A ZDD-based solver for
combinatorial reconfiguration
problems

Jun Kawahara Kyoto University
Joint work with

Takehiro Ito, Yu Nakahata, Takehide Soh, Akira
Suzuki, Junichi Teruyama, Takahisa Toda

This slide includes ongoing work. So please do not redistribute it.

Self introduction

« Jun KAWAHARA
« In 2000-2009, student at Kyoto University

* In 2010-2012, researcher at JST ERATO Minato Discrete Structure
Manipulation System Project

« In 2013-2019, assistant professor at Nara Institute of
Science and Technology (NAIST)

 Currently, associate professor at Kyoto University

« My research topics:

« Graph optimization/enumeration algorithms using zero-
suppressed binary decision diagrams (ZDDs)

Project | join

Fusion of Computer Science, Engineering and Mathematics
Approaches for Expanding Combinatorial Reconfiguration

Head Investigator: Takehiro Ito

Leader: Takehiro Ito

groupAQ1: Computer Science

Algorithmic foundation
of combinatorial reconfiguration

Case studies Case studies

Algorithmic meta-theorems New mathematical methods

group BO1: Engineering Preprocessing methods group CO1: Mathematics
Implementation technology foundation - >
of combinatorial reconfiguration Implementation technology of combinatorial reconfiguration
for experimental mathematics
Leader: Jun Kawahara Leader: Yoshio Okamoto

https://core.dais.is.tohoku.ac.jp/en/project/project summary/

https://core.dais.is.tohoku.ac.jp/en/project/project_summary/

Members of group B01

Jun Kawahara ZDD

Daisuke lioka Power engineering
Takahisa Toda Model checking
Takehide Soh SAT solver

Akira Suzuki Reconfiguration
Junichi Teruyama SAT complexity
Yu Nakahata ZDD

Takehiro Ito (A01) Reconfiguration

We are developing solvers based on several methods.

/DD

 Zero-suppressed Binary Decision Diagram
* Proposed by [Minato 1993]
« Compactly and efficiently stores a family of sets

famlly of sets

} {1 2,5, 7},{2 3 6},
5,6, 7},{1,4}, {1, 5, 6},
6}, {1,2}, 11,6, 7},

, 1}, 12 ,11,3,4,5, 6},{1 3},

) }’ {) 4’ {3’ 6’ 7}’ {3’ 4’ 7}’ {1}’

(21, (6, 7}, {1,2, 5}, {7}, {2, 5, 7}, {2, 6},
{1 5 7}’ {3 5’ 7}’ {1’ 2’ 6’ 7}’ {2’ 3’ 5’ 6’ 7}’
2,5}, 12,3, 4,6}, {}, 12,3}, {1, 6}, {1, 2, 4},
{2’ 3’ 5’ 7}’ {2’ 3’ 6’ 7}’ {3’ 5’ 6’ 7}’ {1’ 5’ 6}’
{31,{2,6,7},{3,4},{2,4,6, 7}, {1, 2, 3, 4},
{2’ 3’ 5}’ {1’ 2’ 3’ 6’ 7}’ {1’ 2’ 3’ 4’ 6}’ {5’ 7}’
{5}’ {2’ 5’ 6’ 7}’ {1’ 3’ 4’ 6}’ {1’ 2’ 5’ 6}’
{2’ 3’ 4’ 5’ 6}’ {3’ 4’ 5’ 6}’ {3’ 4’ 7}’ {1’ 5’ 7}’
{3,4,5,7}

~ <

J

g

(directed acyclic graph)
ZDD

How to read ZDD

One to one correspondence between a set and root

a path from the rootto| 1 0-arc 1 Larc

- 2\
3

1 1-arc 1 1 1

0-arc 2 2 2 2

3is not 3 3
included

1 L 1 1 o] |1
{ {1}, {2}, {31, {1,2,3}} 0-terminal 1-terminal
family of sets ZDD
I <j

i) :node withlabeli (i) pointsat (j

Features of ZDDs size=n

 The size (the number of non-terminal nodes) of a
ZDD is sometimes exponentially smaller than the
cardinality of the family the ZDD represents.

