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One expectation that comes out of the Swampland program is that if a 
theory has a U(1) gauge symmetry with gauge coupling 𝑔, then in the 
𝑔 → 0 limit an infinite tower of charged states (with increasing 
charges) should become light relative to the Planck mass.   

𝑚! ∼ 𝑔𝑞𝑀"

[Arkani-Hamed, Motl, Nicolis, Vafa ’06][Heidenreich, Reece, Rudelius ‘15][Grimm, Palti, Valenzuela 
‘18][Andriolo, Junghans, Noumi, Shiu ‘18][Weigand, Lee, Lerche ‘18] …



We can test this in a controlled setting in type IIB string theory 
compactifications on Calabi-Yau 3-folds, yielding a four-dimensional 
𝑁 = 2 supergravity 

U(1) gauge symmetries coming from the RR sector, whose gauge 
coupling is controlled by the complex-structure moduli 

The charged states are D3 branes wrapping 3-cycles in the CY

Will focus on those which are supersymmetric, so BPS



It was shown that approaching any weak-coupling limit, these BPS 
states indeed have a mass which behaves like the gauge coupling (and 
is exponentially small in the proper distance in moduli space)

[Grimm, Palti, Valenzuela ’18]

Even though the BPS states never become the lightest in a controlled 
supergravity regime, it was proposed that they do offer a dual 
description of some of the string physics – specifically the infinite 
distance in the moduli space as well as the moduli and gauge fields 
themselves: “Emergence Proposal”

• Open question: are the charges actually populated by BPS states in 
the theory?

[Grimm, Palti, Valenzuela ’18]

See also [Harlow ’15][Heidenreich, Reece, Rudelius ‘17]



If correct, would expect some correspondence in properties of:

Complex-structure 
moduli space BPS states

Classic example: conifold singularity in moduli space

The work is taking some steps towards making such connections more 
quantitative and concrete

The results stand for themselves for those interested in properties of BPS 
states and Black Holes in general



The mass of the BPS states is

Where the central charge, which is a function of the complex-
structure moduli, is

Note: The states are never lighter than string states in the supergravity 
regime

Here gs is the string coupling, which is a field appearing in the hypermultiplet sector. Vs is the
(dimensionless) volume of the Calabi-Yau in units of the string length, it is also a field which
appears in the hypermultiplet sector. The mass of a D3 brane wrapped on a three-cycle C takes
the form

MD3 ⇠
Ms

gs
VC ⇠

Ms

gs

p
VsZ (q) ⇠ Z (q)Mp , (2.6)

where here VC denotes the volume in string units of C.

We will be interested in this paper in limits in moduli space where Z (q) ! 0 or Z (q) ! 1.
We will refer to branes whose central charge goes to zero as light (electric) states, while branes
whose central charge diverges will be referred to as heavy (dyonic) states. It is important to note
that the expression (2.6) shows that these two ways to refer to the states should be interpreted
with care. In particular, in the weakly-coupled supergravity regime we must have VC � 1 and
gs ⌧ 1 which means that MD3 � Ms irrespective of the value of Z (q). Therefore, in that
regime even the light D3 states are always heavier than the string states. On the other side, the
heavy D3 states have MD3 � Mp, and so should not really be interpreted as particle states.
Nonetheless, the presence of N = 2 supersymmetry in the theory will allow us to probe certain
aspects of the physics associated to both the light and heavy D3 states. It is these ‘protected’
aspects of the D3 brane physics which will be the central elements in this paper.

2.2 Decay and binding of BPS states

A given charge vector q does not necessarily correspond to a stable BPS state in the theory.
Further, the spectrum of stable BPS states depends on the point in moduli space at which it is
evaluated. The changes to the spectrum of BPS states in the theory upon traversing paths in
moduli space is controlled by Walls of Marginal Stability (WMS) where BPS states may either
combine with other ones to form new stable bound states, or may become unstable and split
into stable constituents. In this paper we will be primarily concerned with such process which
involve only two constituents.

Consider three BPS states A, B and C with respective charges qA, qB and qC . We are
interested in the process where the state A decays into B and C, denoted as A ! B + C. We
therefore should impose charge conservation

qA = qB + qC . (2.7)

The central charge is a linear function of the charge, and therefore (2.7) implies

Z (qA) = Z (qB) + Z (qC) . (2.8)

The mass of the BPS states is
M (q) = |Z (q)| . (2.9)

We can then introduce the phase of the central charge ↵ (q) as

Z (q) = M (q) ei↵(q) . (2.10)

From (2.8) we can write

M (qA)
2 = (M (qB) +M (qC))

2
� 2M (qB)M (qC)

⇥
1� cos (↵ (qB)� ↵ (qC))

⇤
. (2.11)
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are at a completely unrelated locus in moduli space. Such a notion of non-locality is naturally
required for emergence/holography.

We will discuss the implications of the results for the motivation topics above in section 6.

2 D3 branes as BPS states

In this work we are considering the setting of type IIB string theory on Calabi-Yau manifolds
which gives an N = 2 supergravity. Within this we consider further only the vector-multiplet
moduli space. The charged BPS states whose mass depends on the vector-multiplet (complex-
structure) moduli are D3 branes wrapping 3-cycles in the Calabi-Yau. In this section, we discuss
some properties of these states.

2.1 N = 2 BPS states

The moduli space of N = 2 supersymmetric theories splits into two sectors, the vector multiplet
moduli space and the hypermultiplet one. We will be solely concerned with the vector multiplet
sector and denote by nV the number of vector multiplets. The moduli fields zi, with i = 1, ..., nV ,
control the mass of (half-)BPS states in the theory. The mass is set by the central charge Z (q),
which is a function of (integer quantised) charge vectors q. The charges are with respect to the
gauge fields of the vector multiplets plus the graviphoton in the graviton multiplet. The moduli
space and the central charge are controlled by the period vector ⇧

�
zi
�
, which has 2 (nV + 1)

entries that are holomorphic in the zi. Specifically,

Z (q) = e
K
2 q

T
· ⌘ ·⇧ . (2.1)

Here ⌘ is a matrix defining a symplectic inner product, for example it can be taken as

⌘ =

✓
0 1nV +1

�1nV +1 0

◆
. (2.2)

It is useful to denote the symplectic inner product as

hq,pi ⌘ q
T
· ⌘ · p . (2.3)

The Kahler potential, K, is itself determined by the period vector through

K = � log i
⌦
⇧,⇧

↵
. (2.4)

Compactifications of type IIB string theory on a Calabi-Yau manifold have BPS states
corresponding to D3 branes wrapping three-cycles in the Calabi-Yau. The charge vector q

corresponds to the wrapping numbers of the D3 brane. While this is determined topologically,
the question of whether there is an actual BPS state of a given charge is mapped to the existence
of a special Lagrangian sub-manifold in the given homology class, which is not a topological
invariant.

