Nonlinear potential theory, *p*-harmonic and Green functions on metric spaces

Jana Björn

Linköping University

Banff, November 2022

joint with A. Björn, V. Latvala, J. Lehrbäck and N. Shanmugalingam

<ロト <四ト <注入 <注下 <注下 <

Classical potentials in \mathbf{R}^n , $n \geq 3$, $\nu =$ measure

$$u(x) = U^{\nu}(x) = \int \frac{d\nu(y)}{|x - y|^{n-2}}$$

harmonic in $\mathbf{R}^n \setminus \operatorname{supp} \nu$: $\Delta u = 0$

locally minimizes energy

$$\int_{\mathcal{G}} |\nabla u|^2 \, dx \le \int_{\mathcal{G}} |\nabla v|^2 \, dx \tag{1}$$

 $\forall v \text{ with } v = u \text{ on } \partial G \text{ and } \forall \text{ open } G \Subset \mathbf{R}^n \setminus \operatorname{supp} \nu$

superharmonic in \mathbb{R}^n : $-\Delta u = \nu \ge 0$ (-*u* subharm)

- if bdd (or otherwise controlled): (1) holds $\forall v \ge u$ in G with v = u on ∂G and \forall open $G \Subset \mathbf{R}^n$
- Isc and finely cont in Rⁿ: {y : |u(y) − u(x)| ≥ ε} is thin at x (in capacitory sense through a Wiener integral)

 $cap(K) = sup \nu(K)$, taken over all ν with $U^{\nu} \leq 1$

Nonlinear theory

• *p*-harmonic functions = solutions of *p*-Laplace equation

$$\Delta_{p}u := \operatorname{div}(|\nabla u|^{p-2}\nabla u) = 0$$

and local minimizers of *p*-energy $\int_{\Omega} |\nabla u|^p dx$.

• Fundamental solution $u(x) = |x - y|^{\frac{p-n}{p-1}}$ for $-\Delta_p u = C_{n,p} \delta_y$ in \mathbb{R}^n .

Generalizations:

- Nonhomogeneous materials: $dx \rightarrow w dx$ with a weight w
- Manifolds and their Gromov–Hausdorff limits ~ non-smooth spaces
- SubRiemannian geometry, subelliptic equations
- Graphs

Unified approach: Metric space (X, d, μ)

d = metric

 $\mu = {\sf Borel \ regular \ measure \ s.t. \ 0} < \mu(B) < \infty \quad \forall \ {\sf balls \ } B \subset X$

Heinonen, Koskela, MacManus, Shanmugalingam, 1998:

• $g \ge 0$ is a (*p*-weak) upper gradient of $u: X \to \mathbf{R}$ if

$$|u(x)-u(y)|\leq \int_{\gamma}g\,ds$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

for (*p*-almost) all rectifiable curves γ in *X*. (*x*, *y* = endpoints of γ)

• \exists minimal g_u (in L^p and pointwise a.e.)

$$X = \text{open set in } \mathbf{R}^n$$
: $g_u = |\nabla u|$ a.e.

Shanmugalingam, 1998: Sobolev (Newtonian) space

$$N^{1,p}(X) = \left\{ u : \int_X (|u|^p + g^p_u) \, d\mu < \infty
ight\}$$

 $X = (E, d|_E, \mu|_E)$ gives $N^{1,p}(E)$ for any measurable $E \subset X$

Cheeger 1999: equiv definition for p > 1

p-harmonic functions in (open) $\Omega \subset X$:

minimize *p*-energy, 1 :

$$\int_{\Omega} g_{u}^{p} d\mu \leq \int_{\Omega} g_{u+\varphi}^{p} d\mu \quad \forall \varphi \in \operatorname{Lip}_{c}(\Omega)$$

few rectifiable curves in X or ``bad`´measure \Rightarrow $g_u \equiv 0 \ \forall u$ and hence $N^{1,p}(X) = L^p(X)$ Assumptions for a reasonable theory ($g_u \equiv 0 \ \forall u \text{ no good}$):

- μ doubling: $\mu(2B) \leq C\mu(B) \quad \forall$ balls $B \subset X$
- *p*-Poincaré inequality (*p*-PI): \forall balls $B \subset X$ and $\forall u$

$$\begin{aligned} & \int_{B} |u - u_{B}| \, d\mu \leq C \operatorname{diam} B \Big(\int_{\lambda B} g_{u}^{p} \, d\mu \Big)^{1/p}, \\ & \text{where } u_{B} = \int_{B} u \, d\mu \\ \bullet \ (X \text{ complete}) & \text{(or local versions)} \end{aligned}$$

Cheeger: Possible to define a differentiable structure on X with a vector-valued differential Du and the equation (in weak sense)

$$-\operatorname{div}(|Du|^{p-2}Du) = 0$$
 or $= \nu$

Du more abstract than g_u which has a clear geometric meaning.

