
Nonlinear potential theory,

p -harmonic and Green functions

on metric spaces

Jana Björn
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Classical potentials in Rn, n ≥ 3, ν = measure

u(x) = Uν(x) =

∫
dν(y)

|x − y |n−2

harmonic in Rn \ supp ν: ∆u = 0

locally minimizes energy∫
G
|∇u|2 dx ≤

∫
G
|∇v |2 dx (1)

∀v with v = u on ∂G and ∀ open G b Rn \ supp ν

superharmonic in Rn: −∆u = ν ≥ 0 (−u subharm)

if bdd (or otherwise controlled): (1) holds ∀v ≥ u in G with
v = u on ∂G and ∀ open G b Rn

lsc and finely cont in Rn: {y : |u(y)− u(x)| ≥ ε} is thin at x
(in capacitory sense through a Wiener integral)

cap(K ) = sup ν(K ), taken over all ν with Uν ≤ 1



Nonlinear theory

p-harmonic functions = solutions of p-Laplace equation

∆pu := div(|∇u|p−2∇u) = 0

and local minimizers of p-energy

∫
Ω
|∇u|p dx .

Fundamental solution u(x) = |x − y |
p−n
p−1 for

−∆pu = Cn,pδy in Rn.

Generalizations:

Nonhomogeneous materials: dx  w dx with a weight w

Manifolds and their Gromov–Hausdorff limits  
non-smooth spaces

SubRiemannian geometry, subelliptic equations

Graphs



Unified approach: Metric space (X , d , µ)

d = metric
µ = Borel regular measure s.t. 0 < µ(B) <∞ ∀ balls B ⊂ X

Heinonen, Koskela, MacManus, Shanmugalingam,1998:

g ≥ 0 is a (p-weak) upper gradient of u : X → R if

|u(x)− u(y)| ≤
∫
γ
g ds

for (p-almost) all rectifiable curves γ in X .
(x , y = endpoints of γ)

∃ minimal gu (in Lp and pointwise a.e.)

X = open set in Rn: gu = |∇u| a.e.



Shanmugalingam, 1998: Sobolev (Newtonian) space

N1,p(X ) =

{
u :

∫
X

(|u|p + gp
u ) dµ <∞

}
X = (E , d |E , µ|E ) gives N1,p(E ) for any measurable E ⊂ X

Cheeger 1999: equiv definition for p > 1

p-harmonic functions in (open) Ω ⊂ X :

minimize p-energy, 1 < p <∞:∫
Ω
gp
u dµ ≤

∫
Ω
gp
u+ϕ dµ ∀ϕ ∈ Lipc(Ω)

few rectifiable curves in X or ´´bad´´measure ⇒
gu ≡ 0 ∀u and hence N1,p(X ) = Lp(X )



Assumptions for a reasonable theory (gu ≡ 0 ∀u no good):

µ doubling: µ(2B) ≤ Cµ(B) ∀ balls B ⊂ X

p-Poincaré inequality (p-PI): ∀ balls B ⊂ X and ∀u∫
B
|u − uB | dµ ≤ C diamB

(∫
λB

gp
u dµ

)1/p
,

where uB =

∫
B
u dµ

(X complete) (or local versions)

Cheeger: Possible to define a differentiable structure on X with a
vector-valued differential Du and the equation (in weak sense)

− div(|Du|p−2Du) = 0 or = ν

Du more abstract than gu which has a clear geometric meaning.



Examples

”Nice” open/closed sets in Rn (with a weight w dx)

Manifolds, Heisenberg and Carnot groups

Laakso spaces

Hyperbolic fillings

Sierpiński sponge in Rd (Ericsson-Bique–Gong, 2021):

(Carpet in d = 2:
Mackay–Tyson–Wildrick, 2013)

Scale factors an =
1

odd number
with

∞∑
n=1

adn <∞

Here a1 = 1
3 , a2 = 1

5 , a3 = 1
7 .

dx = Doubling + p-PI ∀p > 1



Which spaces support Poincaré inequality? New such spaces
from old?