It is informative to look at the mass scale of the wrapped D3 branes in more detail. The
expression for BPS states (2.1) is given in units of the four-dimensional (reduced) Planck mass
Mp. This is related to the string scale Ms as

Ms ⇠
gs
p
Vs

Mp . (2.5)
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See, Emergent String Conjecture [Weigand, Lee, Lerche ’18]



Upon variation of the gauge couplings, or moduli fields, the BPS states can 
decay or combine.

This occurs along co-dimension 1 loci in moduli space called Walls of 
Marginal Stability where the triangle inequality is saturated

Here gs is the string coupling, which is a field appearing in the hypermultiplet sector. Vs is the
(dimensionless) volume of the Calabi-Yau in units of the string length, it is also a field which
appears in the hypermultiplet sector. The mass of a D3 brane wrapped on a three-cycle C takes
the form

MD3 ⇠
Ms

gs
VC ⇠

Ms

gs

p
VsZ (q) ⇠ Z (q)Mp , (2.6)

where here VC denotes the volume in string units of C.

We will be interested in this paper in limits in moduli space where Z (q) ! 0 or Z (q) ! 1.
We will refer to branes whose central charge goes to zero as light (electric) states, while branes
whose central charge diverges will be referred to as heavy (dyonic) states. It is important to note
that the expression (2.6) shows that these two ways to refer to the states should be interpreted
with care. In particular, in the weakly-coupled supergravity regime we must have VC � 1 and
gs ⌧ 1 which means that MD3 � Ms irrespective of the value of Z (q). Therefore, in that
regime even the light D3 states are always heavier than the string states. On the other side, the
heavy D3 states have MD3 � Mp, and so should not really be interpreted as particle states.
Nonetheless, the presence of N = 2 supersymmetry in the theory will allow us to probe certain
aspects of the physics associated to both the light and heavy D3 states. It is these ‘protected’
aspects of the D3 brane physics which will be the central elements in this paper.

2.2 Decay and binding of BPS states

A given charge vector q does not necessarily correspond to a stable BPS state in the theory.
Further, the spectrum of stable BPS states depends on the point in moduli space at which it is
evaluated. The changes to the spectrum of BPS states in the theory upon traversing paths in
moduli space is controlled by Walls of Marginal Stability (WMS) where BPS states may either
combine with other ones to form new stable bound states, or may become unstable and split
into stable constituents. In this paper we will be primarily concerned with such process which
involve only two constituents.

Consider three BPS states A, B and C with respective charges qA, qB and qC . We are
interested in the process where the state A decays into B and C, denoted as A ! B + C. We
therefore should impose charge conservation

qA = qB + qC . (2.7)

The central charge is a linear function of the charge, and therefore (2.7) implies

Z (qA) = Z (qB) + Z (qC) . (2.8)

The mass of the BPS states is
M (q) = |Z (q)| . (2.9)

We can then introduce the phase of the central charge ↵ (q) as

Z (q) = M (q) ei↵(q) . (2.10)

From (2.8) we can write

M (qA)
2 = (M (qB) +M (qC))

2
� 2M (qB)M (qC)

⇥
1� cos (↵ (qB)� ↵ (qC))

⇤
. (2.11)
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Since the last term in (2.11) is negative we have M (qA)  M (qB) +M (qC) and therefore the
decay A ! B + C cannot occur unless the phases of B and C align. This alignment defines a
Wall of Marginal Stability (WMS) for the decay A ! B + C,

WMSA!B+C : ↵ (qB) = ↵ (qC) . (2.12)

It is useful to note that (2.12) implies also ↵ (qA) = ↵ (qB). However, the opposite direction is
not quite true. Defining a wall of marginal stability by through the phases of B and A requires
an additional condition on the masses

WMSA!B+C : ↵ (qA) = ↵ (qB) and M (qA) � M (qB) . (2.13)

The condition on the wall of marginal stability (2.12) determines where such a decay process
may occur, but it does not guarantee that it does. This depends on whether the constituent
states are in the BPS spectrum themselves, and also on which direction we cross the wall. If
crossing the wall in one direction we have the decay A ! B + C, then crossing he wall in
the opposite direction must correspond to the reverse binding process B + C ! A. For small
variations away from the WMS the condition on which process is occurring, decay or binding, is
determined as [50, 51,58]

Decay (A ! B + C) : hqB,qCi (↵ (qB)� ↵ (qC)) < 0 ,

Binding (B + C ! A) : hqB,qCi (↵ (qB)� ↵ (qC)) > 0 . (2.14)

The microscopic physics associated to the decay or binding is the mass of open strings stretching
between the branes. When the strings are tachyonic the branes form a bound state. Macroscop-
ically, the condition corresponds to having a split attractor flow with a positive value for the
splitting radius. The two pictures are related by varying the string coupling, as studied in [51].

2.3 The BPS index and wall crossing formula

A crucial aspect of the spectrum of BPS states is the degeneracy of states of a given charge.
The deformation invariant quantity which provides a good measure of the degeneracy of states
is the BPS index. The index is denoted as ⌦ (q, z) for a charge q at a point in moduli space z.
It receives a +1 from a massive hypermultiplet and �2 from a massive vector multiplet. The
wrapped D3 branes give rise to hypermultiplets.

In section 2.2 we discussed walls of marginal stability. Upon crossing such walls, BPS states
can bind or decay and correspondingly the BPS index can jump. Conversely, a change in the
BPS index implies that the state has to cross some wall of marginal stability. The change in
the BPS index upon crossing a wall is described in generality by the wall-crossing formula [5].
We will not utilise the full details of the formula, and just give a feeling for it for sub-cases
which were described in [59]. First we may consider the primitive decay process qA ! qB + qC .
By primitive we mean that qB and qC cannot be written as an integer multiple of some other
quantized charge. In this case the change in the BPS index ⌦ (q, z) is given by [59]
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|hqB,qCi|⌦ (qB, zms)⌦ (qC , zms) , (2.15)

where zms is the wall of marginal stability locus in moduli space.
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�⌦ (qA, z) = (�1)hqB ,qCi�1
|hqB,qCi|⌦ (qB, zms)⌦ (qC , zms) , (2.15)

where zms is the wall of marginal stability locus in moduli space.

