Conformal Assouad dimension as the critical exponent for combinatorial modulus

Mathav Murugan

The University of British Columbia

BIRS, November 21, 2022.

A potential theoretic notion of dimension

- The p-capacity $(p>1)$ between two sets $E, F \subset \mathbb{R}^{n}$ is given by
$\operatorname{cap}_{p}(E, F):=\inf \left\{\int_{\mathbb{R}^{n}}|\nabla f|^{p}(x) d x: f \in C^{1}\left(\mathbb{R}^{n}\right),\left.f\right|_{E} \equiv 1,\left.f\right|_{F} \equiv 0\right\}$.
The capacity of the annulus $\operatorname{cap}_{p}\left(B\left(x_{0}, r\right), B\left(x_{0}, R\right)^{c}\right)$ is

$$
\begin{cases}c_{n} \log (R / r)^{1-n}, & p=n \\ c_{p, n}\left|R^{(p-n) /(p-1)}-r^{(p-n) /(p-1)}\right|^{1-p}, & p \neq n\end{cases}
$$

- Question: Can we identify the dimension of a metric space as a critical value of p based on the behaviour of p-capacity of annuli?

Combinatorial modulus

- Let $G=(V, E)$ be a graph. Let Γ be a family of paths in G. Then the p-modulus of Γ is

$$
\operatorname{Mod}_{p}(\Gamma, G)=\inf _{\rho \in \operatorname{Adm}(\Gamma)} \sum_{v \in V} \rho(v)^{p},
$$

where $\operatorname{Adm}(\Gamma)=\left\{\rho: V \rightarrow[0, \infty): \sum_{v \in \gamma} \rho(v) \geq 1\right.$ for all $\left.\gamma \in \Gamma\right\}$.

- One can use function ρ defined on edges (Duffin '62) instead of vertices (Cannon '94). This leads to a comparable quantity on bounded degree graphs (He and Schramm '95).
- If Γ is the family of paths that join A_{1} and A_{2}, then the edge modulus of Γ is the (discrete) p-capacity between A_{1} and A_{2}.
- We can understand modulus (or capacity) on metric spaces by approximating a metric space by a sequence of graphs at finer and finer scales.

Critical exponent for combinatorial modulus

- Let (X, d) be a compact metric space. Fix parameters $a, \lambda, L>1$.
- For each $k \in \mathbb{N}$, let X_{k} be a maximal a^{-k}-separated subset of (X, d) with $X_{k} \subset X_{k+1}$ for all k.
- Define graphs G_{n} with vertex set X_{n}, where $x, y \in X_{n}$ are joined by an edge if $x \neq y$ and $B\left(x, \lambda a^{-n}\right) \cap B\left(y, \lambda a^{-n}\right) \neq \emptyset$.
- For $x \in V\left(G_{n}\right)=X_{n}$, let $\Gamma_{k, L}(x)$ denote all paths in G_{n+k} that begin at $B\left(x, a^{-n}\right)$ and end at $B\left(x, L a^{-n}\right)^{c}$. Set

$$
M_{p, k}=\sup \left\{\operatorname{Mod}_{p}\left(\Gamma_{k, L}(x): x \in X_{n}, n \in \mathbb{N}\right)\right\}
$$

and the critical exponent $Q(X, d)$ is defined as

$$
M_{p}=\liminf _{k \rightarrow \infty} M_{p, k}, \quad Q(X, d)=\inf \left\{p>0: M_{p}=0\right\}
$$

- The above definition does not depend on choices of a, λ, L, X_{n}.
- This notion is due to Carrasco (2013) and Bourdon-Kleiner (2013).

Annulus viewed at a finer scale

Doubling metric space and Assouad dimension

- A metric space is doubling if there exists $N \in \mathbb{N}$ such that every ball of radius R can be covered by N balls of radii $R / 2$.
- The Assouad dimension of a metric space (X, d) is the infimum of all $\alpha>0$ such that there exists $C>1$ so that every ball of radius R can be covered by $C(R / r)^{\alpha}$ balls of radii r for all $0<r<R$.
- The Assouad dimension $d_{A}(X, d)$ is finite if and only if (X, d) is doubling.

Doubling measures and Vol'berg-Konyagin theorem '87

- A non-zero measure μ is said to be doubling if there exists $C>1$ such that $\mu(B(x, 2 r)) \leq C \mu(B(x, r))$ for all $x \in X, r>0$. Equivalently μ is q-homogeneous for some $q>0$:

$$
\frac{\mu(B(x, R))}{\mu(B(x, r))} \lesssim\left(\frac{R}{r}\right)^{q}, \quad \text { for all } x \in X, 0<r<R .
$$

- (Vol'berg-Konyagin) The Assouad dimension of a compact metric space (X, d) is the infimum of all $q>0$ such that there exists a q-homogeneous measure on (X, d).

