Gauged 2-form Symmetries in 6D SCFTs Coupled to Gravity

Magdalena Larfors

Durham University & Uppsala University

Geometry and the Swampland

based on **2106.13198** with Andreas Braun and Paul-Konstantin Oehlmann see also **2111.07998** with Finn Bjarne Kohl and Paul-Konstantin Oehlmann

Motivation and summary: The very big picture

Which quantum field theories have a quantum gravity completion?

Palti:19

- Use string theory compactifications, restrict to (super)symmetric QFTs.
- This talk: 6D SCFT sectors in N=1,2 supergravity from type IIB/F-theory.

Motivation and summary

- How can SCFTs be coupled to quantum gravity?
- SCFTs are fix points for RG flow \rightsquigarrow classify QFTs (in $D \le 6$).
- 6D: interacting SCFTs are strongly coupled, and contain tensionless strings. Engineer in string/F theory "non-compactifications".
 Witten:95, Seiberg, Witten:96, ... Heckman, Morrison, Vafa:13, Heckman, Morrison, Rudelius, Vafa:15,...
- Symmetries (of all kind) key to SCTF classification.
 E.g. 6D SCFTs can have global, discrete 2-form symmetries.
 In string/F theory, symmetries relate to geometry.

Motivation and summary

- How can SCFTs be coupled to quantum gravity?
- SCFTs are fix points for RG flow \rightsquigarrow classify QFTs (in $D \le 6$).
- 6D: interacting SCFTs are strongly coupled, and contain tensionless strings. Engineer in string/F theory "non-compactifications".
- Stitch together non-compact string geometries ~> string/F theory compactifications with SCFT sectors.
- Symmetries (of all kind) key to SCTF classification.
 E.g. 6D SCFTs can have global, discrete 2-form symmetries.
 In string/F theory, symmetries relate to geometry.

Fate of global 2-form symmetries as SCFT sectors are stitched together?

Will see: 2-form symmetry broken or gauged \sim charge lattice embeddings Agrees with (conjectured) absence of global symmetries in quantum gravity.

Outline

Motivation and summary

2 Higher form symmetries

6D SCFTs, 2-form symmetries & gravity

- 6D SCFTs and 2-form symmetries
- 6D SCFTs coupled to gravity
- 6D supergravity and gauged 2-form symmetries

Examples

5 Conclusions and outlook

Higher form symmetries

Higher form symmetry: symmetry that acts on extended objects.

Ordinary symmetry G with 1-form current j has

• conserved charge $Q(M^{d-1}) = \int_{M^{d-1}} *j$

 \rightsquigarrow topological operator $U_g(M^{d-1})$

• Group law

$$U_g(M^{d-1})U_{g'}(M^{d-1}) = U_{g''}(M^{d-1})$$

where $g'' = g'g \in G$

 U_g(M^{d-1}) couples to local operators V(P) (particles): for S^{d-1} surrounding P have

$$U_g(S^{d-1})V(P) = R(g)V(P) .$$

Higher form symmetries

Higher form symmetry: symmetry that acts on extended objects.

Ordinary (0-form) symmetry G with 1-form current j has

• conserved charge $Q(M^{d-1}) = \int_{M^{d-1}} *j$

 \rightsquigarrow topological operator $U_g(M^{d-1})$

• Group law

$$U_g(M^{d-1})U_{g'}(M^{d-1}) = U_{g''}(M^{d-1})$$

where $g'' = g'g \in G$

 U_g(M^{d-1}) couples to 0-form operators V(P) (particles): for S^{d-1} surrounding P have

$$U_g(S^{d-1})V(P) = R(g)V(P) .$$

Higher form symmetries

Gaiotto, Kapustin, Seiberg, Willet:14

Generalize to *p*-form symmetry

- (p+1)-form current j (if continuous)
- Topological operator $U_g(M^{d-(p+1)})$
- Group law: $U_g(M^{d-(p+1)})U_{g'}(M^{d-(p+1)}) = U_{g''}(M^{d-(p+1)}), \ g'' = g'g \in G$
- $U_g(M^{d-(p+1)})$ couples (via linking) to p-dim operators $V(C_p)$:

1-form symmetry: $V(C_1)$ are line operators 2-form symmetry: $V(C_2)$ are surface operators

6D SCFTs, 2-form symmetries & gravity

6D SCFTs and 2-form symmetries

6D SCFTs: strongly coupled, has tensionless strings. *Witten:95, Seiberg, Witten:96* Engineered in IIB string/F theory:

Heckman, Morrison, Vafa:13, Heckman, Morrison, Rudelius, Vafa:15, Bhardwaj:15,19...