8

[Denef, Moore ’07]



The moduli space is controlled by Monodromy matrices 
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Figure 3: Figure showing the moduli space of the P5[3, 3] Calabi-Yau. The orientation of the
di↵erent monodromies, �s, �M and �C , about the singular loci is shown. The global orientation
ensures that the product of the monodromies is the unit operator.

where µ = 36. The moduli space has three special points

• Large complex structure : w = 0,

• Tyurin degeneration : z = 0,

• Conifold point: u = 0.

The first two of these are at infinite distance, while the conifold is at finite distance. The moduli
space is therefore of the form P1/ {0, 1,1} and is illustrated in figure 3.

The Tyurin degeneration locus z = 0 has a Z3 orbifold symmetry which can be seen by noting
that sending  !  e

2⇡i
3 can be undone by rotatining the coordinates appropriately. This means

that while the natural holomorphic coordinate for the conifold and large complex-structure
behaves as  6, the natural coordinate for the Tyurin degeneration is  2. This explains the
definition (A.2).

There is a global orientation of the monodromies on the moduli space. As shown in figure 3,
we take this such that we are circling all the monodromy loci clockwise in the coordinates w and
u. This means that in terms of the coordinates z we are circling the Tyurin degeneration locus
anti-clockwise. So if we label the monodromy loci by M for the large complex structure point,
C for the conifold, and s for the Tyurin degeneration, then the monodromy matrices associated
to each locus are defined such that

⇧M
�
we�2⇡i

�
= TM ·⇧M (w) , ⇧C

�
ue�2⇡i

�
= TC ·⇧C (u) , ⇧s

�
ze2⇡i

�
= Ts ·⇧s (z) . (A.3)
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existence of a populated tower of states.

3 BPS states at infinite distance

The structure of the vector multiplet moduli space exhibits certain universal features at infinite
distance and weak coupling limits, which was developed in detail in [2, 3]. In this section we
apply these results to determine the behaviour of the masses and phases of BPS states near
those limits.

3.1 Moduli space near monodromies

The complex-structure, or vector multiplet, moduli space has certain singular loci where the
period vector undergoes monodromies. If we denote the local coordinate about one of these
singular loci as z, so that the locus is at z = 0, then the monodromy action � corresponds to
circling this locus

� : z ! zer2⇡i . (3.1)

The constant r can take the values ±1. The sign corresponds to going around the monodromy
locus clockwise or anti-clockwise. This is a free choice at a global level, so we can choose to
traverse all the monodromy loci together either clockwise or anti-clockwise, but once this choice
is made there is a fixed global orientation which fixes the ± sign for each monodromy locus.
This global orientation ensures that the product of all the monodromies gives the identity

Y

I

�I = 1 . (3.2)

While this is in general important, it will not play a role in our analysis and so we henceforth
set r = +1 for simplicity.

Note that for moduli spaces with multiple moduli there are monodromy loci with complex
codimension higher than one, and so have a number of monodromies associated to them. These
settings will not be considered in detail in this paper, and we refer to, for example, [3] for an
in-depth study of such monodromy loci.

Under the monodromy the period vector transforms as

� ·⇧ (z) = ⇧
�
ze2⇡i

�
= T ·⇧ (z) . (3.3)

Here T is the monodromy matrix which has integer entries in an appropriate basis. Note that
we will choose the coordinate z in (3.3) such that it is the holomorphic coordinate of minimal
power leading to a period vector which is holomorphic in it up to logarithmic factors (which
then induce the monodromy). One can physically motivate this as saying (3.3) is the minimal
rotation which leaves the physics invariant up to monodromy transformations.8

It is useful to introduce the matrix N defined as

T = eN . (3.4)

8In general, the monodromy matrix T can be factorised as T = T (o)T (u), where T (o) is a finite order matrix
associated to a possible orbifolding of the moduli space, while T (u) is a unipotent matrix of infinite order. This
will not be important for us because of this definition of z as the minimal power.
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The unipotency of T then translates to nilpotency of N to a certain order. In particular, for
Calabi-Yau threefolds N4 = 0 for any monodromy locus. Indeed, an important property of a
monodromy locus is the nilpotency order of its N . We define an integer n such that

n : Nn+1 = 0 , Nn
6= 0 . (3.5)

The matrix N controls the behaviour of the period vector. This is the Nilpotent Orbit Theorem
[1,2] which states that

⇧ (z) = Exp


N

log z

2⇡i

� 1X

p=0

apz
p , (3.6)

where the ap are constant (in z) vectors. We see that as z ! 0 the period vector is dominated
by the log z parts with the zp parts contributing exponentially small corrections. This is true at
least as long as Na0 6= 0. Indeed, an important quantity is the integer d defined such that

d : Nd+1
a0 = 0 , Nd

a0 6= 0 . (3.7)

In particular, if d = 0 then the monodromy locus is at finite distance in moduli space, like the
conifold. While if d > 0 then the locus is at infinite distance in moduli space. Conversely, any
infinite distance locus in moduli space, which is also the case for any vanishing gauge coupling
limit, has a monodromy with d > 0.

3.2 BPS states near monodromies

Combining the expression for the central charge (2.1) with that of the period vector (3.6) we can
obtain an approximate expression for the central charge. Consider the cases d = 1 and d = 0
where the relevant terms contributing to the central charge take the form

Z (q) =
1

|c log |z||
1
2


hq,a0i+ hq, N · a0i

✓
log z

2⇡i

◆
+ hq,a1i z + ...

�
. (3.8)

Here c is some unimportant constant. Let us consider the case d = 0, which corresponds to the
conifold locus. In this case, since N · a0 = 0, we have two types of states. Those whose charges
satisfy hq,a0i 6= 0, which stay massive in the conifold limit z ! 0. And there are those where
hq,a0i = 0, which become massless in the conifold limit.

Similarly, for the case d = 1, there are states whose charges satisfy hq, N · a0i 6= 0 which
become infinitely massive in the degeneration limit z ! 0. And states which satisfy hq, N · a0i =
0, that become massless in the degeneration limit.

This type of decomposition into states that are massless and massive in the degeneration
limit z ! 0 is general. We discuss aspects of this in section 5.3, and refer to [2, 3] for more
details. The result is that charges near the monodromy loci can be split into three types: dyonic
charges labelled as qd, magnetic charges labelled as qm and electric charges labelled as qe. In
the degeneration limit dyonic and magnetic states become infinitely massive, while electric states
become massless.

