Order Reconfiguration under Width Constraints

Emmanuel Arrighi¹, Henning Fernau², Mateus de Oliveira Oliveira¹, Petra Wolf².

BIRS Reconfiguration Workshop 22w5090 May 10th, 2022 also see: MFCS 2021

 $^{^{1}}$ University of Bergen, Norway

² University of Trier, Germany

Graph isomorphism $G_1: \overline{5} \ \overline{8} \ \overline{3} \ G_2: \overline{0} \ \overline{7}$

Graph isomorphism

Graph isomorphism

Graph isomorphism

Graph isomorphism

Graph isomorphism

Graph isomorphism

Graph isomorphism

Definition (Cutwidth of an ordering)

 ω : 5 8 2 9 0 3 1 6 7 4

$$cw(G, \omega) = max(\{2,$$

$$\operatorname{cw}(G, \omega) = \max(\{2, 3,$$

$$cw(G, \omega) = \max(\{2, 3, 2,$$

$$cw(G,\omega) = \max(\{2,3,2,3,$$

Definition (Cutwidth of an ordering)

2

$$cw(G, \omega) = max(\{2, 3, 2, 3, 5, 3,$$

$$cw(G, \omega) = max(\{2, 3, 2, 3, 5, 3, 4,$$

$$cw(G, \omega) = max(\{2, 3, 2, 3, 5, 3, 4, 3, 2\}) = 5$$

Definition (Cutwidth of an ordering)

$$cw(G, \omega) = max(\{2, 3, 2, 3, 5, 3, 4, 3, 2\}) = 5$$

Definition (Cutwidth)

$$\operatorname{cw}(G) = \min_{\omega} (\operatorname{cw}(G, \omega))$$

2

Definition (Swap)

5 8 2 9 0 3 1 6 7 4

Definition (Swap)

5 8 2 9 0 3 1 6 7 4

Definition (Swap)

2 9 0 1 3 6 7

Definition (Order reconfiguration)

 ω can be reconfigured into ω' if

$$\omega = \omega_0 \to \omega_1 \to \cdots \to \omega_r = \omega'.$$

Definition (Swap)

0 | 1 | 3 | 6 |

Definition (Order reconfiguration)

 ω can be reconfigured into ω' if

$$\omega = \omega_0 \to \omega_1 \to \cdots \to \omega_r = \omega'.$$

Problem (Bounded Cutwidth Order Reconfiguration)

Let G be an n-vertex graph, $\omega, \omega' : [n] \to V(G)$ be linear orders on the vertex set of G, and $k \in \mathbb{N}$. Is it true that ω can be reconfigured into ω' in cutwidth at most k?

Bounded Cutwidth Order Reconfiguration

Theorem

Let G be a graph and ω, ω' be linear orders of V(G) of cutwidth at most k. Then, ω can be reconfigured into ω' in cutwidth at most $\mathrm{cw}(G,\omega)+\mathrm{cw}(G,\omega')\leq 2k$.

