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The relativistic Boltzmann equation

∂tF +
p

p0
· ∇xF = Q(F ,F ), x ∈ Ω, p ∈ R3, t ≥ 0

• F = F (t, x , p): probability density in (position,velocity)
• Ω ⊂ R3: domain in space
• p

p0
· ∇xF : free transport term

• p = (p1, p2, p3) ∈ R3, pµ = (p0, p) where p0 =
√
1 + |p|2 is

the energy of a relativistic particle with momentum p.
• Q(F ,F ) is the, local in (t,x), “collision operator”:

Q(f , h) =

∫
R3

dq

∫
S2
dω vøσ(g , θ)[f (p

′)h(q′)− f (p)h(q)],

where vø = vø(p, q) is the Mϕller velocity given by

vø(p, q) =

√∣∣∣ p
p0

− q

q0

∣∣∣2 − ∣∣∣ p
p0

× q

q0

∣∣∣2 = g
√
s

p0q0
.



Quantities in the collision operator

The post-collisional momentum are written for ω ∈ S2 as

p′ =
p + q

2
+

g

2

(
ω + (ξ − 1)(p + q)

(p + q) · ω
|p + q|2

)
,

q′ =
p + q

2
− g

2

(
ω + (ξ − 1)(p + q)

(p + q) · ω
|p + q|2

)
.

where p0 =
√

1 + |p|2 and q0 =
√

1 + |q|2, ξ = p0+q0√
s

. The

scattering angle, cos θ, is defined as

cos θ = 1− 2
g(p, p′)2

g(p, q)2
.

Known to be a well defined angle. The relative momentum g is

g = g(p, q) =
√

2(p0q0 − p · q − 1) ≥ 0.

And s = g2 + 4.



Hypothesis on the collision kernel

σ(g , θ) = Φ(g)σ0(θ), Φ(g) ≥ 0, σ0(θ) ≥ 0,

where
Φ(g) = CΦg

ρ, CΦ > 0.

Additionally θ 7→ σ0(θ) is not locally integrable:

σ0(θ) ≈ θ−2−γ , γ ∈ (0, 2), ∀θ ∈ (0, π/2].

We allow that

−3

2
− γ < ρ < 2

where ρ+ γ ≥ 0 are called hard potentials,
and ρ+ γ < 0 are called soft potentials.

• This full set of physical assumptions on the collision kernel
proposed by Dudynski and Ekiel-Jezewska in 1988 in CMP.

• This collision kernel makes the relativistic Boltzmann equation
into a non-local fractional diffusion equation.



Examples of relativistic kernels from physics literature

Mϕller Scattering: de Groot, van Leeuwen, van Weert (1980).

This is an approximation of electron-electron scattering.

σ = r20
1

u2(u2 − 1)2
(2u2 − 1)2

sin4θ
− 2u4 − u2 − 1/4

sin2θ
+

1

4
(u2 − 1)2,

where u =
√
s

2mc and r0 =
e2

4πmc2
.

Israel, J. Math. Phys. (1963)

σ =
m

2g
b(θ)

Other example kernels such as Short range interactions, Compton
Scattering (de Groot, van Leeuwen, van Weert (1980)), and
Neutrino Gas (Dijkstra, van Leeuwen (1978)).



Relativistic Maxwellian equilibrium: Jüttner Solutions

The equlibrium states are characterized as a particle distribution
which maximizes the entropy subject to constant mass,
momentum, and energy. They are given by

J(p) =
e
− cp0

kBT

4πckBTK2(
c2

kBT
)
,

where kB is Boltzmann constant, T is the temperature, and K2

stands for the Bessel function K2(z) =
z2

2

∫∞
1 dt e−zt(t2 − 1)

3
2 .

The Jüttner solution with normalized constants is

J(p) =
e−p0

4π
.



(short incomplete) list of Relativistic Boltzmann results

• Bichteler (1967 local wellposedness for a bounded cross-section)

• Dudyński and Ekiel-Jeżewska (1988-89 L2 solutions to linearized equation)

• Glassey and Strauss (1993 smooth solutions on T3 for the hard potentials)

• Glassey and Strauss (1995 whole space result for hard potentials)

• Strain (2010 global existence and stability for soft potentials, T3)

• Strain (2010 global Newtonian limit near vacuum)

• Speck and Strain (2011, Hilbert expansion to relativistic fluids)

• Guo and Strain (2012 two-species Vlasov-Maxwell-Boltzmann near eq.)

