}}\right]^{n}$
- $f\left(Q_{0}\right) \subset Q_{0}$
- there is a constant $C_{K, \eta} \in(0,1)$ such that $\operatorname{diam} Q_{0} \leq C_{K, \eta} \min \left\{\operatorname{dist}\left(Q_{0}, \partial \Omega\right), \operatorname{dist}\left(Q_{0}, \partial \Omega^{\prime}\right)\right\}$.

It suffices to prove

$$
\operatorname{dim}_{A, r e g}^{\theta(t)}(f(E)) \leq \beta_{0}:=\frac{p(n, K) \alpha_{0}}{p(n, K)-n+\alpha_{0}}, \quad \alpha_{0}=\operatorname{dim}_{A, r e g}^{\theta(t / K)}(E)
$$

Fix $p<p(n, K), \alpha>\alpha_{0}$ and let $\beta:=\frac{p \alpha}{p-n+\alpha}$.

Let $y \in f(E)$ and $0<R^{\prime} \leq 1$. By QCy of $g=f^{-1}$ we can find $B(x, R)$ "deep" in Q_{0} with $x=g(y), R<1$ and

$$
B\left(y, R^{\prime}\right) \cap f(E) \subset f(B(x, R) \cap E)
$$

We consider cubes obtained via dyadic decomposition of $Q(x, R)$.

$$
\begin{gathered}
r_{m}:=2^{-m} R \\
r_{m}^{\prime}:=2^{-m \alpha / \beta} R^{\prime}
\end{gathered}
$$

for all meaningful scales $m \geq m_{0}^{\prime}$. Local Hölder continuity of f and choice of $\theta(t)$ ensure $m_{0}^{\prime} \geq m_{0}$.

Fix $m \geq m_{0}^{\prime}$. For $j \geq m$, a j-dyadic cube Q is (m-)minor if $\operatorname{diam} f\left(Q^{\prime}\right) \leq r_{m}^{\prime}$ and (m-)major otherwise.

Lemma 1

The total number of all m-major subcubes of $Q(x, R)$ is bounded above by $C_{K, n} 2^{m \alpha}$.

Proof of Lemma 1: For $j \geq m$, let $M(j)$ be the number of m-major subcubes of $Q(x, R)$ of side length $2^{-j} R$. Denote Q_{i}^{\prime} such a cube, $1 \leq i \leq M(j)$.
By Morrey-Sobolev inequality on Q_{i}^{\prime} :

$$
\operatorname{diam} f\left(Q_{i}^{\prime}\right) \leq C_{2}\left(\operatorname{diam}\left(Q_{i}^{\prime}\right)\right)^{1-n / p}\left(\int_{\alpha_{1}^{\prime}}|D f|^{p}\right)^{1 / p}
$$

Sum over all m-major cubes of level j and then over all $j \geq m$:

$$
\begin{equation*}
\sum_{j=m}^{\infty} M(j) \leq C_{4} 2^{\frac{m a p}{\beta}-m(p-n)}\left(R^{\prime}\right)^{-p} R^{p-n} \int_{Q(x, R)}|D f|^{p} \tag{1}
\end{equation*}
$$

Recall RHI for $p<p(n, K)$:

$$
\frac{1}{\mathscr{L}_{n}(Q(x, R))^{1 / p}}\left(\int_{Q(x, R)}|D f|^{\rho}\right)^{1 / p} \leq \frac{1}{\mathscr{L}_{n}(Q(x, 2 R))^{1 / n}}\left(\int_{Q(x, 2 R)}|D f|^{n}\right)^{1 / n}
$$

So the integral on the right of (1) is at most, up to some C_{4}^{\prime} :

$$
\frac{R^{n}}{R^{p}} \mathscr{L}_{n}(f(Q(x, 2 R)))^{p / n} \leq R^{n-p} \mathscr{L}_{n}\left(Q\left(y, R^{\prime}\right)\right)^{p / n} \leq R^{n-p}\left(R^{\prime}\right)^{p}
$$