JB 2001: If µ doubling + p-PI and w is Aq weight wrt µ then
w dµ supports pq-PI.
Lahti 2022: For X nice (complete, µ doubling + 1-PI) ∃c∗ > 0
s.t. if for quasievery x ∈ X ,

lim inf
r→0

cap1(A ∩ B(x , r),B(x , 2r))

cap1(B(x , r),B(x , 2r))
< c∗,

then X \ A also supports 1-PI.

Other suitable definitions of gradients and Sobolev spaces?
Comparisons? Energy minimizers?

e.g. Haj lasz α-gradient

|u(x)− u(y)| ≤ d(x , y)α(h(x) + h(y)), α > 0

or different gradients hj at different scales
Korevaar–Schoen spaces



Properties of p-harmonic functions I

Bad news:

gu only scalar not vector ⇒ no Euler–Lagrange equation

gu+v 6= gu + gv ⇒ nonlinear problem also for p = 2

Sheaf property? p-harm in U and V ⇒ in U ∪ V ?

Good news (Shanmugalingam + Finland + Linköping, 1998–):

Hölder continuous Cα

Maximum and comparison principles:
u ≤ v on ∂Ω ⇒ u ≤ v in Ω (Note: no linearity!)

Harnack inequality: maxK u ≤ C minK u

Convergence theorems

Liouville theorem (under global doubling + p-PI):
6 ∃ nonconst bdd p-harm functions on X



Properties of p-harmonic functions II

Solutions to the Dirichlet problem on (bdd) open Ω ⊂ X{
u p-harm in Ω,

u = f on ∂Ω.

by various methods (variational, Perron, Wiener)
and for various bdry data:
Existence and uniqueness if f ∈ N1,p(Ω) or f ∈ C (∂Ω).
Resolutivity for general f in the Perron method: Pf = Pf ?
(even in Rn)

Invariance under small perturbations of f on the boundary:
If capp({f1 6= f2}) = 0 and f1 as above then u1 = u2

(Remember: nonlinear problem!)

Variational capacity: capp(E ,Ω) := inf
ϕ

∫
X
gp
ϕ dµ

with inf over all ϕ ∈ N1,p(X ) s.t. ϕ = 1 on E and ϕ = 0 outside Ω.



Cantor type example with Area(∂Ω) > 0 (B–B–S 2015)

Ω = Square \ fat Cantor set

cpt K = lim inf j→∞ Kj ⊂ ∂Ω
with full measure in ∂Ω but

capΩ
p (K ) = 0 ∀p ≥ 1

(new capacity – from inside of Ω)

We may perturb boundary data
f ∈ C (∂Ω) as we like on K :
Solution of the Dirichlet BVP
will not change.

(Ω is regular domain)

1



Properties of p-harmonic functions III

Boundary behaviour of p-harm functions and bdry regularity
(B–MacManus–S, 2001)
If X \ Ω not p-thin at x0 ∈ ∂Ω then x0 is regular for the
Dirichlet problem: ∀f ∈ C (∂Ω), the solution u satisfies

lim
Ω3x→x0

u(x) = f (x0).

Here A is p-thin at x0 if ”Wiener integral”∫ 1

0

(
capp(A ∩ B(x , r),B(x , 2r))

capp(B(x , r),B(x , 2r))

)1/(p−1) dr

r
<∞.

For solutions of div(|Du|p−2Du) = 0 also converse:
X \ Ω p-thin ⇒ x0 not regular

Regular points characterized by barriers (B–B, 2006)



p-harmonic functions on bad (measurable) sets

Recall: (E , d |E , µ|E ) gives N1,p(E ) for any measurable E ⊂ X s

Dirichlet problem for minimizing p-energy
∫
E gp

u dµ with bdry
data f ∈ N1,p solvable and nontrivial iff fine-intE 6= ∅.

In that case, it coincides with the solution for fine-intE .

(G p-finely open iff X \ G is p-thin at every x ∈ G )

Fine potential theory and finely p-harmonic functions
on finely open sets (B–B–Latvala (+J. Malý))

Newtonian functions are finely cont q.e. and quasicont

Convergence theorems

Perron method and resolutivity on finely open sets

Fine continuity for solutions of Dirichlet problem with bdry
data f ∈ C (X ).

For general finely p-harm functions (even in Rn)?