» Rich ZDD operations: {X]|Xe2tt-mh)
« Extract the sets including (not including) a specified
element
sets including 4
o) {1,2, 5}, Q =
QP {1,4} Q P {1, 4},
g0 {1’ 3’ 4, 7}, o0 {1’ 3’ 4, 7},

i3}, O ——

]

o {4},... {4},...

2

Features of ZDDs

 The size (the number of non-terminal nodes) of a
ZDD is sometimes exponentially smaller than the
cardinality of the family the ZDD represents.

* Rich ZDD operations:
- Extract the sets including (not including) a specified
element

- Set operations (called family algebra by Knuth) union,
intersection, subtract, superset, subset,...

FuUg
F G .
(o) ®) 00
& U] 00
. 3 ¥ e A
{1,2,5}, 1,4}, {1,2,5},
{1,3,4,7},... {1,3,4,7},.. 1,4},
{1, 3,4, 7},...
|F|: size of F Time complexity: 8(|F||G|) Union

practically, in many cases, in proportion to |F| + |G|

Features of ZDDs

 The size (the number of non-terminal nodes) of a
ZDD is sometimes exponentially smaller than the
cardinality of the family the ZDD represents.

* Rich ZDD operations:

- Extract the sets including (not including) a specified
element

- Set operations (called family algebra by Knuth) union,
intersection, subtract, superset, subset,...

« Count the number of sets in the family
« Uniformly random sampling
« Obtain the K lightest/heaviest sets

Recursive structure of ZDD

* Let ¢; be the node pointed at by i-arc of the root.

« We can regard nodes reachable from ¢; as a ZDD.

root This ZDD represents the family of
sets not including 1.

0-arc 1 1-arc
“(2) (2)7 “(2
3 3
0o |1 o [1 P
{12113} { 121,13} }

1511, 2,3F |}

{

Recursive structure of ZDD

* Let ¢; be the node pointed at by i-arc of the root.

« We can regard nodes reachable from ¢; as a ZDD.

root This ZDD represents the family of
setsincluding 1. (but1isremoved)

0-arc 1 1-arc
C C
) 2) " 2) "
3 3
ZDD
0 1 1
1f
{2}, {3}, cachset

1h11,2,3} t i 12,3} }

Recursive structure of ZDD

« We can decompose the family into two families of
sets not including 1 and including 1.

We introduce U (join) operation

rOOtl AUB={AUB|A€eA,BEB}
0-arc 1-arc I < {0, (2,31} = { {1}, 11,2, 31}
2 2 2 2
3 3 3
0 1 0 1 1

111512},13511,2, 31 = 112}, {3}} U {1} uiih {2, 3}

Recursive structure of ZDD

* In general,
X
—>
ZO Zl ZO

ZDD 2 ZDD Z,
representing representing
family F family 7,

T — ‘7:0 U

Fo={F|FeEF,x¢&F)}
Fi={F\{x} |FEF,x€EF}

Z

ZDD Z;
representing
family 7,

{{X}} L Fy

. : [Bryant 1986],
Intersection operation of two ZDDs S e

* Algorithm for computing the intersection of two families as ZDDs

i1}, 12}, 135,11, 2, 3} N {1411, 2},11, 2, 3}}
= 11} 11,2, 3}}

. : [Bryant 1986],
Intersection operation of two ZDDs S e

* Algorithm for computing the intersection of two families as ZDDs

i1}, 12}, 135,11, 2, 3} N {1411, 2},11, 2, 3}}
= 11} 11,2, 3}}

Idea: use the recursive structure of ZDDs
Let Intersec(P,Q) = P N Q.

P, 9, Intersec(P,, Qo)
not including 1 not including 1 not including 1
{1 Py {1u 91 {1}} U Intersec(Py, 94)
including 1 including 1 including 1

P Q Intersec(P, Q)

. : [Bryant 1986],
Intersection operation of two ZDDs S e

. . . . We use the same symbol for
» Algorithm for computing the intersection family and its ZD)IID as P, Q.