15

An infinite distance 𝑔 → 0 limit is controlled by the Nilpotency of 𝑁:

The unipotency of T then translates to nilpotency of N to a certain order. In particular, for
Calabi-Yau threefolds N4 = 0 for any monodromy locus. Indeed, an important property of a
monodromy locus is the nilpotency order of its N . We define an integer n such that

n : Nn+1 = 0 , Nn
6= 0 . (3.5)

The matrix N controls the behaviour of the period vector. This is the Nilpotent Orbit Theorem
[1,2] which states that

⇧ (z) = Exp


N

log z

2⇡i

� 1X

p=0

apz
p , (3.6)

where the ap are constant (in z) vectors. We see that as z ! 0 the period vector is dominated
by the log z parts with the zp parts contributing exponentially small corrections. This is true at
least as long as Na0 6= 0. Indeed, an important quantity is the integer d defined such that

d : Nd+1
a0 = 0 , Nd

a0 6= 0 . (3.7)

In particular, if d = 0 then the monodromy locus is at finite distance in moduli space, like the
conifold. While if d > 0 then the locus is at infinite distance in moduli space. Conversely, any
infinite distance locus in moduli space, which is also the case for any vanishing gauge coupling
limit, has a monodromy with d > 0.

3.2 BPS states near monodromies

Combining the expression for the central charge (2.1) with that of the period vector (3.6) we can
obtain an approximate expression for the central charge. Consider the cases d = 1 and d = 0
where the relevant terms contributing to the central charge take the form

Z (q) =
1

|c log |z||
1
2


hq,a0i+ hq, N · a0i

✓
log z

2⇡i

◆
+ hq,a1i z + ...

�
. (3.8)

Here c is some unimportant constant. Let us consider the case d = 0, which corresponds to the
conifold locus. In this case, since N · a0 = 0, we have two types of states. Those whose charges
satisfy hq,a0i 6= 0, which stay massive in the conifold limit z ! 0. And there are those where
hq,a0i = 0, which become massless in the conifold limit.

Similarly, for the case d = 1, there are states whose charges satisfy hq, N · a0i 6= 0 which
become infinitely massive in the degeneration limit z ! 0. And states which satisfy hq, N · a0i =
0, that become massless in the degeneration limit.

This type of decomposition into states that are massless and massive in the degeneration
limit z ! 0 is general. We discuss aspects of this in section 5.3, and refer to [2, 3] for more
details. The result is that charges near the monodromy loci can be split into three types: dyonic
charges labelled as qd, magnetic charges labelled as qm and electric charges labelled as qe. In
the degeneration limit dyonic and magnetic states become infinitely massive, while electric states
become massless.

15

[Grimm, Palti, Valenzuela ’18]



𝑁 is an integer matrix which acts on the BPS charges in a natural way 
determining a filtration (Monodromy Weight Filtration):

𝑊#$ 𝑊$𝑊% 𝑊& 𝑊' 𝑊( 𝑊) 𝑊*

𝑁

than the mass of B over the full locus of marginal stability. We also showed that if the highest
power of Im t in the central charge of B is higher than the highest power of Im t in the central
charge of A, then the wall of marginal stability stretches to the limit Im t ! 1 (and so g ! 0).
This also automatically implies that for some su�ciently large value of Im t the mass of B will
become higher than the mass of A, and so is a su�cient condition to forbid such a decay.

There is a mathematical formulation which captures precisely the highest power of Im t in
the central charge, termed the monodromy weight filtration. Here we outline some parts of it,
and refer to [2, 3] for much more detail about this structure.

Consider the rational vector space of charges q 2 V (Q). Then the monodromy matrix N
induces a monodromy weight filtration Wi (N) on V .

W�1 ⌘ 0 ⇢ W0 ⇢ W1 ⇢ ... W6 = V . (5.24)

This filtration is uniquely specified through the following defining properties

• NWi ⇢ Wi�2 (5.25)

• N j : Gr3+j ! Gr3�j is an isomorphism, Grj ⌘ Wj/Wj�1 . (5.26)

Note that there is a simple representation of the Wi in terms of the kernels and images of N j as

W0 = imN3 , W1 = imN2
\ kerN , . . . , W5 = kerN3 . (5.27)

This implies immediately that if the unipotency index is smaller than the complex dimension of
the manifold, n < 3, some of the previous subspaces will be empty. In particular, for all j > n
we have W3+j = W3+n and W3�j = 0.

Note that using the uniqueness of the filtration on can show that if we have qA 2 Wi and
qB 2 W6�i�j then

hqA,qBi = 0 , if j > 0 . (5.28)

The splitting into electric and magnetic states can be done as follows. We define electric
states as those lying in Wi with i < 3. Dyonic states are charges lying in Wi with i > 3.
Magnetic states are dyonic states where the electric components, so those that are in Wi with
i < 3, are removed. The simplest way to identify those is by acting with N and using (5.25).

The Wi are related to the highest power of t which appears in the (holomorphic part of the)
central charge. This is because (from (5.25))

hq, Nw
· a0i = (�1)w hNw

· q,a0i 6= 0 =) q /2 W2(w+1)�n . (5.29)

When using this we should keep in mind that W4+n does not exist, and W2�n is empty. We can
therefore assign an s-weight to a charge as

s� weight [q] = Largest integer w such that q /2 W2(w+1)�n . (5.30)

Then the s-weight of a BPS state corresponds to the highest allowed power of t in its central
charge.

We therefore can identify the BPS stability filtration with the monodromy weight filtration
as follows: a BPS state cannot decay to a BPS state of a higher s-weight. The remarkable thing
is that this is true for any perturbative g ⌧ 1, and not only in the g ! 0 limit.
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The results of the work are then:

Within any Nilpotent orbit approximation of the moduli space

The unipotency of T then translates to nilpotency of N to a certain order. In particular, for
Calabi-Yau threefolds N4 = 0 for any monodromy locus. Indeed, an important property of a
monodromy locus is the nilpotency order of its N . We define an integer n such that
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6= 0 . (3.5)
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least as long as Na0 6= 0. Indeed, an important quantity is the integer d defined such that

d : Nd+1
a0 = 0 , Nd

a0 6= 0 . (3.7)

In particular, if d = 0 then the monodromy locus is at finite distance in moduli space, like the
conifold. While if d > 0 then the locus is at infinite distance in moduli space. Conversely, any
infinite distance locus in moduli space, which is also the case for any vanishing gauge coupling
limit, has a monodromy with d > 0.