- (non)-compactifications on 2D spaces B_Γ = C²/Γ with Γ ∈ U(2) (decoupled gravity needed for scale invariance)
- strings/defects ~ D3s on compact/non-compact cycles $C_i \subset B_{\Gamma}$ tension ~ vol_{C_i} , charge ~ $C_i \cdot C_j = \Omega_{ij}$
- gauge/flavour groups \sim D7s on compact/non-compact cycles $C_i \subset B_\Gamma$
- in F theory, all is encoded as elliptic fibration $T \hookrightarrow X \to B_{\Gamma}$

Strings and defects determine 2-form symmetry.

6D SCFTs and 2-form symmetries

6D SCFTs: strongly coupled, has tensionless strings. *Witten:95, Seiberg, Witten:96* Engineered in IIB string/F theory:

Heckman, Morrison, Vafa:13, Heckman, Morrison, Rudelius, Vafa:15, Bhardwaj:15,19...

- (non)-compactifications on 2D spaces B_Γ = C²/Γ with Γ ∈ U(2) (decoupled gravity needed for scale invariance)
- strings/defects \sim D3s on compact/non-compact cycles $C_i \subset B_{\Gamma}$
- gauge/flavour groups \sim D7s on compact/non-compact cycles $C_i \subset B_{\Gamma}$
- in F theory, all is encoded as elliptic fibration $T \hookrightarrow X \to B_{\Gamma}$

Strings and defects determine 2-form symmetry.

6D SCFTs and 2-form symmetries

Strings and defects: charged under 2-form symmetry $U(1)^r \sim$ gauge fields B_i .

- Λ_S charge lattice of (dynamical) strings (D3 on compact curve)
- Λ_S^* charge lattice of defects / surface operators (D3 on non-compact curve)

Defects screened by dynamical strings ightarrow 2-form symmetry (partly) broken.

Unless charge lattice Λ_S self-dual, SCFT has global 2-form symmetry:

$$G_S = \Lambda_S^* / \Lambda_S = rac{\mathbb{Z}^r}{[\Omega_{ij}]\mathbb{Z}^r} \,.$$

Bhardwaj, Jefferson, Kim, Tarazi, Vafa:19, Bhardwaj, Schäfer-Nameki:20, Albertini, del Zotto, Garcia-Etxebarria, Hosseini:20, ...

 G_S a.k.a. defect group:~ choice of quantized background 3-form flux.

Tachikawa:13, delZotto,Heckman,Park,Rudelius:15, Garcia-Etxebarria,Heidenreich,Regalado:19

6D SCFTs coupled to gravity

6D SCFT sectors emerge naturally in the moduli space of 6D supergravity:

- Compactify type IIB string/F theory on compact 2D space B
- Intersection lattice Λ_B from compact cycles $C_i \in H^2(B,\mathbb{Z})$
- D3s on cycles $C_i \rightsquigarrow$ tensionless strings as $Vol(C_i) \rightarrow 0$
- SCFT sector specified by sublattice $\Lambda_S \subset \Lambda_B$ of shrunken cycles. So, combine SCFTs so Λ_S "fit" in Λ_B .

Seiberg, Taylor:11, delZotto, Heckman, Morrison, Park:14

6D SCFTs coupled to gravity

Each SCFT sector has a its own "global" 2-form symmetry But global symmetries are absent in quantum gravity.

Misner, Wheeler:57, Banks, Seiberg:10, Harlow, Ooguri:18, ... So 2-form symmetries must be **broken or gauged**. 6D supergravity and gauged 2-form symmetries

6D supergravity: string charge lattice Λ_B is self-dual

Seiberg, Taylor:11

$$\implies G_S = \Lambda_B^* / \Lambda_B = 1$$

However, it is still possible that $G \subset G_S$ is gauged, at points in moduli space where only some BPS strings are dynamical.

Caveat: Even at such points, there might be other objects that fully break G_S .

6D supergravity and gauged 2-form symmetries

Gauged 2-form group G in (2,0) and (1,0) supergravity

IIB string/F theory on compact 2D space B with string lattice $\Lambda_B = H_2(B, \mathbb{Z})$.