1 1 1
Intersec(P;, 94)
P, P, Qo Q4 Intersec(Py, Qo)
recursive recursive
call call

P, 9, Intersec(P,, Qo)
not including 1 not including 1 not including 1
{1ju Py {1}u 94 {{1}} U Intersec(Py, 94)

including 1 including 1 including 1

P Q Intersec(P, Q)

. : [Bryant 1986],
Intersection operation of two ZDDs S e

* Algorithm Intersec(P, Q) 0Ol |1 {0}

. . famil

IfPis|{0 orQis |0/, return 0|. Ci,rr?;izting
0-terminal only of
. . emptyset

fPis|l andQis|1l|, return|l|.
1-terminal

Assume that the labels of roots of ? and 0 are x.

co < Intersec(Py, Qo) c

c; < Intersec(Py, Q1) X

Create node ¢ with label x. w0 -

Make i-arc of ¢ point at ¢;. Interséc(®,, 0,)

Return c. Intersec(Py, Q,)

Construction of a ZDD for independent sets
See e.g. [Knuth 2011].
« Given a graph ¢ = (V,E), we can constructa ZDD

representing all the independent sets of G.

[:
Vq all independent sets
(%) v {@, {vl }, {UZ }, {US }; {U4_}, {v1; U4}, {Uz, US}}
4
1 all the sets including at most one of i and
2, @ X, ={X|Xxe2®-"i¢XorjeX)}
3 0 By just computing
{u,v}ee

1

X1 2 we obtain the ZDD.

Once the ZDD is constructed, we can easily enumerate all the elements.

Construction of a ZDD for independent sets
See e.g. [Knuth 2011].
« Given a graph ¢ = (V,E), we can constructa ZDD

representing all the independent sets of G.

(%1

Vq all independent sets
(%) {@, {vl }, {UZ }, {US }1 {U4_}, {v1; U4}, {Uz, US}}

Uy

[Hayase-Sadakane-Tani 1995] designed a more efficient algorithm
for constructing the ZDD (omitted).

Enumeration to reconfiguration

 Since we have all the independent sets as a ZDD,
we expect that it can be used for solving
reconfiguration problems.

Reconfiguration using ZDD

-~ %K\\ \\\

E//K
i ¥, S 6 K

\

/

independent sets independent sets obtained by
represented as a ZDD one step of TJ (token jumping)

We want to constructa ZDD
representing it.

21

Reconfiguration using ZDD
~ g%@ E\\ N
ey
I L
Ny e D Y,

independent sets independent sets obtained by
represented as a ZDD one step of TJ (token jumping)
F swap(F,V) N Fqy
We define

swap(F,A):={ FU{vj\{v'} | FEF, v F,veAv €F}.
but, swap(F, A) includes not independent sets.

Let F., be the family of all the independent sets of G. :

2

Our resu lt published only in a domestic conference

» Given a family F of sets as a ZDD, we design
algorithms for constructing the following ZDDs.

swap(F,A) ={FU{v}\{v'}IFEF,veE F,ve A v €F}
remove(F) ={F\{v} | FEF,vEF}
add(F,A) ={Fu{v} |[FEF,vé&F,veA}

How to construct a ZDD for remove
remove(F) ={F\{v} |FEF,veEF}

{v,y, 14} {va} (v} {vz,vs} {ve v7}
not including v, notincluding v,
{V1, V3, U5} {vi,v3} {vy,vs}
{Ul’ Ve, U7} {171, v6} {Ul, v7}
including v, including v,

F remove(F)

How to construct a ZDD for remove
remove(F) ={F\{v} |FEF,veEF}

{v,y, 14} ~{ve} (v} {vz,vs} {ve v7)

\ /
not including v, /mc'luding vy

avs) = (v} {v5)

{{vl}} B — V1
V6, V7} \\\‘_‘=/{V’g},/,{v7}
including v, including v,

F remove(F)

25

How to construct a ZDD for remove
remove(F) ={F\{v} |FEF,veEF}

—

remove(Fq) F;
Fo
Vo, U v v Va, U Ve, V
avd w2}) (avs) (vev)
not including v, /mc'ludingv1
,, /
wavs} s} (s}
{{vl}} - {v v } — V1S, {v } {v } \
"7y — 7 Wes L, 1¥7iremove(F,
including v, including v,
F remove(F)