Proof: Big Steps

 $\omega:$ 5 8 2 9 0 3 1 6 7 4 $\omega':$ 0 1 2 3 4 5 6 7 8 9

Proof: Big Steps

 ω : 5 8 2 9 0 3 1 6 7 4 ω' : 0 1 2 3 4 5 6 7 8 9

 ω : 5 8 2 9 0 3 1 6 7 4

Proof: Big Steps

 $\omega:$ 5 8 2 9 0 3 1 6 7 4 $\omega':$ 0 1 2 3 4 5 6 7 8 9

 ω : 5 8 2 9 0 3 1 6 7 4

 ω : 5 8 2 9 0 3 1 6 7 4 ω' : 0 1 2 3 4 5 6 7 8 9

 $\omega'\oplus_1\omega:$ 0 5 8 2 9 3 1 6 7 4

 ω : 5 8 2 9 0 3 1 6 7 4 ω' : 0 1 2 3 4 5 6 7 8 9

 $\omega' \oplus_1 \omega$: 0 5 8 2 9 3 1 6 7 4

 ω : 5 8 2 9 0 3 1 6 7 4 ω' : 0 1 2 3 4 5 6 7 8 9

 $\omega'\oplus_1\omega:$ 0 5 8 2 9 3 1 6 7 4

 ω : 5 8 2 9 0 3 1 6 7 4 ω' : 0 1 2 3 4 5 6 7 8 9

 $\omega' \oplus_2 \omega$: 0 1 5 8 2 9 3 6 7 4

 $\omega'\oplus_2\omega:$ 0 1 5 8 2 9 3 6 7 4

 ω : 5 8 2 9 0 3 1 6 7 4 ω' : 0 1 2 3 4 5 6 7 8 9

 $\omega' \oplus_3 \omega$: 0 1 2 5 8 9 3 6 7 4

 ω : 5 8 2 9 0 3 1 6 7 4 ω' : 0 1 2 3 4 5 6 7 8 9

 $\omega' \oplus_3 \omega$: 0 1 2 5 8 9 3 6 7 4

 ω : 5 8 2 9 0 3 1 6 7 4 ω' : 0 1 2 3 4 5 6 7 8 9

 ω : 5 8 2 9 0 3 1 6 7 4 ω' : 0 1 2 3 4 5 6 7 8 9

 ω : 5 8 2 9 0 3 1 6 7 4 ω' : 0 1 2 3 4 5 6 7 8 9

 ω : 5 8 2 9 0 3 1 6 7 4 ω' : 0 1 2 3 4 5 6 7 8 9

 ω : 5 8 2 9 0 3 1 6 7 4 ω' : 0 1 2 3 4 5 6 7 8 9

 $\omega:$ 5 8 2 9 0 3 1 6 7 4 $\omega':$ 0 1 2 3 4 5 6 7 8 9

 ω' : 0 1 2 3 4 5 6 7 8 9

 ω : 5 8 2 9 0 3 1 6 7 4 ω' : 0 1 2 3 4 5 6 7 8 9

- $\omega' \oplus_4 \omega$: 0 1 2 3 5 8 9 6 7 4
- $\omega' \oplus_5 \omega$: 0 1 2 3 4 5 8 9 6 7

0 1 2 3 5 8 9 6 7 4

- $\omega' \oplus_4 \omega$: 0 1 2 3 5 8 9 6 7 4
- $\omega' \oplus_5 \omega$: 0 1 2 3 4 5 8 9 6 7

0 1 2 3 5 8 9 6 4 7

- $\omega' \oplus_4 \omega$: 0 1 2 3 5 8 9 6 7 4
- $\omega' \oplus_5 \omega$: 0 1 2 3 4 5 8 9 6 7

0 1 2 3 5 8 9 4 6 7

- $\omega' \oplus_4 \omega$: 0 1 2 3 5 8 9 6 7 4
- $\omega' \oplus_5 \omega$: 0 1 2 3 4 5 8 9 6 7

0 1 2 3 5 8 4 9 6 7

- $\omega' \oplus_4 \omega$: 0 1 2 3 5 8 9 6 7 4
- $\omega' \oplus_5 \omega$: 0 1 2 3 4 5 8 9 6 7

0 1 2 3 5 4 8 9 6 7

- $\omega' \oplus_4 \omega$: 0 1 2 3 5 8 9 6 7 4
- $\omega' \oplus_5 \omega$: 0 1 2 3 4 5 8 9 6 7

0 1 2 3 4 5 8 9 6 7

- $\omega' \oplus_4 \omega$: 0 1 2 3 5 8 9 6 7 4
- $\omega' \oplus_5 \omega$: 0 1 2 3 4 5 8 9 6 7

0 1 2 3 5 8 9 4 6 7

$$\omega' \oplus_5 \omega$$
: 0 1 2 3 4 5 8 9 6 7

- $\omega'\oplus_4\omega:$ 0 1 2 3 5 8 9 6 7 4
- $\omega'\oplus_5\omega:$ 0 1 2 3 4 5 8 9 6 7