- Choose a sublattice $\Lambda_S \subset \Lambda_B$ \rightsquigarrow SCFT sectors with tensionless strings (at special loci in moduli space)
- **2** Determine 2-form symmetry of SCFT sectors $\Lambda_{S}^{*}/\Lambda_{S} = \sum_{i} \Gamma_{i}^{*}/\Gamma_{i} = \sum_{i} \mathbb{Z}_{n_{i}}$
- ${\small \textcircled{o}} \ \ {\small Strings are invariant under gauged (diagonal) subgroup} \ \ {\small G} \in {\small G_S} \ \ {\small iff}$

$$G = (\Lambda_B \cap \Lambda_S^*) / \Lambda_S
eq 1$$

6D supergravity and gauged 2-form symmetries

An unbroken, gauged subgroup $G \in G_S$ requires

$$G = (\Lambda_B \cap \Lambda_S^*) / \Lambda_S = \Lambda_B \cap (\Lambda_S \otimes \mathbb{Q}) / \Lambda_S
eq 1$$

 $\iff \exists \text{ element } \eta \in (\Lambda_S \otimes \mathbb{Q}) \text{ s.t. } \eta \notin \Lambda_S, \text{ but } k\eta \in \Lambda_S \text{ for some } k \in \mathbb{Z}.$

Such elements η live in

$$G = \operatorname{tors}(\Lambda_B / \Lambda_S) = \mathbb{Z}_k$$

SCFT sectors specified by Λ_S preserve a **gauged 2-form symmetry** \iff lattice Λ_S is **non-primitively** embedded in Λ_B .

Examples

Examples: (2,0) supergravity

(2,0) examples from IIB string on K3 surface X.

- Unique lattice of BPS strings
- SCFT sections:

$$\begin{split} &\Lambda_B = \Lambda_{(5,21)} = U^{\oplus 5} \oplus (-E_8)^{\oplus 2} \\ &\Lambda_S := \bigoplus_i \Gamma_i \text{ with } \Gamma_i \text{ ADE root lattice} \end{split}$$

• Gauged 2-form symmetry

$$G = \operatorname{tors}\left(\Lambda_{5,21} / \bigoplus_i \Gamma_i
ight)$$

 \rightsquigarrow May classify using lattice theoretic techniques

Font, Fraiman, Grana, Nunez, Parra De Freitas:20,21

• Choosing U-duality frame where X has elliptic fibration, can show

$$G = \operatorname{tors} \left(H^2(X, \mathbb{Z}) / \Lambda_S \right) = \operatorname{tors} \left(MW(X) \right)$$

→ May classify using elliptic fibrations and their Mordell-Weil groups Nishiyama:96, Aspinwall-Morrison:97, ...,

Braun–Kimura–Watari:13, Kumar:14, Hajouji–Oehlmann:19,...

Examples: (2,0) supergravity

Example

X elliptically fibered K3 surfaces \sim Weierstrass model over $\mathbb{P}^1[z]$:

X:
$$y^2 = x(x^2 - z^3(z - 1)^3(z - i)^2)$$

(2,0) theories: crosscheck via 5D duality

IIB on elliptic K3: $\Lambda_S = \sum_i \Gamma_i \in ADE$; 2-form gauging G = tors(MW(K3))

• \mathbb{S}^1 reduction: 6D strings become W-bosons of 5D gauge group Γ_i/G 2 \rightarrow 1-form symmetry: 5D gauge group is **non-simply connected**

Bhardwaj-Schäfer-Nameki:20

- **Dual to**: M-theory on $T_F^2 \times K3$
- There exists a second F-theory lift to 8D

Cvetic-Dierigl-Lin-Zhang:20

Examples: (1,0) supergravity

(1,0) examples from F-theory on elliptic CY 3-fold X with base B.

