Order Reconfiguration under Width
Constraints

Emmanuel Arrighi, Henning Fernau?, Mateus de Oliveira Oliveiral,
Petra Wolf?.

BIRS Reconfiguration Workshop 22w5090 May 10th, 2022

also see: MFCS 2021

4 University of Bergen, Norway
2 University of Trier, Germany

Graph isomorphism

9]

Graph isomorphism

Gl : ’ o Gg . m
Ot

Graph isomorphism

Gl : o GQ : n
(]

Graph isomorphism

Graph isomorphism

Gl : ’ o Gg . m
Ot

Graph isomorphism

Gi: L] Gy : 0 T
==

Reconfiguration

Graph isomorphism

Gi: L] Gy : 0 T
==

Reconfiguration

Graph isomorphism

Gy L T Gy : 0 T
D

Reconfiguration

OOy OO

Graph isomorphism

Gi: L] Gy : 0 T
==

Reconfiguration

Graph isomorphism

Gi: L] Gy : 0 T
==

Reconfiguration

Graph isomorphism

Gl o L o GQ 5 m
7

Reconfiguration

Graph isomorphism

Gi: L] Gy : 0 T
==

Reconfiguration

Order Reconfiguration

Definition (Cutwidth of an ordering)

Definition (Cutwidth of an ordering)

w: [5] [8] [2] [9] [o] [3] [1] [6] [7] [4]

= max ({2, 3,2, 3,

Definition (Cutwidth of an ordering)

w: 5] [8] [2) (o] [0)i3 II

= max ({2, 3, 2,3, 5,

9]

Definition (Cutwidth of an ordering)

= max ({2, 3,2,3,5, 3,

Definition (Cutwidth of an ordering)

o: B 18] 12 57 091 3] i te) O T2
;m

= max ({2,3,2,3,5,3,4,

= max ({2,3,2,3,5,3,4, 3,

= max ({2,3,2,3,5,3,4,3,2}) =5

= max ({2,3,2,3,5,3,4,3,2}) =5

Definition (Cutwidth)

= min,, (cw(G,w))

Order Reconfiguration

Definition (Swap)

5] [8] [2] [9] [o] [3] [1] [6] [7] [4]

Order Reconfiguration

Definition (Swap)

5] [8] [2] [9] [o] 6] [7] [4]

Order Reconfiguration

Definition (Swap)

5] [8] [2] [9] [o] 6] [7] [4]

Order Reconfiguration

Definition (Swap)

5] [8] [2] [9] [o] [x] [3] [6] [7] [4]

Definition (Order reconfiguration)

w can be into w’ if

W=w) S wp = wp = w

Order Reconfiguration

Definition (Swap)

5] [8] [2] [9] [o] [x] [3] [6] [7] [4]

Definition (Order reconfiguration)

w can be into w’ if

W=w) S wp = wp = w

Problem (Bounded Cutwidth Order Reconfiguration)

Let (&' be an n-vertex graph, : [n] = V(G) be linear orders
on the vertex set of G, and k € N. Is it true that w can be
into w' in cutwidth at most 7

Bounded Cutwidth Order Reconfiguration

Theorem

Let ¢ be a graph and be linear orders of V(G) of cutwidth
at most k. Then, w can be reconfigured into w' in cutwidth at
most cw (G, w) + cw(G,w') <

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

3 3

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

3 3

w: [5] [8] [2] [9] [o] [3] [1] [6] [7] [4]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

3 3

cvEEEBGDEGDE @

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

~

w’@ﬂdi@@@

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

~

werw: (0] [s5] [8] [2] [of [3] [1] [6] [7] [4]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

3 3

werw: [0] [5] 6] [2] [o] (3] L) [6] [7] [4]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

~

@w: [0] [1] [5] [8] [2] [9] [3] [6] [7] [4]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

~

werw: [0 1 [5) (8] (2 8] (3 (&) (1) [&]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

3 3

o ozw: [0] [1] [2] [s] [8] [9] [3] [6] [7] [4]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

~

wesw: [0] [2] [5] (8] (] B) [7] [4]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

3 3

o @sw: 0] [1] [2] [3] [5] [8] [o] [6] [7] [4]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

3 3

o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

3 3

o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

3 3

o erw: [0] [1] [2] [3] [4] [5] [6] [8] [9] [7]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

3 3

esw: [0] [1] [2] [3] [4] [s] [e] [7] [&] [9]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