26

How to construct a ZDD for remove
remove(F) ={F\{v} |FEF,veEF}

Fo {V2, 04}

not including v,

{v3,v5} 1

{U6, U7}

{{U1}} L

including v,

rpmnVP(‘Fn\ F;

j:'

U2} {V4} {V3, Us} {V6;V7}

notincluding v,

s} Vs)

Wel . (W7} remove(F,)
including v,

{{771}} H

—

remove(F)
remove(@) = @

U1
remove({@}) = @

F; U remove(F,)
remove(F;)

recursive call recursive call

How to construct a ZDD for add
add(F,A) ={Fu{v} |[FEF,vé&F,veA}

Consider only the case where v, is the smallest element in A.
V1 %1

add(Fo, A\{v1}) Fo U add(F;, A\ {v})

recursive call recursive call

add(,4) = 9
add(19}, 4) = {{v} | v € 4}

How to construct a ZDD for swap

swap(F,A) ={FU{v}\{v'}IFEF,ve& F,veAv' € F}

Consider only the case where v, is the smallest element in A.
V1 %1

swap(Fo, A\{v1}) swap(F, A\ {v})
F, F,\ Y add(F/A \{v.}) U\remove(F,)

recursive call recursive call

swap(0,A4) = @
swap({0},4) = @

Slide operation for TS (token sliding)

slide(F,A) ={FU{vi\{v'}IFEF,ve F,veEAv €F,
, . {vyv'} EE}
v

K N(v): the set of neighbors of v

Consider only the case where v, is the smallest elementin A.
%] %1

slide(F,, A \ {v1}) slide(Fy, A\ {v1})
F, F,\ U add(F;,N(v1)) , U remove(Fy, N(v1))

recursive call recursive call

Algorithm for the independent set
reconfiguration problem

breadth-first search

 Let F,, be the set of all the independent sets of G.
« Let S and T be aninitial and goal sets.

e Foe—{S} i1

* Fi « swap(Fi_1, V) N Fsq1 \ Fi_y

all the sets remove past sets (for efficiency)
obtained by .
one step extract only independent sets

« If F; is empty, output “No reconf sequence from StoT”

« If T € F;, output “There is a reconf sequence from StoT
with length i.”

* [« i+ 1,and continue.

Experimental results

Surfnet graph in the Internet topology zoo [Knight+ 2011]
independent set reconfiguration, TJ,

The initial/goal sets are randomly generated.
V| = 50,

Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step
Step

1

OO O & W IN

9
10
11
12
13
14
15

|E| = 68

time
time
time
time
time
time
time
time
time
time
time
time
time
time
time

S

S O O OO OO OO OO0

.000093,
.000383,
001711,
.005881,
.016275,
.034983,
.066430,
.124186,
. 207905,
. 294560,
.345743,
.294848,
.180891,
.074440,
.023286,

size
size
size
size
size
size
size
size
size
size
size
size
size
size
size

117

391

984
1981
3298
4785
6150
7184
1757
71735
7097
5921
4461
2987
1731

the number of ZDD nodes of F;

We found the shortest
(15 step) reconf sequence.

Intel(R) Xeon(R) Gold 5215L CPU @ 2.50GHz, memory 1.5TB

Experimental results: unsolved

Columbus graph in the Internet topology zoo [Knight+ 2011]

independent set reconfiguration, TJ,
The initial/goal sets are randomly generated.

|E| = 85

.000210,
001617,
.013077,
.160867,
.456166,
421557,
.316833,

28.

69.
184.
306.

