Non-negativity of a local classical solution to the Relativistic Boltzmann Equation without Angular Cut-off

Robert Strain (University of Pennsylvania) with collaborator: Jin Woo Jang (POSTECH).

$10.1007 / \mathrm{s} 00220-021-04101-2$ and $10.1007 / \mathrm{s} 40818-022-00137-2$
and "In Preparation"
Banff International Research Station for Mathematical Innovation and Discovery (BIRS),
Recent Progress in Kinetic and Integro-Differential Equations, Monday, November 07, 2022.

The relativistic Boltzmann equation

$$
\partial_{t} F+\frac{p}{p^{0}} \cdot \nabla_{x} F=Q(F, F), \quad x \in \Omega, \quad p \in \mathbb{R}^{3}, \quad t \geq 0
$$

- $F=F(t, x, p)$: probability density in (position, velocity)
- $\Omega \subset \mathbb{R}^{3}$: domain in space
- $\frac{p}{p^{0}} \cdot \nabla_{x} F$: free transport term
- $p=\left(p^{1}, p^{2}, p^{3}\right) \in \mathbb{R}^{3}, p^{\mu}=\left(p^{0}, p\right)$ where $p^{0}=\sqrt{1+|p|^{2}}$ is the energy of a relativistic particle with momentum p.
- $Q(F, F)$ is the, local in (t, x), "collision operator":

$$
Q(f, h)=\int_{\mathbb{R}^{3}} d q \int_{\mathbb{S}^{2}} d \omega v_{\phi} \sigma(g, \theta)\left[f\left(p^{\prime}\right) h\left(q^{\prime}\right)-f(p) h(q)\right]
$$

where $v_{\phi}=v_{\phi}(p, q)$ is the $\mathrm{M} \phi$ ller velocity given by

$$
v_{\varnothing}(p, q)=\sqrt{\left|\frac{p}{p^{0}}-\frac{q}{q^{0}}\right|^{2}-\left|\frac{p}{p^{0}} \times \frac{q}{q^{0}}\right|^{2}}=\frac{g \sqrt{s}}{p^{0} q^{0}} .
$$

Quantities in the collision operator

The post-collisional momentum are written for $\omega \in \mathbb{S}^{2}$ as

$$
\begin{aligned}
& p^{\prime}=\frac{p+q}{2}+\frac{g}{2}\left(\omega+(\xi-1)(p+q) \frac{(p+q) \cdot \omega}{|p+q|^{2}}\right) \\
& q^{\prime}=\frac{p+q}{2}-\frac{g}{2}\left(\omega+(\xi-1)(p+q) \frac{(p+q) \cdot \omega}{|p+q|^{2}}\right)
\end{aligned}
$$

where $p^{0}=\sqrt{1+|p|^{2}}$ and $q^{0}=\sqrt{1+|q|^{2}}, \xi=\frac{p^{0}+q^{0}}{\sqrt{s}}$. The scattering angle, $\cos \theta$, is defined as

$$
\cos \theta=1-2 \frac{g\left(p, p^{\prime}\right)^{2}}{g(p, q)^{2}}
$$

Known to be a well defined angle. The relative momentum g is

$$
g=g(p, q)=\sqrt{2\left(p^{0} q^{0}-p \cdot q-1\right)} \geq 0
$$

And $s=g^{2}+4$.

Hypothesis on the collision kernel

$$
\sigma(g, \theta)=\Phi(g) \sigma_{0}(\theta), \quad \Phi(g) \geq 0, \quad \sigma_{0}(\theta) \geq 0
$$

where

$$
\Phi(g)=C_{\Phi} g^{\rho}, \quad C_{\Phi}>0
$$

Additionally $\theta \mapsto \sigma_{0}(\theta)$ is not locally integrable:

$$
\sigma_{0}(\theta) \approx \theta^{-2-\gamma}, \quad \gamma \in(0,2), \quad \forall \theta \in(0, \pi / 2]
$$

We allow that

$$
-\frac{3}{2}-\gamma<\rho<2
$$

where $\rho+\gamma \geq 0$ are called hard potentials, and $\rho+\gamma<0$ are called soft potentials.

- This full set of physical assumptions on the collision kernel proposed by Dudynski and Ekiel-Jezewska in 1988 in CMP.
- This collision kernel makes the relativistic Boltzmann equation into a non-local fractional diffusion equation.

Examples of relativistic kernels from physics literature

M ϕ ller Scattering: de Groot, van Leeuwen, van Weert (1980).