- Different (partly classified) choices for B, so Λ_B not unique.
- Also admit gauge and flavour groups.
- SCFT sectors: $\Lambda_S := \bigoplus_i \Gamma_i$ but Γ_i need not be ADE root lattice

Examples constructed using

 Toroidal orbifolds Fischer, Ratz, Torrado, Vaudrevange:13, Bailin,Love:99, Donagi,Wendland:08,Forste,et.al:06, Dillies:06
 Toric bases Morrison, Taylor:12,12, Martini,Taylor:14, Taylor, Wang:15

Toroidal orbifold $X_3 = (\mathbb{T}^2 \times \mathbb{T}^2 \times \mathbb{T}^2_F)/\mathbb{Z}_3$

F-theory on orbifolds

Hayashi, Jefferson, Kim, Ohmori, Vafa'19 , Kohl, Larfors, Oehlmann'21

- For \mathbb{Z}_3 : $3 \times 3 \times 3$ twisted sector fields
- In B = T⁴/ℤ₃: 9 × (-3)_{SU(3)} non-Higgsable clusters w. 2-form symmetry ℤ₃
 → putative global 2-form sym. G_S = ℤ⁹₃...
- ... of which diagonal subgroup $G = \mathbb{Z}_3$ is gauged

(1,0) example from toric base

F-theory compactification on orbifold base $B = \mathbb{P}^2/\mathbb{Z}_5$

Examples: (1,0) supergravity from toric base

F-theory compactification on orbifold base $B = \mathbb{P}^2/\mathbb{Z}_5$. SCFT data:

- exceptional divisors D_{res} on minimal resolution B_{res}
- gauge groups A_4 (2,0) theory and two (-3,-2) non-Higgsable clusters $\rightsquigarrow G_S = \mathbb{Z}_5^3$.

Examples: (1,0) supergravity from toric base

Go to tensor branch to read off (diagonal) \mathbb{Z}_5 gauging

 $\bullet~\mbox{Toric geometry} \rightarrow \mbox{linear relation between curves, e.g.}$

 $5[x_1] = 5[x_2] + (3[a_1] + [a_2] - [a_3] - 3[a_4]) - (2[g_2] + [su_2]) + (2[g_2'] + [su_2'])$

- ...so $D_5 \sim [x_1] [x_2]$ is torsional at blow-down locus.
- To preserve this, strings may only wrap curves $C \in B$ with $C \cdot D_5 = 0 \mod 5$

Conclusions and outlook

Conclusions

- 6D SCFTs have global, discrete 2-form symmetries $G_S = \Lambda_S^* / \Lambda_S$.
- When coupled to gravity, the 2-form symmetry must be broken or gauged.
- Gauged 2-form symmetry $G \subset G_S$ requires Λ_S embeds non-primitively in Λ_B

$$G = \operatorname{tors}(\Lambda_B / \Lambda_S) \neq 1$$
.

- Applies to (1,0) and (2,0) supergravity, also Little string theory
- Duality check with 5D gauged 1-form symmetry support (2,0) theory result.
- Is G broken by other effects?
 6D gauged 2-form symmetry is supported by duality and reduction to 5D gauged 1-form symmetry in many examples

Conclusions and outlook

Conclusions

- 6D SCFTs have global, discrete 2-form symmetries $G_S = \Lambda_S^* / \Lambda_S$.
- When coupled to gravity, the 2-form symmetry must be broken or gauged.
- $\bullet\,$ Gauged 2-form symmetry ${\it G} \subset {\it G}_S$ requires Λ_S embeds non-primitively in Λ_B

$$G = \operatorname{tors}(\Lambda_B / \Lambda_S) \neq 1$$

Outlook

• Field theory analysis and anomaly cancellation *Cvetic,Dierigl,Lin,Zhang:20,21, Apruzzi,Dierigl,Lin:20, Tarazi,Vafa:21*

 Classify the allowed 2-form gauge groups.
 (2,0) theories and classifications: MW groups, Narain lattice embeddings Nishiyama:96; Font, Fraiman, Grana, Nunez, Freitas:20,21; Kim, Tarazi, Vafa:20, ...
 (1,0) theories: classification possible in toric setting. cf. Morrison, Taylor:12

Conclusions and outlook

Conclusions

- 6D SCFTs have global, discrete 2-form symmetries $G_S = \Lambda_S^* / \Lambda_S$.
- When coupled to gravity, the 2-form symmetry must be broken or gauged.
- Gauged 2-form symmetry $G \subset G_S$ requires Λ_S embeds non-primitively in Λ_B

$$G = \operatorname{tors}(\Lambda_B / \Lambda_S) \neq 1$$
.

Outlook

- Field theory analysis and anomaly cancellation
- Classify allowed 2-form gauge groups.
- Consequences for Swampland/Landscape?

Thank you for listening!