V| =70,
Step 1 time
Step 2 time
Step 3 time
Step 4 time
Step 5 time
Step 6 time
Step 7 time
Step 8 time
Step 9 time
Step 10 time
Step 11 time
Step 12 time
13 time

Step

O NSO

607
7173

091186,
303806,
181911,
821899,

.407846,
472284,

size
size
size
size
size
size
size
size
size
size
size
size
size

201
1292
5234

16242
42007
95135
192958
356404
606360
958185
1413044
1949045
2517807

the number of ZDD nodes of F;

Unfortunately, the ZDD-
based solver sometimes
cannot solve instances with
only 70 vertices.

growing

Intel(R) Xeon(R) Gold 5215L CPU @ 2.50GHz, memory 1.5TB

Unsolved instances

 The ZDD-based solver cannot solve instances with
many vertices but having a trivial solution.

very large graph but the goal set
initial set consisting of
one vertex

The ZDD-based solver first construct the ZDD representing all
the independent sets, which consumes a lot of memory/time.

Experimental results

Instances used for proving PSPACE-completeness of the shortest path
reconfiguration problem (translated to the independent set problem)

in [Kaminski-Medvedev-Milani¢ 2011].

K | |V |E| |time [s] Reconf sequence

o 117 738 15.58 5621
100 130, 822 40.66 11253
11 143 906 109.82 22517
12| 156 990 291.01 45045
13 169 1074 750.74 90101
14 182 1158 1874.71 180213
15| 195 1242 4605.52 360437
16f 208/ 1326 11584.92 720885
17 221] 14100 28253.64 1441781
18 234 1494 70350.16 2883573
19 247 1578 175842.90 5767157

The sizes of
intermediate ZDDs are
at most 15,000.

The number of candidates
is small but the length of
the sequenceis very long,
so breadth-search is
efficient.

The ZDD-based solver
excels such a type of
instances.

Intel(R) Xeon(R) Gold 5215L CPU @ 2.50GHz, memory 1.5TB

Core Challenge

« Our projectis organizing a programming
competition, called “Core Challenge.”

« The 1stchallenge is the independent set

reconfiguration problem.
Submission closed

Core Challenge 2022 Hom:

The Independent Set Reconfiguration (ISR) Problem
. A ZDD.-based solvgr has been
submitted, and will be

two independent sets of G: start state I, and target state I; where |I,| = |I}| holds.

' Dum:tsttence (yes or no) of a reconfiguration se uration rule Co m p a red W i t h Ot h e r So lve rS *

(token jump).

Suppose that a token is placed on e ertex in an independel

Areconfigura

The results are being compiled.
A ZDD-based solver is slower than
Example of input OtherS for many inStanceS...?

« undirected graph G
V ={1,2,3,4,5,6,7}

S| om tk
The length of a reconfigu

E={{1,2},{1,3},{2,7},{3,4},{3,5}, {4,6},{5,6}}
« start state [, = {3,6,7}
« target state Iy = {4,5,7}

Itis illustrated as follows.

e :*re o ® %

Generalization of the algorithm

 Let F,, be the set of all the solutions.

« Let S and T be an initial and goal solutions.
e Foe—{S} i1

* Fi < swap(Fi_1, V) N Fgo1 \ Fiy

all the sets remove past sets (for efficiency)
obtained by .
one step extract only solutions

« If F; is empty, output “No reconf sequence from StoT”

« If T € F;, output “There is a reconf sequence from StoT
with length i.”

* [« i+ 1,and continue.

TAR (token addition and removal)

« ZDD for “n choose at least k”

1 Uy, = (X | X € 201 |X]| > k)

example of “4 choose at

3 3 3 least 2”

4 4 4 the number of

/ taken elements
0 1

0 ol 21 31
Actually, the ZDD has exactly one 0- and 1- terminals.
By taking the intersection of U, and F;, we can impose the
constraint that every feasible solution has at least k elements.

Using add and remove with the above solution space ZDD,
we can solve the TAR model.

/ZDDs we can construct

« We can construct ZDDs for the family of...
« Independent sets
 Cliques
 Vertex covers
« Dominating sets
« Hitting sets [Knuth 2011]

Our algorithm can solve the reconfiguration versions
of these problems by constructing ZDDs representing
the family of the above target sets as the solution
space ZDD.