3.2 BPS states near monodromies

Combining the expression for the central charge (2.1) with that of the period vector (3.6) we can
obtain an approximate expression for the central charge. Consider the cases d = 1 and d = 0
where the relevant terms contributing to the central charge take the form

Z (q) =
1

|c log |z||
1
2


hq,a0i+ hq, N · a0i

✓
log z

2⇡i

◆
+ hq,a1i z + ...

�
. (3.8)

Here c is some unimportant constant. Let us consider the case d = 0, which corresponds to the
conifold locus. In this case, since N · a0 = 0, we have two types of states. Those whose charges
satisfy hq,a0i 6= 0, which stay massive in the conifold limit z ! 0. And there are those where
hq,a0i = 0, which become massless in the conifold limit.

Similarly, for the case d = 1, there are states whose charges satisfy hq, N · a0i 6= 0 which
become infinitely massive in the degeneration limit z ! 0. And states which satisfy hq, N · a0i =
0, that become massless in the degeneration limit.

This type of decomposition into states that are massless and massive in the degeneration
limit z ! 0 is general. We discuss aspects of this in section 5.3, and refer to [2, 3] for more
details. The result is that charges near the monodromy loci can be split into three types: dyonic
charges labelled as qd, magnetic charges labelled as qm and electric charges labelled as qe. In
the degeneration limit dyonic and magnetic states become infinitely massive, while electric states
become massless.
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a BPS state can only decay to constituents which do not have a higher weight.

* Proven for 𝑑 = 1 one-parameter, and evidence that holds generally.

* Weight of charge is not quite as refined:

than the mass of B over the full locus of marginal stability. We also showed that if the highest
power of Im t in the central charge of B is higher than the highest power of Im t in the central
charge of A, then the wall of marginal stability stretches to the limit Im t ! 1 (and so g ! 0).
This also automatically implies that for some su�ciently large value of Im t the mass of B will
become higher than the mass of A, and so is a su�cient condition to forbid such a decay.

There is a mathematical formulation which captures precisely the highest power of Im t in
the central charge, termed the monodromy weight filtration. Here we outline some parts of it,
and refer to [2, 3] for much more detail about this structure.

Consider the rational vector space of charges q 2 V (Q). Then the monodromy matrix N
induces a monodromy weight filtration Wi (N) on V .

W�1 ⌘ 0 ⇢ W0 ⇢ W1 ⇢ ... W6 = V . (5.24)

This filtration is uniquely specified through the following defining properties

• NWi ⇢ Wi�2 (5.25)

• N j : Gr3+j ! Gr3�j is an isomorphism, Grj ⌘ Wj/Wj�1 . (5.26)

Note that there is a simple representation of the Wi in terms of the kernels and images of N j as

W0 = imN3 , W1 = imN2
\ kerN , . . . , W5 = kerN3 . (5.27)

This implies immediately that if the unipotency index is smaller than the complex dimension of
the manifold, n < 3, some of the previous subspaces will be empty. In particular, for all j > n
we have W3+j = W3+n and W3�j = 0.

Note that using the uniqueness of the filtration on can show that if we have qA 2 Wi and
qB 2 W6�i�j then

hqA,qBi = 0 , if j > 0 . (5.28)

The splitting into electric and magnetic states can be done as follows. We define electric
states as those lying in Wi with i < 3. Dyonic states are charges lying in Wi with i > 3.
Magnetic states are dyonic states where the electric components, so those that are in Wi with
i < 3, are removed. The simplest way to identify those is by acting with N and using (5.25).

The Wi are related to the highest power of t which appears in the (holomorphic part of the)
central charge. This is because (from (5.25))

hq, Nw
· a0i = (�1)w hNw

· q,a0i 6= 0 =) q /2 W2(w+1)�n . (5.29)

When using this we should keep in mind that W4+n does not exist, and W2�n is empty. We can
therefore assign an s-weight to a charge as

s� weight [q] = Largest integer w such that q /2 W2(w+1)�n . (5.30)

Then the s-weight of a BPS state corresponds to the highest allowed power of t in its central
charge.

We therefore can identify the BPS stability filtration with the monodromy weight filtration
as follows: a BPS state cannot decay to a BPS state of a higher s-weight. The remarkable thing
is that this is true for any perturbative g ⌧ 1, and not only in the g ! 0 limit.
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Infinite distance 𝑔 → 0 limit 

Complex-structure 
moduli space BPS states

An ordering / filtration of BPS stability



Example: 𝑑 = 1, have electric and dyonic states with masses going as

m+ ∼ 𝑔 𝒒𝒆 𝑀" m- ∼
1
𝑔
𝒒𝒅 𝑀"

An electric state cannot decay to two dyonic states:

True irrespective of the mass of the electric state (could be super-massive BH)

A decay is allowed in the sense of: 

• Mass and Charge conservation

• Existence of appropriate Wall of Marginal Stability

The obstruction is due to the population of BPS states in the spectrum

𝑞/ , 0 ↛ 𝑞/$, 𝑞0$ + 𝑞/&, −𝑞0$



Infinite distance 𝑔 → 0 limit 

Complex-structure 
moduli space BPS states

An ordering / filtration of BPS stability

Note: “Fundamentality” of states is determined by their mass at 𝑔 = 0, 
not their mass at any finite 𝑔

Similar to ideas of “moduli space holography”

[Grimm ’20][Grimm, Monnee, van Heisteeg ‘21]



Then the light tower of BPS states is populated, and the light states are 
exactly the black hole microstates (their multiplicity remains exactly the 
same as the associated black hole)

If BPS electrically charged black holes exist in the theory - non-trivial due 
to diverging attractor flow

0

log
𝑀
𝑀"

𝑔 → 0

We would like to understand what happens to a state as we vary the gauge coupling

gQ � 1 ! gQ ⌧ 1 . (1.6)

There is a way to understand this transition if there is su�cient supersymmetry. For example,
with N = 4 supersymmetry we can track such a transition. Indeed, if we replace the gauge
coupling by the string coupling gs, then the two regimes correspond to the di↵erent descriptions
of branes in string theory

gsQ � 1 (Black Holes) ! gsQ ⌧ 1 (Branes) . (1.7)

Following this transition is precisely what allowed the extraction of the microstates of black
holes in string theory [40]. However, the case of N = 4 supersymmetry is not so interesting for
the questions we are after, because there is no decay processes for BPS states upon variations of
the gauge couplings (paths in moduli space). Geometrically, the counting of the D-brane states
is topological.