Examples

- "Nice" open/closed sets in \mathbf{R}^n (with a weight w dx)
- Manifolds, Heisenberg and Carnot groups
- Laakso spaces
- Hyperbolic fillings
- Sierpiński sponge in **R**^d (Ericsson-Bique–Gong, 2021):

```
(Carpet in d = 2:
Mackay-Tyson-Wildrick, 2013)
Scale factors a_n = \frac{1}{\text{odd number}}
with
\sum_{n=1}^{\infty} a_n^d < \infty
Here a_1 = \frac{1}{2}, \quad a_2 = \frac{1}{5}, \quad a_3 = \frac{1}{7}.
```

 $dx = \text{Doubling} + p - \text{PI} \forall p > 1$

۰	۰	•	•	•	•	•	•	•	۰	۰	•	•	•	۰
۰	۰	•	0	•	۰	۰	•	0	۰	۰	0		•	۰
	۰		۰	•	•	•		•	۰	•	•		•	۰
•	•	•	•	•	•	•	•	۰	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	۰	•	•	•	•	•
٥	٥	•	•	۰						۰	۰	•	•	٥
۰	۰	•	•	•						۰	۰	•	•	۰
۰	•		•	•						۰	۰		•	۰
•	•	•		•						•	•		•	•
0	•	•	•	•						•	•	•	•	۰
٥	٥	0	•	۰	۰	•	•	۰	٥	۰	۰	•	۰	٥
					•				۰	۰			•	۰
•	•		•	•	•	•		•	•	•	•		•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٥	٥	•	0	•	0	٥	•	٥	٥	٥	•	•	•	۰

- Which spaces support Poincaré inequality? New such spaces from old?
 - JB 2001: If μ doubling + p-PI and w is A_q weight wrt μ then w dμ supports pq-PI.
 - Lahti 2022: For X nice (complete, μ doubling + 1-PI) ∃c_{*} > 0 s.t. if for quasievery x ∈ X,

$$\liminf_{r \to 0} \frac{\operatorname{cap}_1(A \cap B(x,r), B(x,2r))}{\operatorname{cap}_1(B(x,r), B(x,2r))} < c_*,$$

then $X \setminus A$ also supports 1-PI.

- Other suitable definitions of gradients and Sobolev spaces? Comparisons? Energy minimizers?
 - e.g. Hajłasz α -gradient

$$|u(x)-u(y)| \leq d(x,y)^{\alpha}(h(x)+h(y)), \qquad \alpha > 0$$

or different gradients h_i at different scales

• Korevaar–Schoen spaces

Properties of *p*-harmonic functions I

Bad news:

- g_u only scalar not vector \Rightarrow no Euler–Lagrange equation
- $g_{u+v} \neq g_u + g_v \Rightarrow$ nonlinear problem also for p=2
- Sheaf property? *p*-harm in *U* and *V* \Rightarrow in $U \cup V$?

Good news (Shanmugalingam + Finland + Linköping, 1998–):

- Hölder continuous C^{lpha}
- Maximum and comparison principles: $u \le v \text{ on } \partial \Omega \implies u \le v \text{ in } \Omega$ (Note: no linearity!)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Harnack inequality: $\max_{K} u \leq C \min_{K} u$
- Convergence theorems
- Liouville theorem (under global doubling + p-PI):

 A nonconst bdd p-harm functions on X

Properties of *p*-harmonic functions II

• Solutions to the Dirichlet problem on (bdd) open $\Omega \subset X$

 $\begin{cases} u \ p\text{-harm} & \text{in } \Omega, \\ u = f & \text{on } \partial\Omega. \end{cases}$

by various methods (variational, Perron, Wiener) and for various bdry data: Existence and uniqueness if $f \in N^{1,p}(\overline{\Omega})$ or $f \in C(\partial\Omega)$. Resolutivity for general f in the Perron method: $\underline{P}f = \overline{P}f$? (even in \mathbb{R}^n)

• Invariance under small perturbations of f on the boundary: If $cap_p(\{f_1 \neq f_2\}) = 0$ and f_1 as above then $u_1 = u_2$ (Remember: nonlinear problem!)

Variational capacity: $\operatorname{cap}_p(E, \Omega) := \inf_{\varphi} \int_X g_{\varphi}^p d\mu$ with inf over all $\varphi \in N^{1,p}(X)$ s.t. $\varphi = 1$ on E and $\varphi = 0$ outside Ω .