0 1 2 3 5 8 9 4 6 7

$$\omega' \oplus_5 \omega$$
: 0 1 2 3 4 5 8 9 6 7

$$vsn(G,\omega) = \max\left(\{2, 2, \frac{1}{2}, \frac{1}{2}$$

$$vsn(G,\omega) = max(\{2,2,\frac{2}{2},$$

$$vsn(G, \omega) = max(\{2, 2, 2, 2, 3, \dots, \omega\})$$

Definition (Vertex separation number)

$$\operatorname{vsn}(G, \omega) = \max(\{2, 2, 2, 2, 3, 3, 3, 2, 1\}) = 3$$

$$\frac{\operatorname{vsn}(G,\omega)}{\operatorname{vsn}(G)} = \max\left(\{2,2,2,2,3,3,3,2,1\}\right) = 3$$

$$\frac{\operatorname{vsn}(G)}{\operatorname{vsn}(G,\omega)} = \min_{\omega}\left(\operatorname{vsn}(G,\omega)\right)$$

Definition (Vertex separation number)

$$\frac{\operatorname{vsn}(G, \omega)}{\operatorname{vsn}(G)} = \max \left(\{2, 2, 2, 2, 3, 3, 3, 2, 1\} \right) = 3$$

$$\frac{\operatorname{vsn}(G)}{\operatorname{vsn}(G)} = \min_{\omega} \left(\operatorname{vsn}(G, \omega) \right)$$

Known (Kinnersley IPL 1992) vsn(G) = pw(G)

Definition (Vertex separation number)

$$\frac{\operatorname{vsn}(G,\omega)}{\operatorname{vsn}(G)} = \max \left(\{2, 2, 2, 2, 3, 3, 3, 2, 1\} \right) = 3$$

$$\frac{\operatorname{vsn}(G)}{\operatorname{vsn}(G)} = \min_{\omega} \left(\operatorname{vsn}(G,\omega) \right)$$

Known (Kinnersley IPL 1992) vsn(G) = pw(G)

Theorem

Let G be a graph and ω, ω' be linear orders of V(G) of vertex separation number at most k. Then, ω can be reconfigured into ω' in vertex separation number at most $\operatorname{vsn}(G,\omega)+\operatorname{vsn}(G,\omega')\leq 2k$.

Slice rewriting system

String Rewriting System

Definition (String Rewriting System)

A string rewriting system is a pair (Σ,R) where Σ is a finite alphabet, and $R\subseteq \Sigma^*\times \Sigma^*$ is a set of rewriting rules.

String Rewriting System

Definition (String Rewriting System)

A string rewriting system is a pair (Σ, R) where Σ is a finite alphabet, and $R \subseteq \Sigma^* \times \Sigma^*$ is a set of rewriting rules.

Example

With the rule $ab \rightarrow cd$, we can rewrite abba into cdba.

String Rewriting System

Definition (String Rewriting System)

A string rewriting system is a pair (Σ, R) where Σ is a finite alphabet, and $R \subseteq \Sigma^* \times \Sigma^*$ is a set of rewriting rules.

Example

With the rule $ab \rightarrow cd$, we can rewrite abba into cdba.

Problem (Reachability)

Given two strings w and w' in Σ^* , is there a sequence of rewrites that transforms w into w'?

Definition (Slice)

A slice is a (multi-)graph G=(V,E) such that $V=I\cup C\cup O.$

Definition (Slice)

A slice is a (multi-)graph G=(V,E) such that $V={\color{red} I}\cup C\cup O.$

Definition (Slice)

A slice is a (multi-)graph G=(V,E) such that $V=I\cup C\cup {\color{red}O}.$

Definition (Slice)

A slice is a (multi-)graph G=(V,E) such that $V=I\cup C\cup O$.

Definition (Slice)

A slice is a (multi-)graph G=(V,E) such that $V=I\cup C\cup O.$

The width of S is $w(S) = \max\{|I|, |O|\}$

Definition (Slice)

A slice is a (multi-)graph G=(V,E) such that $V=I\cup C\cup O$.

The width of S is $w(S) = \max\{|I|, |O|\}$

Definition (Unit Slice)

Definition (Slice)

A slice is a (multi-)graph G=(V,E) such that $V=I\cup C\cup O$.

The width of S is $w(S) = \max\{|I|, |O|\}$

Definition (Unit Slice)

Definition (Slice)

A slice is a (multi-)graph G=(V,E) such that $V=I\cup C\cup O.$

The width of **S** is $w(\mathbf{S}) = \max\{|I|, |O|\}$

Definition (Unit Slice)

For each $k \in \mathbb{N}$, we define the alphabet $\Sigma(k)$ as the set of all unit slices of width at most k.

Gluing of Slices

Definition (Gluing)

Gluing of Slices

Gluing of Slices

Definition (Unit Decomposition)

▶ The gluing $\mathring{\mathbf{U}}_G$ of a unit decomposition \mathbf{U}_G of a graph G is isomorphic to G.

Definition (Unit Decomposition) U_G

- ▶ The gluing $\mathring{\mathbf{U}}_G$ of a unit decomposition \mathbf{U}_G of a graph G is isomorphic to G.
- $lackbox{U}_G$ defines a linear order $\omega_{\mathbf{U}_G}$ of $V(\mathring{\mathbf{U}}_G)$.

Slice Equivalence Relation

Definition (Equivalence of unit slices)

 ${\bf S}_1{\bf S}_2\sim {\bf S}_1'{\bf S}_2'$ iff there exist an isomorphism φ from ${\bf S}_1\circ {\bf S}_2$ to ${\bf S}_1'\circ {\bf S}_2'$

Slice Equivalence Relation

Definition (Equivalence of unit slices)

 ${f S}_1{f S}_2\sim {f S}_1'{f S}_2'$ iff there exist an isomorphism arphi from ${f S}_1\circ {f S}_2$ to ${f S}_1'\circ {f S}_2'$

Slice Equivalence Relation

Definition (Equivalence of unit slices)

 ${f S}_1{f S}_2\sim {f S}_1'{f S}_2'$ iff there exist an isomorphism arphi from ${f S}_1\circ {f S}_2$ to ${f S}_1'\circ {f S}_2'$

Definition (Slice rewriting system)

$$\mathcal{R}(k) = \{ \mathbf{S}_1 \mathbf{S}_2 \to \mathbf{S}_1' \mathbf{S}_2' : \mathbf{S}_1 \mathbf{S}_2 \sim \mathbf{S}_1' \mathbf{S}_2' \} \subseteq \mathbf{\Sigma}(k)^2 \times \mathbf{\Sigma}(k)^2$$

Slice Equality and Twisting

Equality

Slice Equality and Twisting

Equality

Twisting

Graph Isomorphism and Reachability

Theorem

Let U and U' be unit decompositions in $\Sigma(k)^{\circledast}$. Then, \mathring{U} is isomorphic to \mathring{U}' if and only if U' is reachable from U using $\mathcal{R}(2k)$.

Graph Isomorphism and Reachability

Theorem

Let U and U' be unit decompositions in $\Sigma(k)^{\circledast}$. Then, \mathring{U} is isomorphic to \mathring{U}' if and only if U' is reachable from U using $\mathcal{R}(2k)$.

Theorem (Giannopoulou et al. Algorithmica 2019)

Let G be an n-vertex graph of cutwidth k. We can compute a linear order ω of the vertices of G of width k in time $k^{\mathcal{O}(k^2)} \cdot n$.

Theorem

Graph isomorphism for n-vertex graphs of cutwidth at most k can be reduced in time $k^{\mathcal{O}(k^2)} \cdot n$ to $\mathcal{R}(2k)$ -reachability.

Reconfiguring Orders in General

► Reconfiguration problems where solutions are given by orderings are an interesting area.

- Reconfiguration problems where solutions are given by orderings are an interesting area.
- Many concrete 'classical reconfiguration questions' are open / untouched, e.g.: What is the complexity of the next problem: Given two orderings ω, ω' of cutwidth $\leq k$ of a graph G and an integer $\ell \geq k$, is it possible to reconfigure ω into ω' , so that all intermediate orderings have cutwidth $\leq \ell$?

- ► Reconfiguration problems where solutions are given by orderings are an interesting area.
- Many concrete 'classical reconfiguration questions' are open / untouched, e.g.: What is the complexity of the next problem: Given two orderings ω, ω' of cutwidth $\leq k$ of a graph G and an integer $\ell \geq k$, is it possible to reconfigure ω into ω' , so that all intermediate orderings have cutwidth $\leq \ell$?
- One can find may more 'ordering questions' on graphs and strings that lead to 'swap' as a basic operation and where similar reconfiguration problems can be formulated.

- ► Reconfiguration problems where solutions are given by orderings are an interesting area.
- ▶ Many concrete 'classical reconfiguration questions' are open / untouched, e.g.: What is the complexity of the next problem: Given two orderings ω, ω' of cutwidth $\leq k$ of a graph G and an integer $\ell \geq k$, is it possible to reconfigure ω into ω' , so that all intermediate orderings have cutwidth $\leq \ell$?
- One can find may more 'ordering questions' on graphs and strings that lead to 'swap' as a basic operation and where similar reconfiguration problems can be formulated.
- ► These have also practical 'dynamic aspects', as explained with two examples next.

Definition (Two-layer drawing)

Let $G = (V_1, V_2, E)$ be a **bipartite** graph.

 V_1 -----

 V_2 -----

Definition (Two-layer drawing)

Let $G = (V_1, V_2, E)$ be a **bipartite** graph.

 V_2 ----

Definition (Two-layer drawing)

Definition (Two-layer drawing)

Definition (Two-layer drawing)

Definition (Two-layer drawing)

Definition (Two-layer drawing)

Definition (Two-layer drawing)

Let $G = (V_1, V_2, E)$ be a **bipartite** graph.

Problem (OSCM)

Given a **bipartite graph** $G = (V_1, V_2, E)$, a **linear order** τ_1 on V_1 and $k \in \mathbb{N}$. Is there a **linear order** τ_2 on V_2 such that the two-layer drawing specified by (τ_1, τ_2) has at most k edge crossings?

Problem (GbS)

Given a **finite** alphabet Σ , a string $w \in \Sigma^*$, and $k \in \mathbb{N}$. Can we transform w in a **block string** w' with at most k swaps?

GbS

GbS

An alphabet $\Sigma = \{a, b, c, d\}$ and w = caddaabccdd.

GbS

GbS

GbS

GbS

GbS

GbS

GbS

GbS

GbS

An alphabet $\Sigma = \{a, b, c, d\}$ and w = caddaabccdd.

See E. Arrighi et al. FSTTCS 2020 & IJCAI 2021.

Explore the search space of orderings, with neighborhood defined by a single swap.

- Explore the search space of orderings, with neighborhood defined by a single swap.
- ▶ Bubble sort can be helpful, seemingly providing a quadratic upper-bound on the length of reconfiguration sequences.

- ► Explore the search space of orderings, with neighborhood defined by a single swap.
- ▶ Bubble sort can be helpful, seemingly providing a quadratic upper-bound on the length of reconfiguration sequences.
- ▶ But: if additional parameters (like cutwidth) are limited, then possibly 'detours' are necessary, or no way exists at all!

- Explore the search space of orderings, with neighborhood defined by a single swap.
- ▶ Bubble sort can be helpful, seemingly providing a quadratic upper-bound on the length of reconfiguration sequences.
- ▶ But: if additional parameters (like cutwidth) are limited, then possibly 'detours' are necessary, or no way exists at all!
- ► Again, computational complexity questions unexplored!

- Explore the search space of orderings, with neighborhood defined by a single swap.
- ▶ Bubble sort can be helpful, seemingly providing a quadratic upper-bound on the length of reconfiguration sequences.
- ▶ But: if additional parameters (like cutwidth) are limited, then possibly 'detours' are necessary, or no way exists at all!
- Again, computational complexity questions unexplored!
- ► Also, no understanding of the structure of the solution space.

- ► Explore the search space of orderings, with neighborhood defined by a single swap.
- ▶ Bubble sort can be helpful, seemingly providing a quadratic upper-bound on the length of reconfiguration sequences.
- ▶ But: if additional parameters (like cutwidth) are limited, then possibly 'detours' are necessary, or no way exists at all!
- ► Again, computational complexity questions unexplored!
- ► Also, no understanding of the structure of the solution space.
- Conversely: we explained connections to string rewriting. Can we make use of other rewriting theory results in reconfiguration?

Thank you!

Trier, Germany June 7th-9th

IWOCA 2022