Quasisymmetry and Conformal gauge

- Quasisymmetry (QS): A notion of 'conformal maps' on metric spaces (Ahlfors-Beurling '56, Tukia-Väisälä '80).
$f:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ is a homeomorphism.
$\eta:[0, \infty) \rightarrow[0, \infty)$ is a self-homeomorphism on $[0, \infty)$.
Def. f is η-QS

$$
\frac{d_{2}(f(x), f(y))}{d_{2}(f(x), f(z))} \leq \eta\left(\frac{d_{1}(x, y)}{d_{1}(x, z)}\right) \quad \text { for all } x, y, z \in X_{1}, x \neq z
$$

f is a QS (quasisymmetry) it is a quasisymmetry for some η.
Def. Conformal gauge of a metric space (X, d) $\mathcal{J}(X, d)=\{\theta$ is a metric on $X \operatorname{ld}:(X, d) \rightarrow(X, \theta)$ is a QS $\}$.

Conformal dimensions

- The Ahlfors regular conformal dimension of a metric space (X, d) is

$$
d_{\mathrm{ARC}}=\inf \left\{Q \left\lvert\, \begin{array}{l}
\text { there exists a measure } \mu \text { and a metric } \\
\theta \in \mathcal{J}(X, d) \text { such that } \mu\left(B_{\theta}(x, r)\right) \asymp r^{Q} \\
\text { for all } r<\operatorname{diam}(X, \theta) .
\end{array}\right.\right\} .
$$

- This is variant of Pansu's definition ('89) was introduced by Bonk-Kleiner ('05) and Bourdon-Pajot ('03).
- Possible values of $d_{\text {ARC }}=\{0\} \cup[1, \infty]$ (Laakso'00, Kovalev'06).
- The conformal Assouad dimension $d_{\mathrm{CA}}(X, d)$ is

$$
d_{\mathrm{CA}}=\inf \left\{d_{A}(X, \theta): \theta \in \mathcal{J}(X, d)\right\} .
$$

- Questions: Given a space, what is the value of $d_{\text {ARC }}$ (or $\left.d_{C A}\right)$? Is the infimum attained? Both these questions are open for Sierpiński carpet.

Conformal dimensions: motivation and basic properties

- In geometric group theory, the conformal dimension of the boundary of a hyperbolic group is a quasi-isometry invariant.
- In complex dynamics, the conformal dimension of the Julia set is invariant under Thurston equivalence.
- Quasisymmetry is a useful tool to understand Harnack inequalities (Kigami '08).
- $d_{\mathrm{CA}}(X, d)<\infty$ if and only if (X, d) is doubling $d_{\text {ARC }}(X, d)<\infty$ if and only if (X, d) is doubling and uniformly perfect.
- (X, d) is uniformly perfect if there exists $C_{P}>1$ such that for all balls $B(x, r) \neq X$ implies $B(x, r) \backslash B\left(x, r / C_{P}\right) \neq \emptyset$.

Combinatorial modulus, $d_{\mathrm{CA}}(X, d)$ and $d_{\mathrm{ARC}}(X, d)$

- Issue with $d_{\text {ARC }}: Y \subset X$ need not imply $d_{\text {ARC }}(Y, d) \leq d_{\text {ARC }}(X, d)$. On the other hand, $Y \subset X$ implies $d_{\mathrm{CA}}(Y, d) \leq d_{\mathrm{CA}}(X, d)$ and $Q(Y, d) \leq Q(X, d)$.
- Doubling measures are preserved under quasisymmetry whereas Ahlfors regular measures are not.
- (Heinonen) If (X, d) is compact, doubling and uniformly perfect, then $d_{\mathrm{CA}}(X, d)=d_{\mathrm{ARC}}(X, d)$.
- (Carrasco‘13, Keith-Kleiner) If (X, d) is compact, doubling and uniformly perfect, then $Q(X, d)=d_{\mathrm{ARC}}(X, d)$.
- (M. '22+) If (X, d) is compact and doubling, then $Q(X, d)=d_{\text {CA }}(X, d)$.
- Carrasco's proof of $Q(X, d) \leq d_{\mathrm{ARC}}(X, d)$ and $Q(X, d) \geq d_{\text {ARC }}(X, d)$ uses the uniform perfectness property.