3 3

W egw: [0] [1] [2] [3] [4] [s] [e] [7] [&] [9]

(22}
=1
[
L
)
=
(0]
&
(=]
o
S
o

o] [1] [2] [3] [4] [5] [6] [7] [8] [9]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

=] [=]
[~ [=]
o] [~]
(] []
(o] [o]
=] [+]
(=] [~]
S
(=] [~]
=

3 3

o @sw: 0] [1] [2] [3] [5] [8] [o] [6] [7] [4]

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

(22}
=
(]
Lo
n
=y
(a1
oy
o
<)
S
o

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

o] [a] [2] [3] [5] [8] [9] [6] [7] [4]

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

o] [1] [2] [3] [5] [8] [9] [6] [4] [7]

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

o] [1] [2] [3] [5] [8] [9] [4] [6] [7]

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

o] [1] [2] [3] [8] [8] [4] [o] [6] [7]

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

o] [a] [2] [3] [5] [4] [8] [9] [6] [7]

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

o] [1] [2] [3] [4] [5] [8] [9] [6] [7]

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

o] [1] [2] [3] [5] [8] [9] [4] [6] [7]

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

NONEEEEBGEED

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

NONEEEEBGEED

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

NONEEEEB@DE D

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

5 B [[

o] [1] [2]

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

Proof: Small Steps

o oiw: [0] [1] [2] [3] [5] [8] [9o] [6] [7] [4]
o osw: [0] [1] [2] [3] [4] [5] [8] [9] [6] [7]

Lower Bound Construction

e o e T N
ogBoEBogB OB S

6
6
6
6

Lower Bound Construction

a8

6
6
6

§
6
6
6

Lower Bound Construction

NN
OEBoEB EBOENS

Lower Bound Construction

NN
OEBoEB EBOENS

OEBoEBoEBOEBC

Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

w: e
~_ —

— max ({2,

Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

- max({272727 27)

Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

- max({272727 27 37)

Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

= max ({2,2,2,2,3,3,3,

Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

=max ({2,2,2,2,3,3,3,2,

Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

= max ({2,2,2,2,3,3,3,2,1}) = 3

Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

= max ({2,2,2,2,3,3,3,2,1}) = 3

= min,, (vsn(G,w))

Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

= max ({2,2,2,2,3,3,3,2,1}) = 3

= min,, (vsn(G,w))

(Kinnersley IPL 1992) vsn(G) = pw(G)

Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

= max ({2,2,2,2,3,3,3,2,1}) = 3

= min,, (vsn(G,w))

(Kinnersley IPL 1992) vsn(G) = pw(G)

Theorem

Let (& be a graph and be linear orders of V(G) of vertex
separation number at most /.. Then, w can be reconfigured into
W' in vertex separation number at most

vsn(G,w) + vsn(G,w') <

Slice rewriting system

String Rewriting System

Definition (String Rewriting System)
A is a pair (X, R) where > is a finite
alphabet, and is a set of rewriting rules.

String Rewriting System

Definition (String Rewriting System)

A is a pair (X, R) where > is a finite
alphabet, and is a set of rewriting rules.
Example

With the rule ab — ¢d, we can rewrite abba into cdba.

String Rewriting System

Definition (String Rewriting System)

A is a pair (X, R) where > is a finite
alphabet, and is a set of rewriting rules.
Example

With the rule ab — ¢d, we can rewrite abba into cdba.

Problem (Reachability)

Given two strings w and w' in 3*, is there a sequence of rewrites
that w into w'?

Slices

Definition (Slice)
A slice is a (multi-)graph G = (V, E) such that V. =TUC U O.
S

/1\

2/1
25

N =
OO —

10

Slices

Definition (Slice)
A slice is a (multi-)graph G = (V, E) such that V. =/ UC U O.
S

1

/\

2/1
Y
_\34‘

OO —

10

Slices

Definition (Slice)
A slice is a (multi-)graph G = (V, E) such that V. =TUC U
S

1
N
2 =]

>\\3%

N

10

Slices

Definition (Slice)
A slice is a (multi-)graph G = (V, E) such that V. =TUC' UO.
S

/\<:
— .,]

N =
OO —

10

Slices

Definition (Slice)
A slice is a (multi-)graph G = (V, E) such that V. =TUC U O.
S

/1\

2/1
25

N =
OO —

The width of S is

10

Slices

Definition (Slice)
A slice is a (multi-)graph G = (V, E) such that V. =TUC U O.
S

./1\

2/{
25

N =
OO —

The width of S is

Definition (Unit Slice)