This is an approximation of electron-electron scattering.

$$
\sigma=r_{0}^{2} \frac{1}{u^{2}\left(u^{2}-1\right)^{2}} \frac{\left(2 u^{2}-1\right)^{2}}{\sin ^{4} \theta}-\frac{2 u^{4}-u^{2}-1 / 4}{\sin ^{2} \theta}+\frac{1}{4}\left(u^{2}-1\right)^{2},
$$

where $u=\frac{\sqrt{s}}{2 m c}$ and $r_{0}=\frac{e^{2}}{4 \pi m c^{2}}$.
Israel, J. Math. Phys. (1963)

$$
\sigma=\frac{m}{2 g} b(\theta)
$$

Other example kernels such as Short range interactions, Compton Scattering (de Groot, van Leeuwen, van Weert (1980)), and Neutrino Gas (Dijkstra, van Leeuwen (1978)).

Relativistic Maxwellian equilibrium: Jüttner Solutions

The equlibrium states are characterized as a particle distribution which maximizes the entropy subject to constant mass, momentum, and energy. They are given by

$$
J(p)=\frac{e^{-\frac{c 0^{0}}{k_{B} T}}}{4 \pi c k_{B} T K_{2}\left(\frac{c^{2} T}{k_{B} T}\right)},
$$

where k_{B} is Boltzmann constant, T is the temperature, and K_{2} stands for the Bessel function $K_{2}(z)=\frac{z^{2}}{2} \int_{1}^{\infty} d t e^{-z t}\left(t^{2}-1\right)^{\frac{3}{2}}$.

The Jüttner solution with normalized constants is

$$
J(p)=\frac{e^{-p^{0}}}{4 \pi}
$$

(short incomplete) list of Relativistic Boltzmann results

- Bichteler (1967 local wellposedness for a bounded cross-section)
- Dudyński and Ekiel-Jeżewska (1988-89 L² solutions to linearized equation)
- Glassey and Strauss (1993 smooth solutions on \mathbb{T}^{3} for the hard potentials)
- Glassey and Strauss (1995 whole space result for hard potentials)
- Strain (2010 global existence and stability for soft potentials, \mathbb{T}^{3})
- Strain (2010 global Newtonian limit near vacuum)
- Speck and Strain (2011, Hilbert expansion to relativistic fluids)
- Guo and Strain (2012 two-species Vlasov-Maxwell-Boltzmann near eq.)
- Strain and Zhu (2012 soft potentials in \mathbb{R}^{3})
- Lee and Rendall (2013 global existence for spatially homogeneous and hard potentials, both Minkowski and Robertson-Walker spacetime)
- Duan and Yu (2017 global existence and stretched exponential decay for soft potentials, \mathbb{T}^{3})
- Wang (2018, initial smallness in $L_{x}^{1} L_{p}^{\infty}$ and mass, energy, entropy)
- Nishimura (2018, initial smallness in $L_{x}^{\infty} L_{p, l o c}^{1}$ and mass, energy, entropy)
- Bae, Jang, and Yun (2021, global wellposedness for quantum statistics)
- Jang and Strain (2022, global wellposedness without angular cutoff)

The (Newtonian) Boltzmann equation (1872)

$$
\partial_{t} F+v \cdot \nabla_{x} F=Q(F, F), \quad x \in \Omega, \quad v \in \mathbb{R}^{3}, \quad t \geq 0
$$

- $\Omega \subset \mathbb{R}^{3}$: domain in space
- $v \cdot \nabla_{x} F$: free transport term
- $Q(F, F)$: collision operator, local in (t, x), quadratic operator

$$
Q(F, G)(v)=\int_{\mathbb{R}^{3}} d v_{*} \int_{\mathbb{S}^{2}} d \sigma B\left(v-v_{*}, \sigma\right)\left[F\left(v_{*}^{\prime}\right) G\left(v^{\prime}\right)-F\left(v_{*}\right) G(v)\right]
$$

- Pre-post collisional velocities $\left(v, v_{*}\right)$ and $\left(v^{\prime}, v_{*}^{\prime}\right)$ satisfy

$$
\begin{aligned}
& v^{\prime}=\frac{v+v_{*}}{2}+\frac{\left|v-v_{*}\right|}{2} \sigma, \\
& v_{*}^{\prime}=\frac{v+v_{*}}{2}-\frac{\left|v-v_{*}\right|}{2} \sigma .
\end{aligned}
$$

Newtonian "cancellation lemma"

Collision kernel: $B\left(v-v_{*}, \sigma\right) \approx\left|v-v_{*}\right|^{\alpha} \theta^{-2-\nu}$ for $\alpha>-3$ and $\nu \in(0,2)$. Alexandre-Desvillettes-Villani-Wennberg (2000):

$$
\begin{gathered}
\int_{\mathbb{R}^{3}} d v \int_{\mathbb{S}^{2}} d \sigma B\left(v-v_{*}, \sigma\right)\left(F\left(v^{\prime}\right)-F(v)\right)=(F * S)\left(v_{*}\right) \\
S(z)=C_{3}|z|^{\alpha}, \quad 0<C_{3}<\infty
\end{gathered}
$$