• Strain and Zhu (2012 soft potentials in R3)

• Lee and Rendall (2013 global existence for spatially homogeneous and
hard potentials, both Minkowski and Robertson-Walker spacetime)

• Duan and Yu (2017 global existence and stretched exponential decay for
soft potentials, T3)

• Wang (2018, initial smallness in L1
xL

∞
p and mass, energy, entropy)

• Nishimura (2018, initial smallness in L∞
x L1

p,loc and mass, energy, entropy)

• Bae, Jang, and Yun (2021, global wellposedness for quantum statistics)

• Jang and Strain (2022, global wellposedness without angular cutoff)



The (Newtonian) Boltzmann equation (1872)

∂tF + v · ∇xF = Q(F ,F ), x ∈ Ω, v ∈ R3, t ≥ 0

• Ω ⊂ R3: domain in space

• v · ∇xF : free transport term

• Q(F ,F ): collision operator, local in (t,x), quadratic operator

Q(F ,G )(v) =

∫
R3

dv∗

∫
S2
dσB(v−v∗, σ)[F (v

′
∗)G (v ′)−F (v∗)G (v)].

• Pre-post collisional velocities (v , v∗) and (v ′, v ′∗) satisfy

v ′ =
v + v∗

2
+

|v − v∗|
2

σ,

v ′∗ =
v + v∗

2
− |v − v∗|

2
σ.



Newtonian “cancellation lemma”

Collision kernel: B(v − v∗, σ) ≈ |v − v∗|αθ−2−ν for α > −3 and
ν ∈ (0, 2). Alexandre-Desvillettes-Villani-Wennberg (2000):∫

R3

dv

∫
S2
dσ B(v − v∗, σ)(F (v

′)− F (v)) = (F ∗ S)(v∗)

S(z) = C3|z |α, 0 < C3 < ∞.

This holds for a general class of functions F (v). This is based
upon the change of variables v ′ → v with Jacobian determinant∣∣∣∣dv ′dv

∣∣∣∣ = 1

4
(cos(θ/2))2 ≥ 1

8
> 0

(
0 ≤ θ ≤ π

2

)
This was a big part of the foundation for estimates of the non-local
fractional diffusion of the Newtonian Boltzmann equation.



Newtonian “cancellation lemma” in general

• Consider the difference

u = ϑv ′ + (1− ϑ) v , ϑ ∈ [0, 1].

• The change of variable u → v has Jacobian determinant:∣∣∣∣dudv
∣∣∣∣ = (

1− ϑ

2

)2{(
1− ϑ

2

)
+

ϑ

2
cos θ

}
≥

(
1− ϑ

2

)3

> 0,

since cos θ ≥ 0 on 0 ≤ θ ≤ π/2.

• Various versions of this change of variables has served as the
foundation for virtually all estimates of the non-local
fractional diffusion for the Newtonian Boltzmann equation.

• We show in the special relativistic situation that this
analogous change of variables is generally not well defined.



Relativistic Carleman representation

For G = G (p, q, p′, q′) we have∫
R3

dq

q0

∫
R3

dq′

q′0

∫
R3

dp′

p′0
sσ(g , θ)δ(4)(p′µ + q′µ − pµ − qµ)G

=

∫
R3

dp′

p′0

∫
Eq

p′−p

dπq
8ḡq0

sσ(g , θ)G ,

where G has a sufficient vanishing condition so that the integrals
are well-defined. Here Eq

p′−p is the two-dimensional hypersurface
for relativistic collisions which is defined as

Eq
p′−p = {q ∈ R3 : (p′µ − pµ)(pµ + qµ) = 0}.

And the measure is defined by

dπq = dq u(p0 + q0 − p′0)δ

(
ḡ

2
+

qµ(pµ − p′µ)

ḡ

)
.

Here u(x) = 0 if x < 0, and u(x) = 1 if x ≥ 0. Also ḡ = g(p, p′)
measures the difference between p and p′.



Proof of the lack of a relativistic “cancellation lemma”

Formally write down the following relativistic quantity:∫
R3

dq

∫
S2
dω vøσ(g , θ)(J(q)− J(q′)) = ζ̃B1 (p)− ζ̃B2 (p).

Here ζ̃B1 (p) and ζ̃B2 (p) are written in a relativistic Carleman
representation. Recall the relativistic Maxwellian (a Schwartz
function) is

J(p) =
e−p0

4π
.

Merely assuming the collision kernel: σ(g , θ) = constant. Then

ζ̃B1 (p) < ∞, but ζ̃B2 (p) = ∞.