Cantor type example with Area $(\partial \Omega) > 0$ (B–B–S 2015)

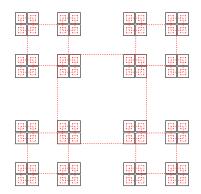
 $\Omega = \mathsf{Square} \setminus \mathsf{fat} \ \mathsf{Cantor} \ \mathsf{set}$

cpt $K = \liminf_{j \to \infty} K_j \subset \partial \Omega$ with full measure in $\partial \Omega$ but

 $\overline{\operatorname{cap}}_{p}^{\Omega}(K) = 0 \quad \forall p \geq 1$ (new capacity – from inside of Ω)

We may perturb boundary data $f \in C(\partial \Omega)$ as we like on K: Solution of the Dirichlet BVP will not change.

 $(\Omega \text{ is regular domain})$



Properties of *p*-harmonic functions III

 Boundary behaviour of *p*-harm functions and bdry regularity (B–MacManus–S, 2001)

If $X \setminus \Omega$ not *p*-thin at $x_0 \in \partial \Omega$ then x_0 is regular for the Dirichlet problem: $\forall f \in C(\partial \Omega)$, the solution *u* satisfies

$$\lim_{\Omega\ni x\to x_0}u(x)=f(x_0).$$

Here A is *p*-thin at x_0 if "Wiener integral"

$$\int_0^1 \left(\frac{\operatorname{cap}_p(A \cap B(x,r), B(x,2r))}{\operatorname{cap}_p(B(x,r), B(x,2r))}\right)^{1/(p-1)} \frac{dr}{r} < \infty.$$

- For solutions of div $(|Du|^{p-2}Du) = 0$ also converse: $X \setminus \Omega$ *p*-thin $\Rightarrow x_0$ not regular
- Regular points characterized by barriers (B-B, 2006)

p-harmonic functions on bad (measurable) sets

Recall: $(E, d|_E, \mu|_E)$ gives $N^{1,p}(E)$ for any measurable $E \subset X$ s

- Dirichlet problem for minimizing *p*-energy $\int_E g_u^p d\mu$ with bdry data $f \in N^{1,p}$ solvable and nontrivial iff fine-int $E \neq \emptyset$.
- In that case, it coincides with the solution for fine-int E.
- (G p-finely open iff $X \setminus G$ is p-thin at every $x \in G$)

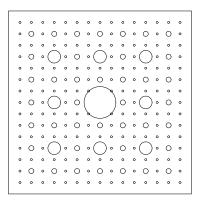
Fine potential theory and finely *p*-harmonic functions on finely open sets (B-B-Latvala (+J. Malý))

- Newtonian functions are finely cont q.e. and quasicont
- Convergence theorems
- Perron method and resolutivity on finely open sets
- Fine continuity for solutions of Dirichlet problem with bdry data f ∈ C(X).

For general finely *p*-harm functions (even in \mathbb{R}^n)?

From $[0,1]^n \subset \mathbf{R}^n$ remove $2^{(k-1)n}$ closed balls: k = 1, 2, ...

- radii $r_k = 2^{-\alpha k} \varepsilon$
- $0 < \varepsilon < \frac{1}{2}$
- $\alpha > n/(n-p)$
- 1 < p < n
- G p-finely open
- int $G = \emptyset$
- |G| > 0



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

p-superharmonic functions and some properties

- Main ingredient in Perron method for solving Dirichlet BVP
- As barriers in bdry regularity
- Defined by comparison principle on every $G \Subset \Omega$ with $\operatorname{cap}_p(X \setminus G) > 0$ (when u lsc and $u \not\equiv \infty$ in any component): If $v \in C(\overline{G})$ *p*-harm in *G* and $v \leq u$ on ∂G then $v \leq u$ in *G*.
- Or equivalently: ∀k u_k := min{u, k} is lsc-regularized superminimizer of p-energy:

$$\int_{\Omega} g^{p}_{u_{k}} \, d\mu \leq \int_{\Omega} g^{p}_{u_{k}+\varphi} \, d\mu \qquad \forall \; 0 \leq \varphi \in \operatorname{Lip}_{c}(\Omega)$$

- Finely continuous (JB, Korte 2008), i.e. sub- and superlevel sets are finely open
- Finely open sets give the coarsest topology making *p*-superharm functions continuous.
- With Du instead of g_u : *p*-superharm functions satisfy $-\operatorname{div}(|Du|^{p-2}Du) = \nu$ with Radon measure ν

Singular and Green functions – fundamental solutions

Assume that Ω is bdd and $\operatorname{cap}_p(X \setminus \Omega) > 0$

Definition: Singular function in Ω with singularity at $x_0 \in \Omega$:

- u > 0 is *p*-harm in $\Omega \setminus \{x_0\}$
- u is p-superharm in Ω
- u = 0 on $\partial \Omega$ (in the sense of Sobolev spaces)

Green function = properly normalized singular function.