Heuristics

- The construction of the metric $\theta \in \mathcal{J}(X, d)$ is such that the 'new' diameter of a ball is proportional to the optimizer for modulus of annuli at all locations and scales.
- Then the admissibility condition $\sum_{y \in \gamma} \rho(y) \geq 1, \gamma \in \Gamma_{k, L}(x)$ can be interpreted as a 'no shortcuts condition':
$\sum_{y \in \gamma} \operatorname{diam}\left(B_{y}, \theta\right) \geq \operatorname{diam}\left(B_{x}, \theta\right)$.
- The smallness of p-modulus is similar to $\sum_{y \in G_{n+k}} \operatorname{diam}^{p}\left(B_{y}, \theta\right) \ll \sum_{x \in G_{n}} \operatorname{diam}^{p}\left(B_{x}, \theta\right)$ which could be interpreted as dimension bound $\operatorname{dim}(X, \theta) \leq p$.

Gromov hyperbolic spaces

- The proof uses Gromov hyperbolic spaces. In particular, it is helpful to view the given metric space as the boundary of a Gromov hyperbolic space .
- Let (Z, D) be a metric space. The Gromov product of x and y with respect to the base point w as

$$
(x \mid y)_{w}=\frac{1}{2}(D(x, w)+D(y, w)-D(x, y))
$$

- (Z, D) is δ-hyperbolic, if for any four points $x, y, z, w \in Z$, we have

$$
(x \mid z)_{w} \geq(x \mid y)_{w} \wedge(y \mid z)_{w}-\delta
$$

The boundary of a hyperbolic space

- A sequence of points $\left\{x_{i}\right\} \subset Z$ is said to converge at infinity, if $\lim _{i, j \rightarrow \infty}\left(x_{i} \mid x_{j}\right)_{w}=\infty$ (choice of w does not matter).
- Two sequences $\left\{x_{i}\right\},\left\{y_{i}\right\}$ that converge at infinity are said to be equivalent, if $\lim _{i \rightarrow \infty}\left(x_{i} \mid y_{i}\right)_{w}=\infty$. This is an equivalence relation if (Z, D) is hyperbolic.
- The boundary of the hyperbolic space $\partial(Z, D)=\partial Z$ is the equivalence classes of sequences that converge at infinity.

Visual metric on the boundary

- The Gromov product on ∂Z with base point $w \in Z$ is

$$
(a \mid b)_{w}=\sup \left\{\liminf _{i \rightarrow \infty}\left(x_{i} \mid y_{i}\right)_{w}:\left\{x_{i}\right\} \in a,\left\{y_{i}\right\} \in b\right\}, \quad a, b \in \partial Z
$$

- A metric ρ on ∂Z is said to be a visual metric with visual parameter $\alpha \in(1, \infty)$ and base point w, if $\rho(a, b) \asymp \alpha^{-(a \mid b)_{w}}$.
- Visual metrics exist: for any δ-hyperbolic space (Z, d), there exists $\alpha_{0}>1$ (α_{0} depends only on δ) such that if $\alpha \in\left(1, \alpha_{0}\right)$, then there exists a visual metric with parameter α.

Quasi-isometric stability of hyperbolicity

- A map $f:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ between two metric spaces is a quasi-isometry if there exist constants $A . B>0$ such that

$$
A^{-1} d_{1}(x, y)-B \leq d_{2}(f(x), f(y)) \leq A d_{1}(x, y)+B
$$

for all $x, y \in X_{1}$, and $\sup _{x_{2} \in X_{2}} d\left(x_{2}, f\left(X_{1}\right)\right) \leq B$

- If $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ are almost geodesic spaces and $f:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ is a quasi-isometry, then $\left(X_{1}, d_{1}\right)$ is hyperbolic if and only if $\left(X_{2}, d_{2}\right)$ is hyperbolic.

The boundary map

- If $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ are hyperbolic and almost geodesic, the quasi-isometry $f:\left(X_{1}, d_{1}\right) \rightarrow\left(X_{2}, d_{2}\right)$ extends to a well-defined map $\partial f: \partial X_{1} \rightarrow \partial X_{2}$ on its boundary given by

$$
\partial f\left(\left\{x_{n}\right\}\right)=\left\{f\left(x_{n}\right)\right\} .
$$

- A sequence $\left\{x_{n}\right\}$ converges at infinity in $\left(X_{1}, d_{1}\right)$ if and only if $\left\{f\left(x_{n}\right)\right\}$ converges at infinity in $\left(X_{2}, d_{2}\right)$. Two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ that converge at infinity in $\left(X_{1}, d_{1}\right)$ are equivalent if and only if $\left\{f\left(x_{n}\right)\right\}$ and $\left\{f\left(y_{n}\right)\right\}$ are equivalent in $\left(X_{2}, d_{2}\right)$.
- (Bonk-Schramm '00) The boundary map is a bijection. If ρ_{1}, ρ_{2} are visual metrics on $\partial X_{1}, \partial X_{2}$, then $\partial f:\left(\partial X_{1}, \rho_{1}\right) \rightarrow\left(\partial X_{2}, \rho_{2}\right)$ is a power quasisymmetry (quasisymmetry whose distortion function can be taken as $\eta(t)=C\left(t^{\gamma} \vee t^{1 / \gamma}\right)$ for some $\left.C \geq 1, \gamma>0\right)$.