We conclude that there is no such “cancellation lemma” for the
relativistic Boltzmann equation, and this statement is independent
of the coordinates choosen. (Jang and S, 2022, Ann. PDE,
10.1007/s40818-022-00137-2)

http://doi.org/10.1007/s40818-022-00137-2


Linearization of relativstic Boltzmann equation

We consider the time evolution of perturbations

F (t, x , p) = J(p) +
√
J(p)f (t, x , p).

The perturbation f = f (t, x , p) evolves via the equation

∂t f +
p

p0
· ∇x f + Lf = Γ(f , f ),

where the non-linear collision operator is

Γ(f , h) = J−
1
2Q(

√
Jf ,

√
Jh),

and the linearized collision operator is given by

Lf = −Γ(f ,
√
J)− Γ(

√
J, f ).



Global wellposedness nearby equilibrium without cutoff

Theorem (Jang and S, Ann. PDE (2022))

Fix N ≥ 2, which represents the total number of spatial derivatives. Fix
γ ∈ (0, 1). Choose

f0 = f0(x , p) ∈ HN
l (T3 × R3)

for any fixed l ≥ 0 which satisfies the conservation laws.
There is a small η0 > 0 such that if

∥f0∥HN
l
(T3×R3) ≤ η0,

then there exists a unique global solution, f (t, x , p), to the relativistic
Boltzmann equation which satisfies

f (t, x , p) ∈ L∞
t ([0,∞);HN

l (T3 × R3)) ∩ L2
t ((0,∞); I ρ,γl,N (T3 × R3)).

Question.
Non-negativity of F?



Non-negativity and local wellposedness theorems

Theorem (Jang and S, Non-negativity)

Fix an integer N ≥ 2. Let F = J +
√
Jf be a solution of the relativistic

Boltzmann equation under the non-cutoff hypothesis with initial condition
∥f0∥HN

x L2p
that is sufficiently small. (Such a solution exists locally-in-time by the

theorem below.) Suppose F0 = J +
√
Jf0 ≥ 0 initially on T3

x × R3
p. Then, we

have F ≥ 0 on [0,T ]× T3
x × R3

p.

Theorem (Jang and S, Local wellposedness)

For any sufficiently small M0 > 0, there exists a time T0 = T0(M0) > 0 and
M1 > 0 such that if ∥f0∥2HN

x L2p
≤ M1, then there exists a unique solution

F = J +
√
Jf to the relativistic Boltzmann equation on [0,T0)× T3 × R3 such

that
sup

0≤t≤T0

M(f (t)) ≤ M0,

where the energy norm is defined as

M(f (t))
def
= ∥f (t)∥2HN

x L2p
+

∫ t

0

∥f (τ)∥2HN
x I

ρ,γ
p

.



Sequence of approximated solutions

• For the proofs of both non-negativity and local-wellposedness,
we consider the solution to the Boltzmann equation as a limit
of approximate solutions {F n}n≥0 of the form

∂tF
n+1 + p̂ · ∇xF

n+1 = Q(F n,F n+1),

F 0(t, x , p) = J(p)
def
= 1

4π e
−p0 ,

F n+1|t=0 = F0 ≥ 0.

• This construction of the sequence of approximated solutions is
slightly different from that of Jang-S (Ann. PDE, 2022), and
we need a proof for the local existence again using this
sequence.

• Want to emphasize that a lot of computations that are
“trivial” in the Newtonian case become very serious
challenging algebraic and conceptual difficulties in the special
relativistic situation.



For the proof of non-negativity

• Fix any λ > 0. Taking a sufficiently large κ > 0 such that
λ
2κ > T , we define for n ≥ 0

hn(t, x , p) = J−1
κ F n(t, x , p),

with
Jκ = Jκ(t, p)

def
= e−(λ−κt)p0 .

• Then a sequence of approximated solutions {hn}n≥0 satisfies

∂th
n+1 + p̂ · ∇xh

n+1 + κp0hn+1 = Γκ(hn, hn+1)

where
Γκ(f , h) = Jκ(t)

−1Q(Jκ(t)f , Jκ(t)h).

• This uses the maximum principle approach of Alexandre,
Morimoto, Ukai, Xu and Yang from (ARMA, 2010)



Main strategy for the proof of non-negativity

• Consider the convex function

β(s) =
1

2
(s−)

2 =
1

2
s (s−),

with s− = min{s, 0}.
• Our goal is to prove β(hn+1

− ) = 0 under the following
induction hypothesis:

1 Suppose that there exists a λ > 0 such that, for all n ∈ N, we
have

sup
n∈N

∥∥∥eλp0

F n(t, x , p)
∥∥∥
L∞([0,T ]×T3

x ;L
2(R3

p))
≤ M,

where M > 0 is independent of n.
2 Suppose that F n ≥ 0.