Set of subgraphs

« Fixing an input graph G, we regard an
edge set as a subgraph.
ex.) s-t paths

CL0ec
Ceféf << >
e4 6 o,
{ell eS} {ell e3/ e4l e6}
Cf\j/ << >

{€y, €3, €5} 1€y, €4, €5}

Set of subgraphs

« Fixing an input graph G, we regard an
edge set as a subgraph.
ex.) s-t paths

el Le
Ce}fézsﬂ N ">
eq 0 ®
{€1,eg) {eq, €3, €4, €5} E> GG

5 ONCRORO

1€, €3, €5; 1€y, €y, &g} (&3

» A set of subgraphs can be represented i o
by a ZDD.

ZDD construction: frontier-based search (FBS)
[Sekine et al. 1995], [Knuth 2008], [Kawahara et al. 2017]

» constructs the ZDD representing a set of subgraphs
(e.g., s-t paths)
* in a top-down manner

by pruning and sharing nodes
ex.) s-t paths

R
@ @
ﬁ ey ey i

pruning pruning

ZDD construction: frontier-based search (FBS)
[Sekine et al. 1995], [Knuth 2008], [Kawahara et al. 2017]

» constructs the ZDD representing a set of subgraphs
(e.g., s-t paths)
* in a top-down manner

by pruning and sharing nodes
ex.) s-t paths

R
@ @
- i

pruning pruning

fro,ntle@ g (8g (o) fro_ntler

: €5 . ? o
S) isolated | isolated

‘e
.
.
‘e
.

ZDD construction: frontier-based search (FBS)
[Sekine et al. 1995], [Knuth 2008], [Kawahara et al. 2017]

» constructs the ZDD representing a set of subgraphs
(e.g., s-t paths)
* in a top-down manner

by pruning and sharing nodes
ex.) s-t paths

R
@ @
= @ @ i

pruning pruning

‘ ‘ ‘ ‘fro,ntler

hanng

L |solated |

ZDD construction: frontier-based search (FBS)
[Sekine et al. 1995], [Knuth 2008], [Kawahara et al. 2017]

« constructs the ZDD in a top-down manner

resulting ZDD

0-arc (€1 l-arc
Q) Q)
)

@ @:5> @—Q » {ell eS} {e]_l e3l e4/ e6}

¢ hediced
0 1] {€y, €3, e} {€y €4, €5}

Families of subgraphs

« We can construct ZDDs for various kinds of

subgraphs.

Subgraphs treated by
[Sekine+ 1995][Knuth 2011]
[Kawahara+ 2017]

s-t paths

cycles

trees, forests

spanning trees

Steiner trees

matchings

degree constrained graph

N _/

The ZDD solver can solve the above
subgraph reconfiguration problems.

Characterized by forbidden

chordal graphs
interval graphs

-

proper interval graphs |

/ subgraphs [Kawahara+ 2019]

~

Y

/

Characterized by

\J

4 forbidden minors \
[Nakahata+ 2020]
planar graphs cactus
outer planar graphs
series parallel graphs y

Application: Ball sort puzzle

We can move a ball to an empty bin or on a ball with the same color.

Initial placement

| v r ! —
3 (3 (& 3 @@ a2

%@EE 8880 82888° 2324
Ij 5

N

S

> 4) 3) > (1
@) (@ 10@@ 3 o

Goal:
All the balls in each bin
have the same color.

The numbers of balls represent just colors.

/ 1V > cs > arXiv:2202.09495

Computer Science > Computational Complexity

[Submitted on 19 Feb 2022]

Sorting Balls and Water: Equivalence and Computational Complexity

Takehiro Ito, Jun Kawahara, Shin-ichi Minato, Yota Otachi, Toshiki Saitoh, Akira Suzuki, Ryuhei Uehara, Takeaki Uno, Katsuhisa
Yamanaka, Ryo Yoshinaka TO appear in FU N 2022

Application: Ball sort puzzle

We can move a ball to an empty bin or on a ball with the same color.

v | |

3 1
1k $§%iig’ézﬁﬁ {
1 (1) (4) @) (& (2 @ @ 4) (4
In

Initial placement

full
i

ol ol o) - 1 ; E
1 4 3 >
@) @ 12 @@ @

The numbers of balls represent just colors. Goal: . .
All the balls in each bin
have the same color.