This holds for a general class of functions $F(v)$. This is based upon the change of variables $v^{\prime} \rightarrow v$ with Jacobian determinant

$$
\left|\frac{d v^{\prime}}{d v}\right|=\frac{1}{4}(\cos (\theta / 2))^{2} \geq \frac{1}{8}>0 \quad\left(0 \leq \theta \leq \frac{\pi}{2}\right)
$$

This was a big part of the foundation for estimates of the non-local fractional diffusion of the Newtonian Boltzmann equation.

Newtonian "cancellation lemma" in general

- Consider the difference

$$
u=\vartheta v^{\prime}+(1-\vartheta) v, \quad \vartheta \in[0,1]
$$

- The change of variable $u \rightarrow v$ has Jacobian determinant:

$$
\left|\frac{d u}{d v}\right|=\left(1-\frac{\vartheta}{2}\right)^{2}\left\{\left(1-\frac{\vartheta}{2}\right)+\frac{\vartheta}{2} \cos \theta\right\} \geq\left(1-\frac{\vartheta}{2}\right)^{3}>0
$$

$$
\text { since } \cos \theta \geq 0 \text { on } 0 \leq \theta \leq \pi / 2
$$

- Various versions of this change of variables has served as the foundation for virtually all estimates of the non-local fractional diffusion for the Newtonian Boltzmann equation.
- We show in the special relativistic situation that this analogous change of variables is generally not well defined.

Relativistic Carleman representation

For $G=G\left(p, q, p^{\prime}, q^{\prime}\right)$ we have

$$
\begin{array}{r}
\int_{\mathbb{R}^{3}} \frac{d q}{q^{0}} \int_{\mathbb{R}^{3}} \frac{d q^{\prime}}{q^{\prime 0}} \int_{\mathbb{R}^{3}} \frac{d p^{\prime}}{p^{\prime 0}} s \sigma(g, \theta) \delta^{(4)}\left(p^{\prime \mu}+q^{\prime \mu}-p^{\mu}-q^{\mu}\right) G \\
=\int_{\mathbb{R}^{3}} \frac{d p^{\prime}}{p^{\prime 0}} \int_{E_{p^{\prime}-p}^{q}} \frac{d \pi_{q}}{8 \bar{g} q^{0}} s \sigma(g, \theta) G
\end{array}
$$

where G has a sufficient vanishing condition so that the integrals are well-defined. Here $E_{p^{\prime}-p}^{q}$ is the two-dimensional hypersurface for relativistic collisions which is defined as

$$
E_{p^{\prime}-p}^{q}=\left\{q \in \mathbb{R}^{3}:\left(p^{\prime \mu}-p^{\mu}\right)\left(p_{\mu}+q_{\mu}\right)=0\right\}
$$

And the measure is defined by

$$
d \pi_{q}=d q u\left(p^{0}+q^{0}-p^{\prime 0}\right) \delta\left(\frac{\bar{g}}{2}+\frac{q^{\mu}\left(p_{\mu}-p_{\mu}^{\prime}\right)}{\bar{g}}\right) .
$$

Here $u(x)=0$ if $x<0$, and $u(x)=1$ if $x \geq 0$. Also $\bar{g}=g\left(p, p^{\prime}\right)$ measures the difference between p and p^{\prime}.

Proof of the lack of a relativistic "cancellation lemma"

Formally write down the following relativistic quantity:

$$
\int_{\mathbb{R}^{3}} d q \int_{\mathbb{S}^{2}} d \omega v_{\varnothing} \sigma(g, \theta)\left(J(q)-J\left(q^{\prime}\right)\right)=\tilde{\zeta}_{1}^{B}(p)-\tilde{\zeta}_{2}^{B}(p)
$$

Here $\tilde{\zeta}_{1}^{B}(p)$ and $\tilde{\zeta}_{2}^{B}(p)$ are written in a relativistic Carleman representation. Recall the relativistic Maxwellian (a Schwartz function) is

$$
J(p)=\frac{e^{-p^{0}}}{4 \pi}
$$

Merely assuming the collision kernel: $\sigma(g, \theta)=$ constant. Then

$$
\tilde{\zeta}_{1}^{B}(p)<\infty, \quad \text { but } \quad \tilde{\zeta}_{2}^{B}(p)=\infty
$$