10

Slices

Definition (Slice)
A slice is a (multi-)graph G = (V, E) such that V. =TUC U O.
S

./1\

2/{
25

N =
OO —

The width of S is

Definition (Unit Slice)

4.2

DO —

10

Slices

Definition (Slice)
A slice is a (multi-)graph G = (V, E) such that V. =TUC U O.
S

./1\

2/{
25

N =
OO —

The width of S is

Definition (Unit Slice)
Su

/1
4.2

DO —

For each k € N, we define the alphabet as the set of all

unit slices of width at most 0

Gluing of Slices

Definition (Gluing)

11

Gluing of Slices

Definition (Gluing)

Sl SZ
— | "
' 1— O bl/”
o 1\ —"
I R

11

Gluing of Slices

Definition (Gluing)

Sy So S108Ss
— | | 2
[
Jolit=t—71
II/ \‘ [J 0\1/0
|

11

Unit Decompositions

Definition (Unit Decomposition)

12

Unit Decompositions

Definition (Unit Decomposition)

12

Unit Decompositions

Definition (Unit Decomposition)

12

Unit Decompositions

Definition (Unit Decomposition)

'/4
5] 84>2/"\9 oé 3 —1216 7/>4

NN

2
[;

12

Unit Decompositions

Definition (Unit Decomposition)

AN AN A

— Y
Uo| 17 1417 1% 1591 91017 p—17 [1

12

Unit Decompositions

Definition (Unit Decomposition)

¢ —
Ug| 1 ikl/\l 1é:1\«k1/§1 1™
G / ¢ '/

» The gluing of a unit decomposition Ug of a graph G is
to GG.

12

Unit Decompositions

Definition (Unit Decomposition)

¢ —
Ug| 1 ikl/\l 1é:1\«k1/§1 1™
G / ¢ '/

» The gluing of a unit decomposition Ug of a graph G is
to GG.

» Ug defines a wy, of V(ﬁg).

12

Slice Equivalence Relation

Definition (Equivalence of unit slices)

S1Sy ~ S S iff there exist an isomorphism ¢ from S; o Sy to
10855

13

Slice Equivalence Relation

Definition (Equivalence of unit slices)
S1Sy ~ S S iff there exist an isomorphism ¢ from S; o Sy to

1085
S S, s/ s,

i\

[K

e

S— /
::1\» ~ ¢e—1 @) 1—e
N Y —

13

Slice Equivalence Relation

Definition (Equivalence of unit slices)

S1Sy ~ S S iff there exist an isomorphism ¢ from S; o Sy to

10855
Sy So Si S)
e p *— o — 3
'\Qé: O :::1\» ~ ¢—1 ! @) “\14»
— o ./ \0 1/ \“ "\a

Definition (Slice rewriting system)

R(k) = {S1S2 — /S, : S1Sy ~ §/S)} C B(k)? x (k)?

13

Slice Equality and Twisting

Equality

S1

So

7

O

#

14

Slice Equality and Twisting

Equality
S1 So Ss
ll\ /II *—o [b
£ L] # P
Twisting

/]
1" O o 1—o NV 1= O o—1—»
"/<:. .:>K<. *—

14

Graph Isomorphism and Reachability

Theorem

Let U and U’ be unit decompositions in 3(k)®. Then, U is

to U’ if and only if U is from U using
R(2k).

5

Graph Isomorphism and Reachability

Theorem

Let U and U’ be unit decompositions in 3(k)®. Then, U is
to U’ if and only if U’ is from U using
R(2k).

Theorem (Giannopoulou et al. Algorithmica 2019)
Let G be an n-vertex graph of cutwidth k. We can compute a
linear order w of the vertices of G of width k in time kO**) . n.

Theorem

for n-vertex graphs of cutwidth at most k
can be reduced in time k%) . to

5

Reconfiguring Orders in General

The General Picture

» Reconfiguration problems where solutions are given by
orderings are an interesting area.

16

The General Picture

» Reconfiguration problems where solutions are given by

orderings are an interesting area.

» Many concrete ‘classical reconfiguration questions’ are open /
untouched, e.g.: What is the complexity of the next problem:
Given two orderings w,w’ of cutwidth < k of a graph G and
an integer £ > k, is it possible to reconfigure w into w’, so
that all intermediate orderings have cutwidth < ¢7

16

The General Picture

» Reconfiguration problems where solutions are given by

orderings are an interesting area.