Complexity [Ito+ 2022]

Deciding whether a reconf sequence exists or not: NP-complete.

Polynomial solvable if the capacity of bins h = 2, the number of colors is n.
Relation between the number of empty bins and solvability.

Construction of solution space ZDD

We represent the placement of balls as a set.

V: There is a ball with color k at the j-th
l

Y (Y (,J,C position (from the bottom) in the i-th bin.
:1,) i Let X; ; . be the family of all the sets
3 (&) 3 including v, ; . .

Let X ; . be the family of all the sets
not including v; ; . .

V111, V121,
Xije={{vijcuX|XSU\{wc})}
V212, V222, V233, X =2U_ y.
l,],C l,],C

U314, V323, V331,

V414,V424, V432,
Vs13}

Construction of solution space ZDD

We represent the placement of balls as a set.

. There is a ball with color k at the j-th
l

’ Y ¢ ,J,C position (from the bottom) in the i-th bin.
] % ﬁ Let X; ; . be the family of all the sets
i @ 2 3 including v, ; . .

Let X ; . be the family of all the sets
not including v; ; . .

‘xl]C_{{ULJC}UX|XCU\{ULJC}}

{V111, V121,

V212, V222, V233, Xl,c—ZU X, e
U314, V323, V331, i) At most one ball exists at the same place.
V414, V424, U432; set obtained by
U513} {choosmg at most one of Vi j, 1, Vi j2» }
(and other elements arbitrarily)

(ii) If a ball exists at positionj (= 2), a ball exists at positionj — 1.

ﬂ le]c = UXL] 1,c

j=2,0 ¢

Construction of solution space ZDD

We represent the placement of balls as a set.

There is a ball with color k at the j-th

, ‘Y Vi ,J,C position (from the bottom) in the i-th bin.
>04 2 Let X; ; . be the family of all the sets
D Q3@ includi
1 @ 2 3 including v, ; . .

Let X ; . be the family of all the sets
not including v; ; . .

V111, V121
‘Xl]C_{{ULJC}UX|XCU\{ULJC}}
U212, V222, V233, .. =2U _ .
i,j,c i,j,c

U314, V323, V331, (iii) There are exactly h balls with the same color.

VUa14, V424, V432, ﬂ set obtained by V11,00 V1,2,cr -
choosing exactly hof V3 1 ¢, V22 ¢y -+
Vs13} c c

(and other elements arbitrarily)

By taking the intersection of (i), (ii), (iii), we obtain the solution space ZDD.

51

One-way ball move operation

We can move a ball to an empty bin or on a ball with the same color.

I Y | Y

a2 > D 2
= 1 = [
%%gg "BERd e %ggé

This restriction of the movement cannot be represented by imposing the
solution space (ZDD).

@)

V
A

) e A%

The ball placement is still valid even if we move a ball on another ball
with a different color.

ZDD operation of the one-way ball move

Determine the order of ZDD variables so thatv; ; . < v; ;1.

(The order of other variables is arbitrary.)

bmove(F,A) ={FU{v}\{vV'}IFEF,ve F,ve A v €F}

and satisfying the move condition

We consider only the case where v; ; . is the smallest in A.

caseofj =1

Vijc Vijc
bmove(TO,A \ {vi,j,c}) bmove(ﬂ-"l,A \ {vi,j,c})
U add(Fy, 4\ {vl-jc}) U remove(F,)
Fo Fi .

recursive call recursive call

same as swap

ZDD operation of the one-way ball move

Determine the order of ZDD variables so thatv; ; . < v; ;1.

(The order of other variables is arbitrary.)

bmove(F,A) ={FU{v}\{vV'}IFEF,ve F,ve A v €F}

and satisfying the move condition

We consider only the case where v; ; . is the smallest in A.

caseof j > 2 Vijc
bmove(Fo, A\ {v;})
U add(Fy, A\ {(v;c})
TO Tl

Vijc
bmove(Fy, A\ {vi,j,c})

U onset(remove(Fy), v; j—1 ¢)

recursive call recursive call
onset(F,v) ={F € F |v € F}

Ball sort puzzle solver

 Let F,, be the set of all the feasible placements.
 Let S be an initial placement.

e Foe—{S} i1

* F; « bmove(F;_1,V) N Fqy

We need not remove past sets.

all the sets

obtained by .
one step extract only feasible placements

« If F; is empty, output “no reconf sequence”

 If F; N Fgoa1 # @, output “There is a reconf sequence from

o i -'|-|r‘\ i »
S to a goal with length, (ZDD for) the family of all

- i < i+ 1, and continue. the goal placements.