We conclude that there is no such "cancellation lemma" for the relativistic Boltzmann equation, and this statement is independent of the coordinates choosen. (Jang and S, 2022, Ann. PDE, $10.1007 / \mathrm{s} 40818-022-00137-2)$

Linearization of relativstic Boltzmann equation

We consider the time evolution of perturbations

$$
F(t, x, p)=J(p)+\sqrt{J(p)} f(t, x, p)
$$

The perturbation $f=f(t, x, p)$ evolves via the equation

$$
\partial_{t} f+\frac{p}{p^{0}} \cdot \nabla_{x} f+L f=\Gamma(f, f)
$$

where the non-linear collision operator is

$$
\Gamma(f, h)=J^{-\frac{1}{2}} Q(\sqrt{J} f, \sqrt{J} h)
$$

and the linearized collision operator is given by

$$
L f=-\Gamma(f, \sqrt{J})-\Gamma(\sqrt{J}, f)
$$

Global wellposedness nearby equilibrium without cutoff

Theorem (Jang and S, Ann. PDE (2022))

Fix $N \geq 2$, which represents the total number of spatial derivatives. Fix $\gamma \in(0,1)$. Choose

$$
f_{0}=f_{0}(x, p) \in H_{l}^{N}\left(\mathbb{T}^{3} \times \mathbb{R}^{3}\right)
$$

for any fixed $I \geq 0$ which satisfies the conservation laws.
There is a small $\eta_{0}>0$ such that if

$$
\left\|f_{0}\right\|_{H_{l}^{N}\left(\mathbb{T}^{3} \times \mathbb{R}^{3}\right)} \leq \eta_{0},
$$

then there exists a unique global solution, $f(t, x, p)$, to the relativistic Boltzmann equation which satisfies

$$
f(t, x, p) \in L_{t}^{\infty}\left([0, \infty) ; H_{l}^{N}\left(\mathbb{T}^{3} \times \mathbb{R}^{3}\right)\right) \cap L_{t}^{2}\left((0, \infty) ; l_{l, N}^{\rho, \gamma}\left(\mathbb{T}^{3} \times \mathbb{R}^{3}\right)\right)
$$

Question.

Non-negativity of F ?

Non-negativity and local wellposedness theorems

Theorem (Jang and S, Non-negativity)

Fix an integer $N \geq 2$. Let $F=J+\sqrt{J} f$ be a solution of the relativistic Boltzmann equation under the non-cutoff hypothesis with initial condition $\left\|f_{0}\right\|_{H_{x}^{N} L_{p}^{2}}$ that is sufficiently small. (Such a solution exists locally-in-time by the theorem below.) Suppose $F_{0}=J+\sqrt{J} f_{0} \geq 0$ initially on $\mathbb{T}_{x}^{3} \times \mathbb{R}_{p}^{3}$. Then, we have $F \geq 0$ on $[0, T] \times \mathbb{T}_{x}^{3} \times \mathbb{R}_{p}^{3}$.

Theorem (Jang and S, Local wellposedness)

For any sufficiently small $M_{0}>0$, there exists a time $T_{0}=T_{0}\left(M_{0}\right)>0$ and $M_{1}>0$ such that if $\left\|f_{0}\right\|_{H_{x}^{N} L_{p}^{2}}^{2} \leq M_{1}$, then there exists a unique solution $F=J+\sqrt{J} f$ to the relativistic Boltzmann equation on $\left[0, T_{0}\right) \times \mathbb{T}^{3} \times \mathbb{R}^{3}$ such that

$$
\sup _{0 \leq t \leq T_{0}} \mathcal{M}(f(t)) \leq M_{0}
$$

where the energy norm is defined as

$$
\mathcal{M}(f(t)) \stackrel{\text { def }}{=}\|f(t)\|_{H_{x}^{N} L_{p}^{2}}^{2}+\int_{0}^{t}\|f(\tau)\|_{H_{x}^{N} I_{p}^{\rho, \gamma}}^{2}
$$

Sequence of approximated solutions

- For the proofs of both non-negativity and local-wellposedness, we consider the solution to the Boltzmann equation as a limit of approximate solutions $\left\{F^{n}\right\}_{n \geq 0}$ of the form

$$
\left\{\begin{array}{l}
\partial_{t} F^{n+1}+\hat{p} \cdot \nabla_{x} F^{n+1}=Q\left(F^{n}, F^{n+1}\right) \\
F^{0}(t, x, p)=J(p) \stackrel{\text { def }}{=} \frac{1}{4 \pi} e^{-p^{0}} \\
\left.F^{n+1}\right|_{t=0}=F_{0} \geq 0
\end{array}\right.
$$

- This construction of the sequence of approximated solutions is slightly different from that of Jang-S (Ann. PDE, 2022), and we need a proof for the local existence again using this sequence.
- Want to emphasize that a lot of computations that are "trivial" in the Newtonian case become very serious challenging algebraic and conceptual difficulties in the special relativistic situation.

For the proof of non-negativity

- Fix any $\lambda>0$. Taking a sufficiently large $\kappa>0$ such that $\frac{\lambda}{2 \kappa}>T$, we define for $n \geq 0$

$$
h^{n}(t, x, p)=J_{\kappa}^{-1} F^{n}(t, x, p)
$$

with

$$
J_{\kappa}=J_{\kappa}(t, p) \stackrel{\text { def }}{=} e^{-(\lambda-\kappa t) p^{0}}
$$

- Then a sequence of approximated solutions $\left\{h^{n}\right\}_{n \geq 0}$ satisfies

$$
\partial_{t} h^{n+1}+\hat{p} \cdot \nabla_{x} h^{n+1}+\kappa p^{0} h^{n+1}=\Gamma^{\kappa}\left(h^{n}, h^{n+1}\right)
$$

where

$$
\Gamma^{\kappa}(f, h)=J_{\kappa}(t)^{-1} Q\left(J_{\kappa}(t) f, J_{\kappa}(t) h\right) .
$$

- This uses the maximum principle approach of Alexandre, Morimoto, Ukai, Xu and Yang from (ARMA, 2010)

Main strategy for the proof of non-negativity

- Consider the convex function

$$
\beta(s)=\frac{1}{2}\left(s_{-}\right)^{2}=\frac{1}{2} s\left(s_{-}\right),
$$

with $s_{-}=\min \{s, 0\}$.

- Our goal is to prove $\beta\left(h_{-}^{n+1}\right)=0$ under the following induction hypothesis:
(1) Suppose that there exists a $\lambda>0$ such that, for all $n \in \mathbb{N}$, we have

$$
\sup _{n \in \mathbb{N}}\left\|e^{\lambda p^{0}} F^{n}(t, x, p)\right\|_{L^{\infty}\left([0, T] \times \mathbb{T}_{x}^{3} ; L^{2}\left(\mathbb{R}_{p}^{3}\right)\right)} \leq M
$$

where $M>0$ is independent of n.
(2) Suppose that $F^{n} \geq 0$.

L^{2}-type energy inequality for h_{-}^{n+1}

Obtain with algebraic weight function $\varphi(x)$ that

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}^{3}} \int_{\mathbb{T}^{3}} \beta\left(h^{n+1}\right) \varphi(x)^{-2} d x d p+\kappa \int_{\mathbb{R}^{3}} \int_{\mathbb{T}^{3}} p^{0} \beta\left(h^{n+1}\right) \varphi(x)^{-2} d x d p \\
& \leq \int_{\mathbb{R}^{3}} \int_{\mathbb{T}^{3}} \Gamma^{\kappa}\left(h^{n}, h_{-}^{n+1}\right) h_{-}^{n+1} \varphi(x)^{-2} d x d p \\
&+\int_{\mathbb{T}^{3}} d x \int_{\mathbb{R}^{3}} d p \int_{\mathbb{R}^{3}} d q \int_{\mathbb{S}^{2}} d \omega v_{\varnothing} \sigma(g, \theta) J_{\kappa}(t, q) h_{-}^{n+1}(p) \varphi(x)^{-2} \\
& \times\left(h^{n}\left(q^{\prime}\right) h_{+}^{n+1}\left(p^{\prime}\right)-h^{n}(q) h_{+}^{n+1}(p)\right) \\
&+C \int_{\mathbb{R}^{3}} \int_{\mathbb{T}^{3}} \beta\left(h^{n+1}\right) \varphi(x)^{-2} d x d p \\
& \quad=\mathcal{A}_{1}+\mathcal{A}_{2}+C \int_{\mathbb{R}^{3}} \int_{\mathbb{T}^{3}} \beta\left(h^{n+1}\right) \varphi(x)^{-2} d x d p .
\end{aligned}
$$

Further decompositions

\mathcal{A}_{1} can further be decomposed into $\mathcal{A}_{1}=\mathcal{B}_{1}+\mathcal{B}_{2}$

$$
\begin{aligned}
\mathcal{B}_{1} \stackrel{\text { def }}{=} \int_{\mathbb{T}^{3}} d x \int_{\mathbb{R}^{3}} d p \int_{\mathbb{R}^{3}} d q \int_{\mathbb{S}^{2}} d \omega v_{\phi} \sigma(& g, \theta) J_{\kappa}(t, q) h^{n}(q) h_{\varphi}^{n+1}(p) \\
& \times\left(h_{\varphi}^{n+1}\left(p^{\prime}\right)-h_{\varphi}^{n+1}(p)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{B}_{2} \stackrel{\text { def }}{=} \int_{\mathbb{T}^{3}} d x \int_{\mathbb{R}^{3}} d p \int_{\mathbb{R}^{3}} d q \int_{\mathbb{S}^{2}} d \omega v_{\varnothing} \sigma(& g, \theta)\left(J_{\kappa}\left(t, q^{\prime}\right)-J_{\kappa}(t, q)\right) \\
& \times h^{n}(q) h_{\varphi}^{n+1}(p) h_{\varphi}^{n+1}\left(p^{\prime}\right)
\end{aligned}
$$

New representation and decomposition of \mathcal{B}_{1}

$$
\begin{aligned}
& \mathcal{B}_{1}=-\frac{1}{2} \int_{\mathbb{T}^{3}} d x \int_{\mathbb{R}^{3}} d p \int_{\mathbb{R}^{3}} d q \int_{\mathbb{S}^{2}} d \omega v_{\varnothing} \sigma(g, \theta) J_{\kappa}(t, q) h^{n}(q) \frac{\tilde{s} \Phi(\tilde{g}) \tilde{g}^{4}}{s \Phi(g) g^{4}} \\
& \times\left(h_{\varphi}^{n+1}\left(p^{\prime}\right)-h_{\varphi}^{n+1}(p)\right)^{2} \\
&-\frac{1}{2} \int_{\mathbb{T}^{3}} d x \int_{\mathbb{R}^{3}} d p \int_{\mathbb{R}^{3}} d q \int_{\mathbb{S}^{2}} d \omega v_{\varnothing} \sigma(g, \theta) J_{\kappa}(t, q) h^{n}(q) \\
& \times\left(1-\frac{\tilde{s} \Phi(\tilde{g}) \tilde{g}^{4}}{s \Phi(g) g^{4}}\right)\left|h_{\varphi}^{n+1}(p)\right|^{2} \\
&+\int_{\mathbb{T}^{3}} d x \int_{\mathbb{R}^{3}} d p \int_{\mathbb{R}^{3}} d q \int_{\mathbb{S}^{2}} d \omega v_{\varnothing} \sigma(g, \theta) J_{\kappa}(t, q) h^{n}(q) \\
& \times\left(1-\frac{\tilde{s} \Phi(\tilde{g}) \tilde{g}^{4}}{s \Phi(g) g^{4}}\right) h_{\varphi}^{n+1}(p) h_{\varphi}^{n+1}\left(p^{\prime}\right) \\
& \stackrel{\text { def }}{=} \mathcal{B}_{1, a}+\mathcal{B}_{1, b}+\mathcal{B}_{1, c}
\end{aligned}
$$

- $\mathcal{B}_{1, a}$ is non-positive.
- $\left(1-\frac{\tilde{s} \Phi(\tilde{g}) \tilde{g}^{4}}{s \Phi(g) g^{4}}\right) \geq 0$ always pointwise.
- Thus $\mathcal{B}_{1, b} \leq 0$ since $\left|h_{\varphi}^{n+1}(p)\right|^{2} \geq 0$ and by assumption $h^{n} \geq 0$.

Main estimates

The goal is to prove the following inequalities:

- $\mathcal{A}_{2}, \mathcal{B}_{1, a}, \mathcal{B}_{1, b} \leq 0$.
- $\mathcal{B}_{1, c} \lesssim \int_{\mathbb{T}^{3}} d x\left\|h_{\varphi}^{n+1}\right\|_{L_{\frac{L^{2} \gamma}{2}}^{2}}^{2}\left\|h^{n}\right\|_{L^{2}}$.
- For any $\epsilon \in(0,1-\gamma)$, we have

$$
\mathcal{B}_{2} \lesssim \int_{\mathbb{T}^{3}} d x\left\|h_{\varphi}^{n+1}\right\|_{\frac{\rho+\gamma+\epsilon}{2}}^{2}\left\|h^{n}\right\|_{L_{\frac{\rho+\gamma}{2}}^{2}}
$$

Final step

- The previus inequalities will lead us to obtain

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}^{3}} \int_{\mathbb{T}^{3}} \beta\left(h^{n+1}\right) \varphi(x)^{-2} d x d p \\
&+\frac{\kappa}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{T}^{3}} p^{0} \beta\left(h^{n+1}\right) \varphi(x)^{-2} d x d p \\
& \lesssim C \int_{\mathbb{R}^{3}} \int_{\mathbb{T}^{3}} \beta\left(h^{n+1}\right) \varphi(x)^{-2} d x d p
\end{aligned}
$$

where the constant C now depends on M, δ, ρ, γ, and ϵ, if we choose $\delta>0$ sufficiently small.