Hyperbolic filling

- (Björn, Björn, Shanmugalingam '22) A compact metric space can be identified with the boundary of a hyperbolic graph (called hyperbolic filling) with visual metric.
- Similar earlier construction by Bourdon-Pajot '03 has hyperbolicity constant depend on the constant of uniform perfectness.
- The idea behind Carrasco's proof goes back to earlier work of Keith-Laakso '04.
- A bilipschitz change of the graph metric of hyperbolic filling is done using optimizers for modulus at various scales and locations.

Power quasisymmetry vs quasisymmetry

- Let $\mathcal{J}_{p}(X, d)$ denote the power quasisymmetric conformal gauge of (X, d).
- Possible issue with hyperbolic filling: The Bonk-Schramm theorem only produces metric in $\mathcal{J}_{p}(X, d)$ but not all quasi-symmetries are power quasisymmetries.
- (Tukia-Väisälä '84) If (X, d) is uniformly perfect, then $\mathcal{J}_{p}(X, d)=\mathcal{J}(X, d)$.
- In general, it is possible that $\mathcal{J}_{p}(X, d) \subsetneq \mathcal{J}(X, d)$ (Trostsenko-Vaisälä '99).
- (M.22+) $d_{\mathrm{CA}}(X, d)=\inf \left\{d_{\mathrm{A}}(X, \theta): \theta \in \mathcal{J}_{p}(X, d)\right\}$ for any compact doubling space.

Proof sketch

- To obtain $Q(X, d) \leq d_{\mathrm{CA}}(X, d)$, we construct the metric $\theta \in \mathcal{J}(X, d)$ by a bi-Lipshitz change of metric on the hyperbolic filling. The upper bound on $d_{A}(X, \theta)$ is obtained by constructing a doubling measure and using
Vol'berg-Konyagin theorem (this requires a modification of the Vol'berg-Konyagin construction of doubling measures).
- To obtain $Q(X, d) \leq d_{\mathrm{CA}}(X, d)$, for $p>d_{\mathrm{CA}}(X, d)$, pick $\theta \in \mathcal{J}(X, d)$ and μ doubling measure that is q-homogeneous in (X, θ) for some $d_{\mathrm{CA}}(X, d) \leq q<p$ (using Vol'berg-Konyagin). A modification of the function

$$
\rho(w)=\left(\frac{\mu\left(B_{w}\right)}{\mu\left(B_{v}\right)}\right)^{1 / q}
$$

where $v \in G_{n}$ is a 'parent' of $w \in G_{n+k}$ is admissible for combinatorial modulus and has small p-norm.

Question: monotonicty of exponents

- By a general sub-multiplicativity property of combinatorial modulus (Bourdon-Kleiner '13, Carrasco '13), $\beta_{p}=\lim _{k \rightarrow \infty} \frac{1}{k} \log M_{k, p}$ exists.
- It is easy to see that $p \mapsto \beta_{p}$ is non-increasing.
- Question: (Bonk) Is $p \mapsto \beta_{p}$ strictly decreasing in p ?
- An affirmative answer would allow us characterize conformal dimension as the unique exponent p for which $\beta_{p}=0$. We expect this to be true in most examples of interest: boundaries of hyperbolic groups, Sierpinski gasket/carpets, Julia sets.

Concluding remarks

- The conformal Assouad dimension is a better way to define Ahlfors regular conformal dimension.
- The construction of doubling measure by Vol'berg and Konyagin and the construction of metric by Carrasco is flexible enough to be adapated for different purposes.
- A modified version of Vol'berg-Konyagin construction played an important role in the proof of the stability of elliptic Harnack inequality (Barlow, M., 2018).
- Similarly, a modification of Carrasco's construction helped us to understand a new relationship between elliptic and parabolic Harnack inequalities (Kajino, M., 2022).

Thank you for your attention

S. Keith, T. Laakso, Conformal assouad dimension and modulus GAFA, 2004
M. Carrasco Piaggio, On the conformal gauge of a compact metric space, Ann. Sci. Éc. Norm. Supér. 2013
M. Murugan, Conformal Assoaud dimension as the critical exponent for combinatorial modulus, arXiv:2209.01187.