The case of N = 2 supersymmetry is an interesting compromise between the complete
control (but stability) of N = 4, and the instability and generality of no supersymmetry. With
N = 2 supersymmetry BPS states are not necessarily stable over paths in moduli space, so there
is something to understand about the transition (1.6). On the other hand, we have some control
over their stability and spectrum. In particular, it can be that a state at one point in moduli
space has no charged particles it can decay to, while after moving to a di↵erent point it no longer
is BPS and can, and does, decay to some constituent particles. We will consider here specifically
the case of type IIB string theory compactified on a Calabi-Yau manifold. Geometrically, in
this setting the BPS states are no longer topologically counted, but correspond to D3 branes
wrapping special Lagrangian sub-manifolds.

It is worth emphasising that the sense of stability and decay of BPS states is technically
quite di↵erent to the picture of a charged black hole emitting a charged particle, as in the Weak
Gravity Conjecture. At a given point in moduli space, BPS states are just stable and do not
decay at all. Decays can only be induced by varying the moduli, or equivalently, the couplings.
Even then, a state cannot decay to a constituent which is mutually local to it. So an electric
black hole will not decay by emitting an electric particle. Nonetheless, the idea is that studying
the interaction between stability of black holes, the spectrum of particles, and the black hole to
particle transition, in a controlled setting, will shed light on the same type of physics in less
supersymmetric settings.

Population of the light tower of BPS states

Our analysis is based on a very general understanding of the behaviour of the masses of charged
BPS states near any weak-coupling limit, as developed in [2] (see, [3,13,28,34,41–43] for follow-up
work). One universal feature is that we can split the states into two types. Those which become
massless at infinite distance in field space, or as g ! 0, which we term electric states. And those
which become infinitely massive in that limit, which we term dyonic states. The light tower
of charged states is therefore composed of purely electric states. We are then concerned with
the question of the spectrum, and stability, of electric states along variations in moduli space
approaching weak coupling limits.3

3Of course, the tower of states also relates to that of the distance conjecture [44,45], but the focus on a charged
tower naturally places this in the context of the weak gravity conjecture.
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Evidence / Proof



In 𝑁 = 2 supergravity expect a correspondence between BPS states and 
BPS black holes: If an attractor flow exists for the Black Hole of charge 𝑞𝑀, 
then the BPS state with charge 𝑞 exists.corresponds to the decay of the electric BPS states into two dyonic states. We therefore are

again motivated to understand BPS stability in the weakly-coupled regions of moduli space.
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Figure 1: Figure illustrating two attractor flows for a purely electric charge qe. z1 denotes
the values of the moduli at spatial infinity, while z? denotes their attractor values on the black
hole horizon. The single-centred flow on the left is divergent and so not well-defined and cannot
be used to deduce the presence of an associated BPS state. The split attractor flow on the right
is well-defined and ends on two dyonic black holes with charges q1

d and q
2

d at finite distance in
moduli space.

The emergence proposal

In [2] it was proposed that the weak coupling limit in N = 2 settings arises purely from
integrating out the tower of light charged BPS states in that limit. This would be a controlled
example of the more general emergence proposal [2, 7, 39, 52, 53]. If this is the case, then we
should expect that the behaviour of BPS states, at least in weakly-coupled regions g ⌧ 1, would
be controlled by the tower of states and so by the limit g ! 0. This is related also to the notion
of moduli space holography [54, 55], where the whole moduli space is specified completely by its
asymptotic limits (see also [56, 57] for related ideas). So again we would like to understand how
the BPS spectrum behaves in the bulk g ⌧ 1 with respect to its behaviour on the boundary
g ! 0.

In fact, the discussion above about how the spectrum of states can be understood from the
existence of attractor flows already hints at some sort of emergence/holography. This is because
it proposes that the spectrum of BPS states manifests non-locality in the moduli space. So the
claim is that the presence of a BPS state at the values of the moduli which are taken at spatial
infinity, is determined by the behaviour of the attractor loci on the black hole horizon, which
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In this correspondence, a decay across a WMS corresponds to a two-centre
black hole, with split attractor flow

Walls of Marginal Stability (WMS) are defined by the phase equalities (2.12) and (2.13).
This is a real condition and therefore they trace out real dimension one lines in the moduli
space. We will often work with a change of coordinates

t =
log z

2⇡i
. (3.16)

So that Im t ! +1 is the degeneration limit, and the monodromy path � is Re t ! Re t+ 1.

Let us consider electric states near infinite distances. From the central charge expression
(3.8), and the definitions (3.9), we see that electric states have central charges of the form

Z (q) =
1

|c Im t|
1
2

⇥
hqe,a0i+ hqe,a1i e

2⇡it + ...
⇤
. (3.17)

We see that variations in moduli space do not change the phase of the central charge (up to
exponentially small corrections). So approaching infinite distance, electric states have a static
phase. Since the charge space of electric states is at least two (real) dimensional, the phases of
electric states are static points distributed throughout the phase circle.

There are no walls of marginal stability (in the t plane) for purely electric states to decay to
other purely electric states when approaching infinite distance. So if they are present in the
spectrum at some large Im t, increasing Im t further (and varying Re t as we wish) will not lead
to a decay to other purely electric states. Even without the phase, since the inner product of
electric states with each other vanishes (3.10), we see that they cannot decay to other electric
states.

Magnetically charged states (which could be purely magnetic or dyonic) have a central
charge such that all the terms in (3.8) are generically non-vanishing. We can write this as

Z (q) =
Im t

|c Im t|
1
2


i hqm, N · a0i+

hq,a0i+ hqm, N · a0iRe t

Im t
+ ...

�
, (3.18)

where qm is the magnetic component of the dyonic charge. The variation of the phase under
paths in moduli space is suppressed again but now only by Im t and not exponentially. This
means that dyonic states can cross walls of marginal stability with respect to other dyonic states
and also electric states.

With respect to the stability of purely electric states, we see that purely electric states which
satisfy

hqe,a0i

| Im t|
1
2

⌧ 1 , (3.19)

are stable because they cannot decay to dyonic states as they are too light. So at infinite distance
we have an infinite number of states that, if populated, would be stable [2]. But importantly,
such states are sub-Planckian in mass, so they are not electric black holes. Black holes, so states
which satisfy instead

hqe,a0i

| Im t|
1
2

� 1 , (3.20)

can decay to dyonic states if those are present in the spectrum.
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Since, as explained above, we are free to choose q± and q±N arbitrarily as real parameters, the
notation should hopefully not lead to any loss of clarity. Also, we recall, that since we are in
one-parameter models, the q’s are all true constants.

4.1 Obstruction for one-parameter two-centre electric flows

Let us consider a setup where a purely electric charge flow splits into two dyonic flows. We
would like to know if the dyonic flows can end on physical attractor loci. We take the split as
q
A = q

B + q
C , and take the magnetic component of qA to vanish, qA

m = 0.