- Then by the Grönwall inequality, we have

$$
\int_{\mathbb{R}^{3}} \int_{\mathbb{T}^{3}} \beta\left(h^{n+1}\right) \varphi(x)^{-2} d x d p \leq 0
$$

since $\beta\left(h_{0}^{n+1}\right)=0$.

- Thus $\beta\left(h^{n+1}\right)=\frac{1}{2}\left(h_{-}^{n+1}\right)^{2}=0$ which implies $h^{n+1} \geq 0$.

Key methods

- Derive the Carleman dual representation for \mathcal{B}_{1}.
- Obtain the following equivalent center-of-momentum representation

$$
\begin{aligned}
& \mathcal{B}_{1}=\int_{\mathbb{T}^{3}} d x \int_{\mathbb{R}^{3}} d p \int_{\mathbb{R}^{3}} d q \int_{\mathbb{S}^{2}} d \omega \\
& \times\left[\frac{v_{\varnothing} \sigma(g, \theta) J_{\kappa}(t, q) h^{n}(q) h_{\varphi}^{n+1}\left(p^{\prime}\right)}{s \Phi(g) g^{4}}\left(h(p)-h_{\varphi}^{n+1}\left(p^{\prime}\right)\right)+h_{\varphi}^{n+1}(p)\left(1-\frac{\tilde{s} \Phi(\tilde{g}) \tilde{g}^{4}}{s \Phi(g) g^{4}}\right)\right] .
\end{aligned}
$$

- Sum this representation with the original representation.
- Use the dyadic decomposition of the region near the angular singularity $\bar{g} \approx 0$ for both \mathcal{B}_{1} and \mathcal{B}_{2}.

Non-negativity lemma

Lemma

Let $\left\{F^{n}\right\}_{n \in \mathbb{N}}$ be a sequence of the approximated solutions.
Suppose that there exists a $\lambda>0$ such that for all $n \in \mathbb{N}$ we have

$$
\sup _{n \in \mathbb{N}}\left\|e^{\lambda p^{0}} F^{n}(t, x, p)\right\|_{L^{\infty}\left([0, T] \times \mathbb{T}_{x}^{3} ; L^{2}\left(\mathbb{R}_{p}^{3}\right)\right)} \leq M,
$$

where $M>0$ is independent of n. Suppose that $F^{n} \geq 0$. Then, we have $F^{n+1} \geq 0$ on $[0, T] \times \mathbb{T}_{x}^{3} \times \mathbb{R}_{p}^{3}$ if $F^{n+1}(0, x, v) \geq 0$ on $\mathbb{T}_{x}^{3} \times \mathbb{R}_{p}^{3}$.

- This lemma implies our non-negativity theorem as long as the solution F in the strong pointwise limit $F^{n} \rightarrow F$ exists.

Local existence and uniqueness of such a solution F

- Further consider the perturbation around the relativistic Maxwellian J as $F^{n}=J+\sqrt{J} f^{n}$
- Obtain the following linearized system for f^{n} (slightly different from that of Jang-Strain (Ann. PDE, 2022):

$$
\left\{\begin{array}{l}
\partial_{t} f^{n+1}+\hat{p} \cdot \nabla_{x} f^{n+1}=\Gamma\left(f^{n}, \sqrt{J}\right)+\Gamma\left(\sqrt{J}, f^{n+1}\right)+\Gamma\left(f^{n}, f^{n+1}\right) \\
f^{0}(t, x, p)=0 \\
\left.f^{n+1}\right|_{t=0}=f_{0}
\end{array}\right.
$$

- Operators are defined as:

$$
\begin{gathered}
\Gamma(f, h) \stackrel{\text { def }}{=} J^{-1 / 2} Q(\sqrt{J} f, \sqrt{J} h) \\
\mathcal{K} f=\zeta_{\mathcal{K}}(p) f-\Gamma(f, \sqrt{J}) \\
\mathcal{N} f=-\Gamma(\sqrt{J}, f)-\zeta_{\mathcal{K}}(p) f \\
=\zeta(p) f-\int_{\mathbb{R}^{3}} d q \int_{\mathbb{S}^{2}} d \omega v_{\varnothing} \sigma(g, \omega)\left(f\left(p^{\prime}\right)-f(p)\right) \sqrt{J\left(q^{\prime}\right)} \sqrt{J(q)}
\end{gathered}
$$