Theorem

- There exists a singular function in Ω with singularity at x_0 .
- If u and v are singular functions in Ω with singularity at x₀ then u ≃ v in Ω. Moreover, near x₀,

 $u(x) \simeq cap_{\rho}(B(x_0, r), \Omega)^{1/(1-\rho)}, \text{ where } r = d(x, x_0).$

Theorem + Definition

For every singular function u there is unique $\alpha > 0$ such that for $\bar{u} = \alpha u$ and all $0 \le a < b \le \bar{u}(x_0)$,

$$cap_p(\{x : \bar{u}(x) \ge b\}, \{x : \bar{u}(x) > a\}) = (b-a)^{1-p},$$

i.e. \bar{u} is a Green function.

Sharp estimates for cap_p and p-harm functions (B–B–Lehrbäck)

• For all $0 < 2r \le R \le \frac{1}{4}$ diam X, writing $B_r := B(x_0, r)$,

$$\operatorname{cap}_p(B_r,B_R)^{1/(1-p)}\simeq \int_r^R \left(rac{
ho}{\mu(B_
ho)}
ight)^{1/(p-1)} d
ho.$$

• If u is p-harm in $\Omega \setminus \{x_0\}$ and $\lim_{x \to x_0} u(x) = \infty$, then there is R > 0 such that near x_0 ,

$$u(x) \simeq \inf_{B_R} u + \int_{d(x,x_0)}^R \left(\frac{\rho}{\mu(B_\rho)}\right)^{1/(\rho-1)} d\rho.$$

Exponent sets (dimensions) for μ at x_0 :

$$\overline{S}_0 = \{ s > 0 : \mu(B_r) \gtrsim r^s \text{ for } 0 < r \le 1 \} \text{ and } \overline{s}_0 = \inf \overline{S}_0$$
$$\overline{Q}_0 = \left\{ s > 0 : \frac{\mu(B_r)}{\mu(B_R)} \gtrsim \left(\frac{r}{R}\right)^s \text{ for } 0 < r < R \le 1 \right\}.$$

 \underline{S}_0 and \underline{Q}_0 similar but with \lesssim instead of \gtrsim

Lebesgue measure in \mathbb{R}^n : $\overline{S}_0 = \overline{Q}_0 = [n, \infty)$ and $\underline{S}_0 = \underline{Q}_0 = (0, n]$ In general not equal and can be open.

•
$$\operatorname{cap}_{p}(B_{r}, B_{R}) \simeq \begin{cases} R^{-p}\mu(B_{R}), & p > \inf \overline{Q}_{0}, \\ r^{-p}\mu(B_{r}), & p < \sup \underline{Q}_{0}, \end{cases}$$

• $C_{p}(\{x_{0}\}) \begin{cases} = 0, & p < \overline{s}_{0} \text{ or } p = \overline{s}_{0} \notin \overline{S}_{0} \setminus \underline{S}_{0}, \\ > 0, & p > \overline{s}_{0}. \end{cases}$

Integrability for Green and *p*-harm functions

Let
$$\bar{s}_0 = \inf \bar{S}_0$$
, $\tau_p = \frac{\bar{s}_0(p-1)}{\bar{s}_0 - p}$ and $t_p = \frac{\bar{s}_0(p-1)}{\bar{s}_0 - 1}$.

Theorem

Assume that $C_p(\{x_0\}) = 0$. Let u = Green function in Ω with singularity at x_0 . Then for $B = B(x_0, r) \subseteq \Omega$:

- $p \leq \bar{s}_0$ and u is unbdd;
- $u \in L^{\tau}(B)$ and $g_u \in L^t(B)$ for all $\tau < \tau_p$ and $t < t_p$;

•
$$u \notin L^{\tau}(B)$$
 if $\tau > \tau_p$;

• $g_u \notin L^t(B)$ if $t > t_p$ and μ supports a t-Pl.

• if $p = \overline{s}_0$, then $g_u \in L^t(B)$ iff 0 < t < p;

Same (non)integrability conclusions hold if $u \ge 0$ is a general *p*-harm function in $\Omega \setminus \{x_0\} \subset X$ with $\lim_{x\to x_0} u(x) = \infty$.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで