Order Reconfiguration under Width
Constraints

Emmanuel Arrighi, Henning Fernau?, Mateus de Oliveira Oliveiral,
Petra Wolf?.

BIRS Reconfiguration Workshop 22w5090 May 10th, 2022

also see: MFCS 2021

4 University of Bergen, Norway
2 University of Trier, Germany



Graph isomorphism

9]



Graph isomorphism

Gl : ’ o Gg . m
Ot




Graph isomorphism

Gl : o GQ : n
(]




Graph isomorphism




Graph isomorphism

Gl : ’ o Gg . m
Ot




Graph isomorphism

Gi: L ] Gy : 0 T
==

Reconfiguration



Graph isomorphism

Gi: L ] Gy : 0 T
==

Reconfiguration



Graph isomorphism

Gy L T Gy : 0 T
D

Reconfiguration

OOy OO



Graph isomorphism

Gi: L ] Gy : 0 T
==

Reconfiguration



Graph isomorphism

Gi: L ] Gy : 0 T
==

Reconfiguration



Graph isomorphism

Gl o L o GQ 5 m
7

Reconfiguration



Graph isomorphism

Gi: L ] Gy : 0 T
==

Reconfiguration



Order Reconfiguration



Definition (Cutwidth of an ordering)



Definition (Cutwidth of an ordering)

w: [5] [8] [2] [9] [o] [3] [1] [6] [7] [4]















= max ({2, 3,2, 3,



Definition (Cutwidth of an ordering)

w: 5] [8] [2) (o] [0)i3 II

= max ({2, 3, 2,3, 5,



9]

Definition (Cutwidth of an ordering)

= max ({2, 3,2,3,5, 3,



Definition (Cutwidth of an ordering)

o: B 18] 12 57 091 3] i te) O T2
;m

= max ({2,3,2,3,5,3,4,



= max ({2,3,2,3,5,3,4, 3,



= max ({2,3,2,3,5,3,4,3,2}) =5



= max ({2,3,2,3,5,3,4,3,2}) =5

Definition (Cutwidth)

= min,, (cw(G,w))
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Order Reconfiguration

Definition (Swap)

5] [8] [2] [9] [o] [x] [3] [6] [7] [4]

Definition (Order reconfiguration)

w can be into w’ if

W=w) S wp = wp = w

Problem (Bounded Cutwidth Order Reconfiguration)

Let (&' be an n-vertex graph, : [n] = V(G) be linear orders
on the vertex set of G, and k € N. Is it true that w can be
into w' in cutwidth at most 7



Bounded Cutwidth Order Reconfiguration

Theorem

Let ¢ be a graph and be linear orders of V(G) of cutwidth
at most k. Then, w can be reconfigured into w' in cutwidth at
most cw (G, w) + cw(G,w') <
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Definition (Vertex separation number)
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Definition (Vertex separation number)
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Definition (Vertex separation number)
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Definition (Vertex separation number)
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Definition (Vertex separation number)
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Definition (Vertex separation number)
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Bounded Vertex Separation Number Order Reconfiguration

Definition (Vertex separation number)

= max ({2,2,2,2,3,3,3,2,1}) = 3

= min,, (vsn(G,w))

(Kinnersley IPL 1992) vsn(G) = pw(G)

Theorem

Let (& be a graph and be linear orders of V(G) of vertex
separation number at most /.. Then, w can be reconfigured into
W' in vertex separation number at most

vsn(G,w) + vsn(G,w') <
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String Rewriting System

Definition (String Rewriting System)

A is a pair (X, R) where > is a finite
alphabet, and is a set of rewriting rules.
Example

With the rule ab — ¢d, we can rewrite abba into cdba.

Problem (Reachability)

Given two strings w and w' in 3*, is there a sequence of rewrites
that w into w'?
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Definition (Slice)
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Slices

Definition (Slice)
A slice is a (multi-)graph G = (V, E) such that V. =TUC U O.
S

./1\

2/{
25

N =
OO —

The width of S is

Definition (Unit Slice)
Su

/1
4.2

DO —

For each k € N, we define the alphabet as the set of all

unit slices of width at most 0
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Definition (Gluing)
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Gluing of Slices

Definition (Gluing)
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Definition (Unit Decomposition)
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Unit Decompositions

Definition (Unit Decomposition)
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Definition (Unit Decomposition)
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Unit Decompositions

Definition (Unit Decomposition)

¢ —
Ug| 1 ikl/\l 1é:1\«k1/§1 1™
G / ¢ '/

» The gluing of a unit decomposition Ug of a graph G is
to GG.

» Ug defines a wy, of V(ﬁg).

12
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Definition (Equivalence of unit slices)

S1Sy ~ S S iff there exist an isomorphism ¢ from S; o Sy to
10855
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Definition (Equivalence of unit slices)
S1Sy ~ S S iff there exist an isomorphism ¢ from S; o Sy to

1085
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Slice Equivalence Relation

Definition (Equivalence of unit slices)

S1Sy ~ S S iff there exist an isomorphism ¢ from S; o Sy to

10855
Sy So Si S)
e p *— o — 3
'\Qé: O :::1\» ~ ¢—1 ! @) “\14»
— o ./ \0 1/ \“ "\a

Definition (Slice rewriting system)

R(k) = {S1S2 — /S, : S1Sy ~ §/S)} C B(k)? x (k)?

13



Slice Equality and Twisting
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Slice Equality and Twisting

Equality
S1 So Ss
ll\ /II *—o [ b
£ L] # P
Twisting

/]
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"/<:. .:>K<. *—
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Graph Isomorphism and Reachability

Theorem

Let U and U’ be unit decompositions in 3(k)®. Then, U is

to U’ if and only if U is from U using
R(2k).
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Graph Isomorphism and Reachability

Theorem

Let U and U’ be unit decompositions in 3(k)®. Then, U is
to U’ if and only if U’ is from U using
R(2k).

Theorem (Giannopoulou et al. Algorithmica 2019)
Let G be an n-vertex graph of cutwidth k. We can compute a
linear order w of the vertices of G of width k in time kO**) . n.

Theorem

for n-vertex graphs of cutwidth at most k
can be reduced in time k%) . to

5
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The General Picture

» Reconfiguration problems where solutions are given by
orderings are an interesting area.
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The General Picture

» Reconfiguration problems where solutions are given by

orderings are an interesting area.

» Many concrete ‘classical reconfiguration questions’ are open /
untouched, e.g.: What is the complexity of the next problem:
Given two orderings w,w’ of cutwidth < k of a graph G and
an integer £ > k, is it possible to reconfigure w into w’, so
that all intermediate orderings have cutwidth < ¢7

» One can find may more ‘ordering questions’ on graphs and
strings that lead to ‘swap’ as a basic operation and where
similar reconfiguration problems can be formulated.

» These have also practical ‘dynamic aspects’, as explained with

two examples next.
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One Side Crossing Minimization (OSCM)

Definition (Two-layer drawing)
Let G = (V4, Vi, E) be a bipartite graph.
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Definition (Two-layer drawing)

Let G = (V4, Vi, E) be a bipartite graph.

Uuo < ul < U2 < u3 < Ug
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Definition (Two-layer drawing)
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One Side Crossing Minimization (OSCM)

Definition (Two-layer drawing)
Let G = (V4, Vi, E) be a bipartite graph.
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Definition (Two-layer drawing)
Let G = (V4, Vi, E) be a bipartite graph.

Bere s S
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One Side Crossing Minimization (OSCM)

Definition (Two-layer drawing)
Let G = (V4, Vi, E) be a bipartite graph.

Uuo < U1 < u2 < u3 < Uy
Y P s .\%
Vo--0"--@---@---0"--@0---@--"0---@---0--"0--

vo vz vl U3 U4 5 Vs U7 Ug g

Problem (OSCM)

Given a bipartite graph G = (V1, Vs, E), a linear order 11 on
Vi and k € N. Is there a linear order ™5 on V5 such that the
two-layer drawing specified by (71, T2) has at most k edge

crossings? Ly



Grouping by Swapping (GbS)

Definition (Swap)
c a d d a a b C € d d
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Grouping by Swapping (GbS)

Definition (Swap)
(0 a d d a b a (@ (0 d d

Definition (Block string)

a a a @ c C b d d d d

Problem (GbS)
Given a finite alphabet Y., a string w € ¥.*, and k € N. Can we
transform w in a block string w' with at most k swaps?

18



Reduction from GbS to OSCM

GbS
An alphabet ¥ = {a,b,¢,d} and w = caddaabeedd.
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Reduction from GbS to OSCM

GbS
An alphabet ¥ = {a,b,¢,d} and w = caddaabeedd.

c a d d a a b c @ d d

W-@--0--0=--0---0-—06- -0 --0---0---0--0 -

See E. Arrighi et al. FSTTCS 2020 & 1JCAI 2021.
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Homework for Reconfigurationalists

» Explore the search space of orderings, with neighborhood
defined by a single swap.
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Homework for Reconfigurationalists

» Explore the search space of orderings, with neighborhood

defined by a single swap.

» Bubble sort can be helpful, seemingly providing a quadratic
upper-bound on the length of reconfiguration sequences.

» But: if additional parameters (like cutwidth) are limited, then
possibly ‘detours’ are necessary, or no way exists at all!

» Again, computational complexity questions unexplored!
» Also, no understanding of the structure of the solution space.

» Conversely: we explained connections to string rewriting.
Can we make use of other rewriting theory results in
reconfiguration?
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Thank you!

Trier, Germany
June 7th-9th
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