L2-type energy inequality for hn+1
−

Obtain with algebraic weight function φ(x) that

d

dt

∫
R3

∫
T3

β(hn+1)φ(x)−2dxdp+κ

∫
R3

∫
T3

p0β(hn+1)φ(x)−2dxdp

≤
∫
R3

∫
T3

Γκ(hn, hn+1
− )hn+1

− φ(x)−2dxdp

+

∫
T3

dx

∫
R3

dp

∫
R3

dq

∫
S2
dω vøσ(g , θ)Jκ(t, q)h

n+1
− (p)φ(x)−2

× (hn(q′)hn+1
+ (p′)− hn(q)hn+1

+ (p))

+ C

∫
R3

∫
T3

β(hn+1)φ(x)−2dxdp

= A1 +A2 + C

∫
R3

∫
T3

β(hn+1)φ(x)−2dxdp.



Further decompositions

A1 can further be decomposed into A1 = B1 + B2

B1
def
=

∫
T3

dx

∫
R3

dp

∫
R3

dq

∫
S2
dω vøσ(g , θ)Jκ(t, q)h

n(q)hn+1
φ (p)

×
(
hn+1
φ (p′)− hn+1

φ (p)
)
,

and

B2
def
=

∫
T3

dx

∫
R3

dp

∫
R3

dq

∫
S2
dω vøσ(g , θ)

(
Jκ(t, q

′)− Jκ(t, q)
)

× hn(q)hn+1
φ (p)hn+1

φ (p′).



New representation and decomposition of B1

B1 = −1

2

∫
T3

dx

∫
R3

dp

∫
R3

dq

∫
S2
dω vøσ(g , θ)Jκ(t, q)h

n(q)
s̃Φ(g̃)g̃ 4

sΦ(g)g 4

× (hn+1
φ (p′)− hn+1

φ (p))2

− 1

2

∫
T3

dx

∫
R3

dp

∫
R3

dq

∫
S2
dω vøσ(g , θ)Jκ(t, q)h

n(q)

×
(
1− s̃Φ(g̃)g̃ 4

sΦ(g)g 4

)
|hn+1

φ (p)|2

+

∫
T3

dx

∫
R3

dp

∫
R3

dq

∫
S2
dω vøσ(g , θ)Jκ(t, q)h

n(q)

×
(
1− s̃Φ(g̃)g̃ 4

sΦ(g)g 4

)
hn+1
φ (p)hn+1

φ (p′)

def
= B1,a + B1,b + B1,c .

• B1,a is non-positive.

•
(
1− s̃Φ(g̃)g̃4

sΦ(g)g4

)
≥ 0 always pointwise.

• Thus B1,b ≤ 0 since |hn+1
φ (p)|2 ≥ 0 and by assumption hn ≥ 0.



Main estimates

The goal is to prove the following inequalities:

• A2,B1,a,B1,b ≤ 0.

• B1,c ≲
∫
T3 dx ∥hn+1

φ ∥2
L2ρ+γ

2

∥hn∥L2 .

• For any ϵ ∈ (0, 1− γ), we have

B2 ≲
∫
T3

dx ∥hn+1
φ ∥2L2ρ+γ+ϵ

2

∥hn∥L2ρ+γ
2

.



Final step

• The previus inequalities will lead us to obtain

d

dt

∫
R3

∫
T3

β(hn+1)φ(x)−2dxdp

+
κ

2

∫
R3

∫
T3

p0β(hn+1)φ(x)−2dxdp

≲ C

∫
R3

∫
T3

β(hn+1)φ(x)−2dxdp,

where the constant C now depends on M, δ, ρ, γ, and ϵ, if we
choose δ > 0 sufficiently small.

• Then by the Grönwall inequality, we have∫
R3

∫
T3

β(hn+1)φ(x)−2dxdp ≤ 0,

since β(hn+1
0 ) = 0.

• Thus β(hn+1) = 1
2(h

n+1
− )2 = 0 which implies hn+1 ≥ 0.



Key methods

• Derive the Carleman dual representation for B1.

• Obtain the following equivalent center-of-momentum
representation

B1 =

∫
T3

dx

∫
R3

dp

∫
R3

dq

∫
S2
dω

vøσ(g , θ)Jκ(t, q)h
n(q)hn+1

φ (p′)

×
[
s̃Φ(g̃)g̃4

sΦ(g)g4
(h (p)− hn+1

φ (p′))+ hn+1
φ (p)

(
1− s̃Φ(g̃)g̃4

sΦ(g)g4

)]
.