» Many concrete ‘classical reconfiguration questions’ are open /
untouched, e.g.: What is the complexity of the next problem:
Given two orderings w,w’ of cutwidth < k of a graph G and
an integer £ > k, is it possible to reconfigure w into w’, so
that all intermediate orderings have cutwidth < ¢7

» One can find may more ‘ordering questions’ on graphs and
strings that lead to ‘swap’ as a basic operation and where

similar reconfiguration problems can be formulated.

16

The General Picture

» Reconfiguration problems where solutions are given by

orderings are an interesting area.

» Many concrete ‘classical reconfiguration questions’ are open /
untouched, e.g.: What is the complexity of the next problem:
Given two orderings w,w’ of cutwidth < k of a graph G and
an integer £ > k, is it possible to reconfigure w into w’, so
that all intermediate orderings have cutwidth < ¢7

» One can find may more ‘ordering questions’ on graphs and
strings that lead to ‘swap’ as a basic operation and where
similar reconfiguration problems can be formulated.

» These have also practical ‘dynamic aspects’, as explained with

two examples next.

16

One Side Crossing Minimization (OSCM)

Definition (Two-layer drawing)
Let G = (V4, Vi, E) be a bipartite graph.

17

One Side Crossing Minimization (OSCM)

Definition (Two-layer drawing)
Let G = (V4, Vi, E) be a bipartite graph.

Uuo < ul < U2 < u3 < Ug
Vi ==O======== Croses=== Le======= O======== Or======

17

One Side Crossing Minimization (OSCM)

Definition (Two-layer drawing)

Let G = (V4, Vi, E) be a bipartite graph.

Uuo < ul < U2 < u3 < Ug
Vi ==O======== ®-------

V2 --0---@---@---0---0---@---0---0 -
Vo U1 V9 V3 V4 Vs Ve (%rd

17

One Side Crossing Minimization (OSCM)

Definition (Two-layer drawing)
Let G = (V4, Vi, E) be a bipartite graph.

TIPS .M
Vo--0-"--0"--0---0°--@0---@--"0---@---0--"0--

Vo U1 V9 V3 V4 Vs Ve (%rd (O} V9

17

One Side Crossing Minimization (OSCM)

Definition (Two-layer drawing)
Let G = (V4, Vi, E) be a bipartite graph.

TIPS .M
Vo--0-"--0"--0---0°--@0---@--"0---@---0--"0--

Vo U1 V9 V3 V4 Vs Ve (%rd (O} V9

17

One Side Crossing Minimization (OSCM)

Definition (Two-layer drawing)
Let G = (V4, Vi, E) be a bipartite graph.

TIPS .M
Vo--0-"--0"--0---0°--@0---@--"0---@---0--"0--

Vo U1 V9 V3 V4 Vs Ve (%rd (O} V9

17

One Side Crossing Minimization (OSCM)

Definition (Two-layer drawing)
Let G = (V4, Vi, E) be a bipartite graph.

DA

17

One Side Crossing Minimization (OSCM)

Definition (Two-layer drawing)
Let G = (V4, Vi, E) be a bipartite graph.

Bere s S

17

One Side Crossing Minimization (OSCM)

Definition (Two-layer drawing)
Let G = (V4, Vi, E) be a bipartite graph.

Uuo < U1 < u2 < u3 < Uy
Y P s .\%
Vo--0"--@---@---0"--@0---@--"0---@---0--"0--

vo vz vl U3 U4 5 Vs U7 Ug g

Problem (OSCM)

Given a bipartite graph G = (V1, Vs, E), a linear order 11 on
Vi and k € N. Is there a linear order ™5 on V5 such that the
two-layer drawing specified by (71, T2) has at most k edge

crossings? Ly

Grouping by Swapping (GbS)

Definition (Swap)
c a d d a a b C € d d

18

Grouping by Swapping (GbS)

Definition (Swap)
c a d d a a b C € d d

18

Grouping by Swapping (GbS)

Definition (Swap)
(0 a d d a b a (@ (0 d d

18

Grouping by Swapping (GbS)

Definition (Swap)
(0 a d d a b a (@ (0 d d

18

Grouping by Swapping (GbS)

Definition (Swap)
(0 a d d a b a (@ (0 d d

Definition (Block string)

18

Grouping by Swapping (GbS)

Definition (Swap)
(0 a d d a b a (@ (0 d d

Definition (Block string)

a a a @ c C b d d d d

18

Grouping by Swapping (GbS)

Definition (Swap)
(0 a d d a b a (@ (0 d d

Definition (Block string)

a a a @ c C b d d d d

18

Grouping by Swapping (GbS)

Definition (Swap)
(0 a d d a b a (@ (0 d d

Definition (Block string)

a a a @ c C b d d d d

Problem (GbS)
Given a finite alphabet Y., a string w € ¥.*, and k € N. Can we
transform w in a block string w' with at most k swaps?