- Then the weights satisfy the following asymptotics; for any $\varepsilon \in(0, \gamma / 2)$, there exists a finite constant $C_{\varepsilon}>0$ such that we have

$$
\left|\zeta_{\mathcal{K}}(p)\right| \lesssim C_{\varepsilon}\left(p^{0}\right)^{\frac{\rho}{2}+\varepsilon} \quad \text { and } \quad \zeta(p) \approx\left(p^{0}\right)^{\frac{\rho+\gamma}{2}}
$$

Preliminary estimates for the operators $\Gamma, \mathcal{K}, \mathcal{N}$

Lemma (Jang-S (Ann. PDE, 2022))

Suppose that $|\alpha| \leq N$ with $N \geq 2$ and $I \geq 0$. Then we have the estimate

$$
\left|\left(w^{2 \prime} \partial^{\alpha} \Gamma(f, h), \partial^{\alpha} \eta\right)\right| \lesssim\|f\|_{H_{x}^{N} L_{\rho}^{2}}\|h\|_{H_{x}^{N} \rho_{\rho}^{\rho, \gamma}}\left\|\partial^{\alpha} \eta\right\|_{L_{x}^{2} \rho_{\rho}^{\rho, \gamma}}
$$

where (\cdot, \cdot) is the L^{2} inner product in both x and p.

Lemma (Jang-S (Ann. PDE, 2022))

For any fixed $\epsilon>0$ small enough, we have that

$$
|\langle\Gamma(f, \sqrt{J}), h\rangle| \lesssim\|f\|_{L_{p, \frac{\rho}{2}-\epsilon}^{2}}\|h\|_{\rho_{\rho}^{\rho, \gamma}}
$$

where $\langle\cdot, \cdot\rangle$ is the L^{2} inner product in p.

Preliminary estimates for the operators $\Gamma, \mathcal{K}, \mathcal{N}$

Lemma (Jang-S (Ann. PDE, 2022))

We have the uniform coercive lower bound estimate:

$$
\langle\mathcal{N} f, f\rangle \gtrsim\|f\|_{i_{\rho}^{\rho, \gamma}}^{2}
$$

where $\langle\cdot, \cdot\rangle$ is the L^{2} inner product in p.
A direct consequence:

Corollary

We have the uniform coercive lower bound estimate. For any $\varepsilon \in\left(0, \frac{\gamma}{2}\right)$, there exists a finite constant $C_{\varepsilon}>0$ such that

$$
\left\langle\mathcal{N} f+\zeta_{\mathcal{K}} f, f\right\rangle \gtrsim\|f\|_{\rho \rho}^{2}, \gamma-C_{\varepsilon}\|f\|_{L_{p, \frac{\rho}{2}+\varepsilon}^{2}}^{2}
$$

Main energy estimates for the local wellposedness

Lemma

Let $\left\{f^{n}\right\}$ be the sequence of iterated approximate solutions for the linearized relativistic Boltzmann equation. Then there exists a short time $T>0$ such that for $\left\|f_{0}\right\|_{H_{x}^{N} L_{p}^{2}}^{2}$ sufficiently small, there exist uniform-in-n constants $C_{0}>0$ and $\beta>0$ such that

$$
\sup _{n \geq 0} \sup _{0 \leq t \leq T} \mathcal{M}\left(f^{n}(t)\right) \leq 2 C_{0}\left\|f_{0}\right\|_{H_{x}^{N} L_{\rho}^{2}}^{2} e^{\beta T},
$$

where the energy norm is defined as

$$
\mathcal{M}(f(t)) \stackrel{\text { def }}{=}\|f(t)\|_{H_{x}^{N} L_{p}^{2}}^{2}+\int_{0}^{t}\|f(\tau)\|_{H_{x}^{N} I_{p}^{\rho, \gamma}}^{2}
$$

- This uniform bound and compactness will establish the local existence of a strong solution.
- The uniqueness also follows, since the strong limit solves the same linearized Boltzmann equation as Jang-Strain, Ann. PDE (2022).

Thank you!

Eames Chapman, Jin Woo Jang, and Robert M. Strain.
On the determinant problem for the relativistic Boltzmann equation. Comm. Math. Phys. (2021), pages 1913-1943,
arXiv:2006.02540, doi:10.1007/s00220-021-04101-2.
E. Jin Woo Jang and Robert M. Strain.

Asymptotic stability of the relativistic Boltzmann equation without angular cut-off. Ann. PDE (2022), 167 pages, arXiv:2103.15885, doi:10.1007/s40818-022-00137-2.

Ein Woo Jang and Robert M. Strain.
Local wellposedness and non-negativity of solutions to the Relativistic Boltzmann Equation without Angular Cut-off. 28 pages, in preparation.