• Sum this representation with the original representation.

• Use the dyadic decomposition of the region near the angular
singularity ḡ ≈ 0 for both B1 and B2.



Non-negativity lemma

Lemma

Let {F n}n∈N be a sequence of the approximated solutions.
Suppose that there exists a λ > 0 such that for all n ∈ N we have

sup
n∈N

∥∥∥eλp0F n(t, x , p)
∥∥∥
L∞([0,T ]×T3

x ;L
2(R3

p))
≤ M,

where M > 0 is independent of n. Suppose that F n ≥ 0. Then, we
have F n+1 ≥ 0 on [0,T ]× T3

x × R3
p if F n+1(0, x , v) ≥ 0 on

T3
x × R3

p.

• This lemma implies our non-negativity theorem as long as the
solution F in the strong pointwise limit F n → F exists.



Local existence and uniqueness of such a solution F

• Further consider the perturbation around the relativistic Maxwellian J as
F n = J +

√
Jf n

• Obtain the following linearized system for f n (slightly different from that
of Jang-Strain (Ann. PDE, 2022): ∂t f

n+1 + p̂ · ∇x f
n+1 = Γ(f n,

√
J) + Γ(

√
J, f n+1) + Γ(f n, f n+1),

f 0(t, x , p) = 0,
f n+1|t=0 = f0.

• Operators are defined as:

Γ(f , h)
def
= J−1/2Q(

√
Jf ,

√
Jh).

Kf = ζK(p)f − Γ(f ,
√
J),

N f = −Γ(
√
J, f )− ζK(p)f

= ζ(p)f −
∫
R3

dq

∫
S2
dω vøσ(g , ω)(f (p

′)− f (p))
√

J(q′)
√

J(q).

• Then the weights satisfy the following asymptotics; for any ε ∈ (0, γ/2),
there exists a finite constant Cε > 0 such that we have

|ζK(p)| ≲ Cε(p
0)

ρ
2
+ε

and ζ(p) ≈ (p0)
ρ+γ
2 .



Preliminary estimates for the operators Γ,K,N

Lemma (Jang-S (Ann. PDE, 2022))

Suppose that |α| ≤ N with N ≥ 2 and l ≥ 0. Then we have the estimate

|
(
w 2l∂αΓ(f , h), ∂αη

)
| ≲ ∥f ∥HN

x L2p
∥h∥HN

x I
ρ,γ
p

∥∂αη∥L2x Iρ,γp
,

where (·, ·) is the L2 inner product in both x and p.

Lemma (Jang-S (Ann. PDE, 2022))

For any fixed ϵ > 0 small enough, we have that

|⟨Γ(f ,
√
J), h⟩| ≲ ∥f ∥L2

p,
ρ
2
−ϵ

∥h∥Iρ,γp
,

where ⟨·, ·⟩ is the L2 inner product in p.



Preliminary estimates for the operators Γ,K,N

Lemma (Jang-S (Ann. PDE, 2022))

We have the uniform coercive lower bound estimate:

⟨N f , f ⟩ ≳ ∥f ∥2Iρ,γp
,

where ⟨·, ·⟩ is the L2 inner product in p.

A direct consequence:

Corollary

We have the uniform coercive lower bound estimate. For any ε ∈ (0, γ
2
), there

exists a finite constant Cε > 0 such that

⟨N f + ζKf , f ⟩ ≳ ∥f ∥2Iρ,γp
− Cε∥f ∥2L2

p,
ρ
2
+ε

.



Main energy estimates for the local wellposedness

Lemma
Let {f n} be the sequence of iterated approximate solutions for the linearized
relativistic Boltzmann equation. Then there exists a short time T > 0 such
that for ∥f0∥2HN

x L2p
sufficiently small, there exist uniform-in-n constants C0 > 0

and β > 0 such that

sup
n≥0

sup
0≤t≤T

M(f n(t)) ≤ 2C0∥f0∥2HN
x L2p

eβT ,

where the energy norm is defined as

M(f (t))
def
= ∥f (t)∥2HN

x L2p
+

∫ t

0

∥f (τ)∥2HN
x I

ρ,γ
p

.

• This uniform bound and compactness will establish the local existence of
a strong solution.

• The uniqueness also follows, since the strong limit solves the same
linearized Boltzmann equation as Jang-Strain, Ann. PDE (2022).
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