We consider the specification of the wall of marginal stability given by (3.24) and (3.25).
We can solve (3.24) for Re tWMS as

Re tWMS =
�qA,�qB,+ + qB,�qA,+ +

⇣
qA,�qB,�

N + qA,+qB,+
N

⌘
Im tWMS

�qB,�
N qA,+ + qA,�qB,+

N

. (4.2)

Since Re tWMS has no physical constraints on its sign or magnitude, there is always such a
solution. Note that we are here allowing Re t to be arbitrary, while it is often considered to lie in
the range 0  Re t  1. It can always be brought into this range by acting with the monodromy
(gauge) transformation Re t ! Re t+ n and q ! Tn

· q. In other words, there is a choice of
charge representative within each monodromy orbit for which |Re t|  1, but since we do not
want to restrict the charge to that representative, we should equally keep Re t arbitrary.

We still have the condition (3.25) to impose. First though, let us solve for the attractor loci
Im tB? and Im tC? of the two dyonic states qB and q

C , as given by (3.30). We do this by keeping
Im tB? and Im tC? arbitrary, and solving for some of the flux parameters, or equivalently the q’s,
in terms of them as

qB,� =
qB,�
N qB,+ +

��qBN
��2 Im tB?

qB,+
N

,

qA,� =
qB,�
N qA,+ +

��qBN
��2 �Im tB? � Im tC?

�

qB,+
N

, (4.3)

where
��qBN

��2 =
⇣
qB,+
N

⌘
2

+
⇣
qB,�
N

⌘
2

.

Now we can return to the second constraint for the wall of marginal stability (3.25). Substi-
tuting (4.2) and (4.3) into (3.25) gives

Im tB? � Im tC?
Im tB? + Im tWMS

� 1 . (4.4)

It is manifest now that there is no way to satisfy this inequality while maintaining the physical
constraint on both the attractor loci as well as the location of the wall of marginal stability

Im tB? > 0 , Im tC? > 0 , Im tWMS > 0 . (4.5)

We have therefore proven that, in the one-parameter moduli space case, that there are no two-
centre physical split attractor flows with total electric charge, at least not in the weakly-coupled
region of moduli space Im t � 1.
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Find obstruction to such flows:

[Moore ‘03; Denef ’04]



Further, find that further splits in the attractor flow…
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Figure 2: Figure illustrating di↵erent black holes solutions which contribute to the total

entropy S
�
q, zi1

�
Tot

associated with a fixed total charge and moduli values at infinity. Here
infinity is denoted by the large circle, and the the moduli flows are shown as lines leading to
attractor values on the black hole horizons.

It is very important to emphasise that there are limitations to this macroscopic calculation
of the BPS index. The attractor flows give only partial information about the microscopic BPS
states. Certainly a well-controlled attractor flow and locus will contribute BPS states for a
given charge, but an attractor flow which is not well-defined may or may not correspond to a
state. In particular, this is the case for purely electric (or purely magnetic) charges where the
attractor flow diverges due to the possibility of decreasing the energy density in the electric field
arbitrarily by going to arbitrarily weak coupling.

To illustrate this problem explicitly we can consider the spectrum of BPS states given in
table 2.1. Since all the charges are purely electric, the attractor flows for all the black holes
with those charges (or charges proportional to them) diverge to large volume. But the fact that
some charges are populated with BPS states, while some are not, shows that we cannot deduce
anything from these diverging flows.

There is also an important connection to the analysis of the example spectrum in section 2.4
which we would like to utilise. The point is that if we accept the proposal that the spectrum of
states is such that the population of a state of charge Kq implies the population of a state of
charge q, then we can utilise split attractor flows as probes for towers of stable states. Specifically,
we may construct a very massive electric state as a split flow into two dyonic states. If we find
such flows (and we will not) then we deduce the population of a very massive super-Planckian
electric state, but which would imply also that light sub-Planckian electric states are populated.
Those, in particular, would be stable against any decay approaching weak coupling in moduli
space, since they are lighter than any dyon. This way a split attractor flow can show the
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where P is a quantity which we require to be positive to obtain a real solution
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The constraint for a solution (4.10) must then be imposed along with the second constraint on
the wall of marginal stability (3.23). After substituting the attractor values (4.7) and (4.8), the
two constraints can be written as
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A solution to the constraints (4.11) requires X > 0. Now since we are interested in attractor
loci of the form

Im tA? < 0 , Im tB? > 0 , Im tC? > 0 , (4.13)

we see that
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It is a simple identity that
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and therefore (4.15) cannot be satisfied. Hence, it is not possible to satisfy the constraints for
the wall of marginal stability (4.11) and the attractor loci (4.13) simultaneously. This proves
that any attractor flow towards a negative attractor locus, cannot split into two attractor flows
which are both towards positive attractor loci.
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…cannot evade the obstruction, so

is not possible.



This seems to be showing that in a decay which violates the filtration, one 
of the decay products is not in the spectrum

We can see this another way: ask if the mass of one of the decay products 
vanishes somewhere on the wall of marginal stability. Find:for vanishing central charge constraint on the wall

Z (q, Im t0)|WMS = 0 . (5.4)

So here we are restricting the central charge to the wall, by solving for Re t as in (4.2), and
then defining Im t0 as the value of Im t where the central charge vanishes. Doing this for the
two charges qB and q

C gives
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We see that the modulus value on the wall where the central charge vanishes for the states B
and C is exactly the negative of the attractor locus for those states. Since the wall is defined by
(4.2) for any Im t > 0, having no point on the wall of marginal stability where the central charge
vanishes is the same as the statement that the two attractor loci are positive. This is precisely
the problem we have analysed in section 4.1, and have shown that it leads to an obstruction.

Actually, the whole analysis is only valid for Im t � 1, since that is required for the use of
the nilpotent orbit approximation. But the power of the stability constraint is that if we found
an attractor locus which is very negative Im t? ⌧ �1, then we can translate that into a zero
of the central charge in the controlled region. The only remaining refuge for states could be
in the strong-coupling regime |Im t| < 1. So the only escape from the obstruction is if we pick
charges such that both of Im tB

0
and Im tC

0
are either small or negative. However, looking at the

constraint (4.4) we see that it requires at least one of the attractor loci to be large and negative,
which means at least one large and positive Im t0.