Swiss cheese example - nowhere dense p-finely open set

From [0, 1]n ⊂ Rn remove 2(k−1)n closed balls: k = 1, 2, . . .

radii rk = 2−αkε

0 < ε < 1
2

α > n/(n − p)

1 < p < n

G p-finely open

intG = ∅
|G | > 0



p-superharmonic functions and some properties

Main ingredient in Perron method for solving Dirichlet BVP

As barriers in bdry regularity

Defined by comparison principle on every G b Ω with
capp(X \ G ) > 0 (when u lsc and u 6≡ ∞ in any component):

If v ∈ C (G ) p-harm in G and v ≤ u on ∂G then v ≤ u in G .

Or equivalently: ∀k uk := min{u, k} is lsc-regularized
superminimizer of p-energy:∫

Ω
gp
uk
dµ ≤

∫
Ω
gp
uk+ϕ dµ ∀ 0 ≤ ϕ ∈ Lipc(Ω)

Finely continuous (JB, Korte 2008), i.e. sub- and superlevel
sets are finely open

Finely open sets give the coarsest topology making
p-superharm functions continuous.

With Du instead of gu: p-superharm functions satisfy
− div(|Du|p−2Du) = ν with Radon measure ν



Singular and Green functions – fundamental solutions

Assume that Ω is bdd and capp(X \ Ω) > 0

Definition: Singular function in Ω with singularity at x0 ∈ Ω:

u > 0 is p-harm in Ω \ {x0}
u is p-superharm in Ω

u = 0 on ∂Ω (in the sense of Sobolev spaces)

Green function = properly normalized singular function.

Theorem

There exists a singular function in Ω with singularity at x0.

If u and v are singular functions in Ω with singularity at x0

then u ' v in Ω. Moreover, near x0,

u(x) ' capp(B(x0, r),Ω)1/(1−p), where r = d(x , x0).



Theorem + Definition

For every singular function u there is unique α > 0
such that for ū = αu and all 0 ≤ a < b ≤ ū(x0),

capp({x : ū(x) ≥ b}, {x : ū(x) > a}) = (b − a)1−p,

i.e. ū is a Green function.

Sharp estimates for capp and p-harm functions (B–B–Lehrbäck)

For all 0 < 2r ≤ R ≤ 1
4 diamX , writing Br := B(x0, r),

capp(Br ,BR)1/(1−p) '
∫ R

r

(
ρ

µ(Bρ)

)1/(p−1)

dρ.

If u is p-harm in Ω \ {x0} and limx→x0 u(x) =∞,
then there is R > 0 such that near x0,

u(x) ' inf
BR

u +

∫ R

d(x ,x0)

(
ρ

µ(Bρ)

)1/(p−1)

dρ.



Exponent sets (dimensions) for µ at x0:

S0 = {s > 0 : µ(Br ) & r s for 0 < r ≤ 1} and s0 = inf S0

Q0 =

{
s > 0 :

µ(Br )

µ(BR)
&
( r

R

)s
for 0 < r < R ≤ 1

}
.

S0 and Q
0

similar but with . instead of &

Lebesgue measure in Rn: S0 = Q0 = [n,∞) and S0 = Q
0

= (0, n]
In general not equal and can be open.

capp(Br ,BR) '

{
R−pµ(BR), p > inf Q0,

r−pµ(Br ), p < supQ
0
,

Cp({x0})

{
= 0, p < s0 or p = s0 /∈ S0 \ S0,

> 0, p > s0.



Integrability for Green and p-harm functions

Let s0 = inf S0, τp =
s0(p − 1)

s0 − p
and tp =

s0(p − 1)

s0 − 1
.

Theorem

Assume that Cp({x0}) = 0. Let u = Green function in Ω with
singularity at x0. Then for B = B(x0, r) b Ω:

p ≤ s0 and u is unbdd;

u ∈ Lτ (B) and gu ∈ Lt(B) for all τ < τp and t < tp;

u /∈ Lτ (B) if τ > τp;

gu /∈ Lt(B) if t > tp and µ supports a t-PI.

if p = s0, then gu ∈ Lt(B) iff 0 < t < p;

Same (non)integrability conclusions hold if u ≥ 0 is a general
p-harm function in Ω \ {x0} ⊂ X with limx→x0 u(x) =∞.



Thank you!