18

Reduction from GbS to OSCM

GbS
An alphabet ¥ = {a,b,¢,d} and w = caddaabeedd.

19

Reduction from GbS to OSCM

GbS
An alphabet ¥ = {a,b,¢,d} and w = caddaabeedd.

19

Reduction from GbS to OSCM

GbS
An alphabet ¥ = {a,b,¢,d} and w = caddaabeedd.

c a d d a a b c @ d d

UW-®--0--0---0---0--0--0-—-0---0---0--0-

19

Reduction from GbS to OSCM

GbS
An alphabet ¥ = {a,b,¢,d} and w = caddaabeedd.

c a d d a a b c @ d d

UW-®--0--0---0---0--0--0-—-0---0---0--0-

19

Reduction from GbS to OSCM

GbS
An alphabet ¥ = {a,b,¢,d} and w = caddaabeedd.

19

Reduction from GbS to OSCM

GbS
An alphabet ¥ = {a,b,¢,d} and w = caddaabeedd.

19

Reduction from GbS to OSCM

GbS
An alphabet ¥ = {a,b,¢,d} and w = caddaabeedd.

19

Reduction from GbS to OSCM

GbS
An alphabet ¥ = {a,b,¢,d} and w = caddaabeedd.

19

Reduction from GbS to OSCM

GbS
An alphabet ¥ = {a,b,¢,d} and w = caddaabeedd.

19

Reduction from GbS to OSCM

GbS
An alphabet ¥ = {a,b,¢,d} and w = caddaabeedd.

19

Reduction from GbS to OSCM

GbS
An alphabet ¥ = {a,b,¢,d} and w = caddaabeedd.

c a d d a a b c @ d d

W-@--0--0=--0---0-—06- -0 --0---0---0--0 -

See E. Arrighi et al. FSTTCS 2020 & 1JCAI 2021.

19

Homework for Reconfigurationalists

» Explore the search space of orderings, with neighborhood
defined by a single swap.

20

Homework for Reconfigurationalists

» Explore the search space of orderings, with neighborhood
defined by a single swap.

» Bubble sort can be helpful, seemingly providing a quadratic
upper-bound on the length of reconfiguration sequences.

20

Homework for Reconfigurationalists

» Explore the search space of orderings, with neighborhood
defined by a single swap.

» Bubble sort can be helpful, seemingly providing a quadratic
upper-bound on the length of reconfiguration sequences.

» But: if additional parameters (like cutwidth) are limited, then
possibly ‘detours’ are necessary, or no way exists at all!

20

Homework for Reconfigurationalists

» Explore the search space of orderings, with neighborhood
defined by a single swap.

» Bubble sort can be helpful, seemingly providing a quadratic
upper-bound on the length of reconfiguration sequences.

» But: if additional parameters (like cutwidth) are limited, then
possibly ‘detours’ are necessary, or no way exists at all!

» Again, computational complexity questions unexplored!

20

Homework for Reconfigurationalists

» Explore the search space of orderings, with neighborhood
defined by a single swap.

» Bubble sort can be helpful, seemingly providing a quadratic
upper-bound on the length of reconfiguration sequences.

» But: if additional parameters (like cutwidth) are limited, then
possibly ‘detours’ are necessary, or no way exists at all!

» Again, computational complexity questions unexplored!

» Also, no understanding of the structure of the solution space.

20

Homework for Reconfigurationalists

» Explore the search space of orderings, with neighborhood

defined by a single swap.

» Bubble sort can be helpful, seemingly providing a quadratic
upper-bound on the length of reconfiguration sequences.

» But: if additional parameters (like cutwidth) are limited, then
possibly ‘detours’ are necessary, or no way exists at all!

» Again, computational complexity questions unexplored!
» Also, no understanding of the structure of the solution space.

» Conversely: we explained connections to string rewriting.
Can we make use of other rewriting theory results in
reconfiguration?

20

Thank you!

Trier, Germany
June 7th-9th

21

	Order Reconfiguration
	Slice rewriting system
	Reconfiguring Orders in General