The second powerful aspect of the stability constraint it that it applies on the wall of marginal
stability. That means that the multi-parameter case can be analysed in the same way as the
one-parameter case, as long as the degeneration itself is by variation of only one parameter. So
the value of the q’s for the positivity constraints (5.5), is the same as the one for the wall of
marginal stability. There is no need to track them to the attractor loci. Their dependence on
the other moduli zi is inconsequential for the constraints.

There is an important way to attempt to avoid the problem of the vanishing central charge
point Im t0. We can postulate that between the point on the wall of marginal stability which
was crossed for the decay, and the vanishing central charge locus, the state decayed and left the
spectrum. So it participated in the decay, and then after moving along the marginal stability
locus, it decayed away so that it did not lead to a singularity in the moduli space at Im t0. It
is di�cult to believe that this could occur, because recall that the states have an associated
BPS index which is typically very large, and this would have to completely vanish through
decays upon the variation to Im t0. But we can be even more precise and show that in fact one
can never avoid the singularity. Recall that we faced a similar possibility in section 4.2 when
studying attractor loci. We considered whether it is possible to avoid a negative attractor locus
by having the state decay, so have a split attractor flow, to two states with positive attractor
loci. We showed that this is not possible because one of the decay products would always
have a negative attractor locus. We can import this result into this setting to show that if
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was crossed for the decay, and the vanishing central charge locus, the state decayed and left the
spectrum. So it participated in the decay, and then after moving along the marginal stability
locus, it decayed away so that it did not lead to a singularity in the moduli space at Im t0. It
is di�cult to believe that this could occur, because recall that the states have an associated
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decays upon the variation to Im t0. But we can be even more precise and show that in fact one
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The points of vanishing mass, are exactly the negative of the attractor loci



So, if we had a negative attractor locus for one of the decay products, its 
mass will vanish somewhere on the WMS. 

WMSA

B

C

𝑀! = 0



However, we know that no BPS states become massless within the 
Nilpotent orbit: the only singularity is the one at infinite distance

Therefore, any state which has a vanishing mass within the Nilpotent orbit 
must be absent from the spectrum

The decay is therefore not physically possible – matching the black hole 
results



If the state decays before it reaches the point of vanishing mass, one of its 
decay products will have a vanishing mass along the WMS of that decay
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B
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𝑀" = 0

B
B
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𝑀! = 0

E

WMS



It is possible to show one of the decay products becomes massless for any 
number of moduli and any d:

First, one can show that the WMS of any decay which violates the 
filtration stretches all the way to 𝑔 = 0

Along the wall we have mass equality between the initial state and its 
decay products

There is a subtlety with such an identification of the BPS stability filtration with the
monodromy weight filtration which is that it assumed the the maximum allowed power of t
is realised by the charges. This assumes that the charge is a su�ciently generic element of
the (maximal) Wi that it belongs to. A better way to phrase this genericity condition is that
the moduli other than t, so the zi, are at generic values. In that case a vanishing hq, Nw

· a0i

implies the full constraint on the charges in terms of the monodromy weight filtration.

If we would like to drop the assumption of generic values for the other moduli, then there
is still a mathematical formulation which relates the highest power of t which appears in the
central charge to the charge q, but it is slightly more involved. It corresponds to placing the
charge q into the primitive spaces of the limiting mixed Hodge structure (the Pi in [2, 3]). On
those spaces there exists a polarized inner product, which would guarantee the non-vanishing
of inner products of type hq, Nw

· a0i. Indeed, the most precise way to formulate the stability
constraints is by using the Deligne splittings in a basis where the Sl2-algebras associated to the
di↵erent Ni are fully commuting. Such a Deligne splitting is so-called R-split and so any real
charge can be placed into the space of a Deligne sub-space plus its conjugate. The process of
reaching such a basis, and the properties of the splitting, is explained in detail in [3].14

6 Summary and discussion

In this paper we studied the decay and spectrum of BPS states in N = 2 theories, in particular
considering weak-coupling limits in moduli space g ! 0. We found evidence for a certain filtration
structure in BPS states, which is determined by their mass in the g ! 0 limit. Specifically, that
a BPS state at any (perturbative) value of g cannot decay to a BPS state whose mass at g ! 0
is infinitely larger. This appears somewhat surprising, for example, an electrically charged black
hole cannot emit a dyonic particle upon crossing a wall of marginal stability in any perturbative
regime, because in the g ! 0 limit the black hole would be infinitely lighter than the dyon.

Although the analysis was sometimes involved, at least some of the key points are extremely
simple and so we can summarise them here using quite general notation. Consider a decay of
states A ! B + C. Let this decay occur at vanishing kinetic energy, like in N = 2. Let the
masses of the states depend on some couplings, say g for simplicity. Then at the decay point
in coupling space, say g = gc, we have an equality in the masses MA (gc) = MB (gc) +MC (gc).
Now consider this equality of the masses as a constraint on the value of the couplings. It picks
out a real co-dimension one subspace of the coupling space. In N = 2 this is a wall of marginal
stability. Now let this subspace be non-compact, so that it stretches out to the limit g ! 0.
This is sometimes, not always, true in N = 2. Then we see that if somewhere between g = gc
and g ! 0 the ordering of the masses changes, so say MB becomes larger than MA, we must
have that one of the constituents of the decay becomes massless, in this case MC = 0. A
massless charged state induces a singularity in the low-energy e↵ective theory, so in N = 2 would
manifest as a singularity in the moduli space. If we insist on the absence of such a massless state,
or singularity, then we forbid a change in the ordering of the masses. This induces a certain
filtration on the decay of states which is independent of g, so in particular can be deduced at
g ! 0.

14Similarly, the identification with the monodromy weight filtration assumes n = d, which to our knowledge is
correct for any infinite distance locus, but can again be removed as an assumption by going to an R-split Deligne
basis.
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If somewhere along the wall one of the decay products becomes more 
massive than the initial state, the other decay product must be massless

The absence of moduli space singularities implies therefore that there 
cannot be a decay to a state which becomes heavier in the 𝑔 → 0 limit



The remaining step to a full proof is to show, for 𝑑 > 1, that it is not possible 
for the state to decay from the spectrum before it reaches the zero

[Work in progress…]
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Summary
Evidence/proof that BPS states satisfy a stability filtration which is 
determined by the monodromy about infinite distance / zero coupling. 

Consistent with ideas of Emergence: a qualitative connection between 
moduli space geometry and the BPS spectrum

Infinite distance 𝑔 → 0 limit An ordering / filtration of BPS stability

Stability of BPS states has a microscopic description – interesting to explore 
how filtration / weak-coupling is described in that picture

Proof of distance conjecture, if electric black holes exist: Tower is exactly 
black hole microstates.
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