Hence, by the definition of $\beta=\frac{p \alpha}{p-n+\alpha}$, we obtain

$$
\sum_{j=m}^{\infty} M(j) \leq C_{5} 2^{m \alpha}
$$

Hence, we can use

$$
C_{\alpha}\left(\frac{R}{r_{m}}\right)^{\alpha}+\sum_{j=m}^{\infty} 2^{n} M(j) \leq C_{\alpha} 2^{m \alpha}+C_{5} 2^{m \alpha+n} \leq C_{6} 2^{m \alpha}=\left(\frac{R^{\prime}}{r_{m}^{\prime}}\right)^{\beta}
$$

images of minor cubes to cover $B\left(y, R^{\prime}\right) \cap f(E)$.

An application of Theorem 2 is the following:

Theorem

For $a>b>0$, there exists $a Q C$ map $f: \mathbb{C} \rightarrow \mathbb{C}$ with $f\left(S_{a}\right)=S_{b}$ if and only if $K_{O}(f) \geq \frac{a}{b}$.

Proof: $(\Leftarrow) f(z)=|z|^{1 / K-1} z$ is $K-Q C$ with $K=a / b$ and $f\left(S_{a}\right)=S_{b}$. (\Rightarrow) Suppose $K<\frac{a}{b}$ and there is a K-QC f with $f\left(S_{a}\right)=S_{b}$.

Using $p(2, K)=\frac{2 K}{K-1}$ on the right of Theorem 2 gives

$$
\frac{1}{K}\left(\frac{1}{\operatorname{dim}_{A, r e g}^{\theta(t / K)}\left(S_{a}\right)}-\frac{1}{2}\right) \leq \frac{1}{\operatorname{dim}_{A, r e g}^{\theta(t)}\left(S_{b}\right)}-\frac{1}{2}
$$

But for $t=1 / b, \theta(t)=b /(1+b)$ and $\theta(t / K)<a /(1+a)$, so the right is $=0$ while the left >0.

Remarks

- We can actually improve Theorem 2 by replacing $p\left(n, K^{n-1}\right)$ by the larger (or equal) $p_{l}(n, K)$, where $p_{l}(n, K)$ is defined as $p(n, K)$ but involving the inner dilatation K_{l}.
- Kaufman's Theorem only provides

$$
K \geq \frac{\min \{a, 1\}}{\min \{b, 1\}}
$$

for the spirals. Theorem 2 is necessary for the QC and bi-Lipschitz classification of spirals.

- The theorems on dim_{H} and dim_{B} distortion can be stated for $W^{1, p}\left(\Omega ; \mathbb{R}^{n}\right)$ (right hand side inequality), not necessarily quasiconformal. Our proofs rely on quasiconformality.

Thank You!

Theorem

Let $f: \Omega \rightarrow \Omega^{\prime}$ be a $K-Q C$ map in $\mathbb{R}^{n}, n \geq 2$, and let $E \subset \Omega$ be a compact set with $\alpha_{t}:=\operatorname{dim}_{A, \text { reg }}^{\theta(t)}(E)$, where $\theta(t)=1 /(t+1)$. Then

$$
\frac{\left(p\left(n, K^{n-1}\right)-n\right) \alpha_{K t}}{p\left(n, K^{n-1}\right)-\alpha_{K t}} \leq \operatorname{dim}_{A}^{\theta(t)} f(E) \leq \frac{p(n, K) \alpha_{t / K}}{p(n, K)-n+\alpha_{t / K}},
$$

for all $\dagger>0$.

Theorem

For $a>b>0$, there exists a quasiconformal map $f: \mathbb{C} \rightarrow \mathbb{C}$ with $f\left(S_{a}\right)=S_{b}$ if and only if $K_{O} \geq \frac{a}{b}$.