The reverse operation of bmove

« We can consider the reverse operation of bmove.

» To perform the reverse operation to Fg,

repeatedly, we can construct the ZDD representing
the family of all the placements.

- It enables to enumerate the instances of the puzzle.
« We can obtain an instance with the longest sequence.

 Using a feature of ZDDs, we can sample an instance
uniformly at random.

Python interface

« We are developing a Python interface for

reconfiguration problems.

3 x 3 grid

vertices = [1, 2, 3, 4, 5, 6, 7, 8, 9]

edges = [(1, 2), (1, 4), (2, 3), (2, 5),
(3, 6), (4, 5, (4, 7, (5, 6),
(5, 8, (6, 9, (7, 8), (8, 9]

Sets ZDD variables
setset.set_universe(vertices)

Computes (the ZDD for) all the independent sets
iss = reconf.get_independent_setset(vertices, edges)

s = {2, 4, 6} # initial set
t = {1, 6, 8} # goalset

Obtains a reconf sequence (support TJ, TS, TAR)
seq = reconf.get_reconf_seq(s, t, iss) will be published soon...

for x in seq:
print (x) 57

SAT-based solver

« SAT-based solver

 You can use the SAT-based solver from Web (but
large graph cannot be solved).

pl: Gi our in: ce. : (Timeou : View
ite it in the textbox 20 sec.). prev] [(Next! [Auto] | Download SVG
B, fil
Select In:
12 i
3 E .
y Iving... Tirme
Optional: Draw your instance.
Draw Insta t [Target

https://israpp.herokuapp.com/

58

https://israpp.herokuapp.com/

Software with GUI

« We are also developing software with GUI.

(support

@ x1v Ry — |

p 5174 — Cose v

@ Edit

€56 t z Nest @ LnERIFY
24 o s
el7) -)
) mATEEE | 177 A5 S
e 6 8 "8 ! '): ¢ NodedO Noded:
s » Nodeds
AN
el9 ¢ e 2 .
K o Y Nodé37
"OPEN | RUN > ‘e v Nodedd ‘Noded2
OPEN RUN . Hode34
Node3?” | noadh
B NoaoT Nadkte Node3®
[Nodeas
® Node2Bhoge25 Nede2? 3
Nodgcs Node3pNadedd Nodes0
* Noged5
NidoP2 Modepd Noddhs
Node24 Nodd 30 Nodk51
Wode1s |
Noge1s Nodezs
Node13 MNoge21
posezo
Node12 Nodey7
NodefB Wode 15
Modes Node10,
-y - < Nde14
B 0 ot Node11
-y ylsgsr Nodstd Nogle?
oy Mogies
5 g b N Nadel
y Nodes
Nogez
nos2p ‘
todad
Node3
" g1
Nogs o2 .
OUS 0/177 MEXT
e
o .
Nodsfs -
sk
Nk
Nodk1s

indows/Mac/Linux)

al13isn
131516 18
2026 28 30
31333541
43454648
50
alieén
131516 18
2026 28 30
31333541
43454648
50
al14611
131516 18
20262830,

will be published soon...

COﬂClUSiOn The paper will be published soon.

« We introduced ZDD representing the family of sets.
- Compressed representation
 Rich set operations

« We proposed a ZDD-based solver for various
reconfiguration problems.

« Constructing the ZDD for the set of feasible solutions.

 Desinging one-step operations such as remove, add,
swap, bmove,...

» breadth-first search

« The analysis of the algorithm is proceeding...
« We obtain some results, but we don’t introduce it.

* It seems difficult to improve ZDD operations.
. quite simple
 Further experiments are needed.

